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Setting Confidence Intervals for
Bounded Parameters
Mark Mandelkern

Abstract. Setting confidence bounds is an essential part of the reporting of
experimental results. Current physics experiments are often done to measure
nonnegative parameters that are small and may be zero and to search for small
signals in the presence of backgrounds. These are examples of experiments
which offer the possibility of yielding a result, recognized a priori to be rela-
tively improbable, of a negative estimate for a quantity known to be positive.
The classical Neyman procedure for setting confidence bounds in this situ-
ation is arguably unsatisfactory and several alternatives have been recently
proposed. We compare methods for setting Gaussian and Poisson confidence
intervals for cases in which the parameter to be estimated is bounded. These
procedures lead to substantially different intervals when a relatively improb-
able observation implies a parameter estimate beyond the bound.

Key words and phrases: Confidence bounds, Poisson-with-background,
Gaussian-with-boundary.

1. INTRODUCTION

The testing of theoretical models and the estimation
of parameters are among the principal tasks of exper-
imental science. Statistical theory has given us meth-
ods which work well in most but not all circumstances.
We discuss a problem for which statistics does not give
a solution that is satisfactory to many scientists. That
problem is estimation of a parameter when the data
are known a priori to be relatively improbable for all
parameter values under consideration. Such a problem
arises, for example, when the parameter of interest is
bounded and the result of an experiment suggests a pa-
rameter estimate beyond the bound.

A crucial element of parameter estimation is quan-
tifying the uncertainty in the estimate. We generally
present the uncertainty in the estimate of a parame-
ter by providing an interval based on the data and an
associated measure of confidence that the true value
lies within that interval. In the frequentist theory, we
have the coverage 1 − α, the probability that the inter-
val (the random variable) contains the true value. The
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Bayesian confidence interval (credible interval) is con-
structed to contain posterior probability 1 − α. Neither
construction is unique and for the problem I address
here, a number of methods have been proposed. The
Bayesian approach requires specification of a prior dis-
tribution for the parameter and both approaches require
an optimality criterion to uniquely define an interval.

When we do not know a priori whether a particular
observation is relatively probable or not, there is a
natural and intuitively reasonable choice of frequentist
intervals: the central Neyman construction when a two-
sided interval is sought, or the one-sided construction
when an upper or lower limit is sought.

However, it is sometimes possible to identify an ex-
perimental result as relatively improbable for all pos-
sible members of a parametric family of distributions.
There are two specific cases that appear frequently and
lead to difficulty. The first is setting confidence inter-
vals for the mean of a normal pdf n(X;µ) where the
mean is known to be bounded, for example, µ ≥ 0,
and the variance σ 2 is known. (Here, without loss of
generality, σ 2 = 1.) The Neyman confidence interval
in this case is empty when an observation X is suffi-
ciently negative. Any X < 0 yields a shorter interval
than that obtained for X = 0.

This situation occurs frequently in physics, where
many fundamental parameters are intrinsically nonneg-
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ative. Of particular current interest are the masses of
fundamental particles, where the neutrinos are espe-
cially important, because whereas we have always be-
lieved that neutrinos are massless, there is now indirect
experimental evidence that at least two neutrinos have
nonzero mass. Major experimental efforts have been
mounted to determine whether neutrinos are massless.
Measurements of the decay rates of fundamental parti-
cles are tests of conservation principles that have long
thought to be valid but are now being challenged. Both
total decay rates, such as for the proton, and partial de-
cay rates, such as for K0 → eµ, a process that violates
separate lepton number conservation, are positive pa-
rameters that are small and may be exactly zero. The
proton is of particular interest since there are strong
theoretical reasons to believe that it is unstable yet no
decay has been observed after many years of intense
experimentation.

The second case leading to difficulty is setting confi-
dence intervals for the parameter µ of the Poisson dis-
tribution p(N;µ + b). Here µ is the unknown non-
negative signal mean and b > 0 is a known nonnega-
tive background mean. For an observation N , the usual
confidence interval is empty for N − b sufficiently
small and any N < b yields a shorter interval than
that obtained for the a priori more probable observa-
tion N = b−, where b− is the smallest integer less
than or equal to b. Such a circumstance is also com-
mon in physics. We frequently search for a small sig-
nal above a (unwanted) background. The background
may be measured independently or may be estimated.
A negative fluctuation of background and/or signal can
lead to N < b.

An observation of this type causes difficulty only
when it appears moderately improbable, since if it
is grossly improbable, either the data or model is
likely to be so wrong that the observation is not
useful. However, a measurement with, for example,
a 0.1% or greater probability may simply be a tail
(extreme) value rather than indicate a methodological
problem. The latter certainly occurs more frequently
than one might expect because estimating statistical
and systematic uncertainties and incorporating them
into the model is one of the most difficult parts of an
experiment. We frequently can only approximate the
pdfs for random variables, and systematic uncertainties
are by definition offsets of which we are ignorant.
Backgrounds are not always directly observable and
are often calculated. On the other hand, we do not
wish to overestimate uncertainties and thereby weaken
hypothesis testing and parameter estimation. The rule

is to estimate uncertainties one has evidence for, and
assume that they are independent unless one knows
otherwise. Our best estimates of uncertainties are
usually underestimates.

A common reaction of a statistician to a significantly
improbable observation may be to advise that either the
data are wrong or the model is wrong. While this is
certainly true in most cases, the question is what to do.
Rejecting the result is not satisfactory, not just because
experiments may be unique observations and/or cost
millions of dollars, but because rejecting improbable
or undesired results is biasing, especially if only some
results can be recognized as improbable. We need all
the experimental results, each with its uncertainty, to
make a globally-best estimate of a constant of nature
or test a theoretical model. One can also consider,
when obtaining relatively improbable data, exploring
alternative models. Physicists are very wary of biasing
an analysis by changing the model a posteriori. We
have taken great pains to invent and employ blind
analysis procedures to avoid even subconscious bias.
In most analyses, results for important parameters
are typically hidden using a secret offset until the
analysis is complete. We would require an unbiased
procedure to consider alternative models, ones that
deal symmetrically with cases in which we can (e.g.,
because the true value is bounded) or cannot (when it
is not) know that the data are improbable.

In the past several years a number of major ex-
perimental efforts have produced observations of the
types described above. Several well-publicized exam-
ples have come in neutrino physics. Neutrinos are un-
charged elementary particles with masses that until re-
cently have been thought to be zero. The electron neu-
trino νe was initially postulated by Wolfgang Pauli in
order to preserve the conservation of energy and angu-
lar momentum in the weak decays of nuclei. That par-
ticle was first observed by Clyde Cowan and Frederick
Reines in 1956; two additional distinct neutrinos, the
muon neutrino νµ and tau neutrino ντ , have been ob-
served since. Neutrinos have fundamental significance
in elementary particle physics and a large number of
current experiments are concerned with their proper-
ties. Several recent and apparently reliable experiments
report results suggesting that at least two neutrinos
have nonzero mass. These include the detection of a
smaller-than-expected flux of electron neutrinos from
nuclear reactions in the sun (Cleveland et al., 1998),
the observation of a deficit of muon neutrinos from the
decay of particles produced in collisions of cosmic rays
with nuclei in the upper atmosphere (Fukuda et al.,
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1998, Ahmad et al., 2002, Altmann et al., 2000, Ab-
durashitov et al., 1999), and the observation by some
accelerator neutrino experiments that one type of neu-
trino appears to turn into a different type (neutrino os-
cillations) (Athanassopoulos et al., 1998). Thus direct
measurements of neutrino masses are of crucial impor-
tance.

The most sensitive technique for determining the
electron neutrino mass is the measurement of the elec-
tron (β) energy spectrum for the decay of tritium, the
radioactive isotope of hydrogen. The electron energy
spectrum near its upper boundary, where it is most sen-
sitive to the neutrino mass, is given by an expression
with the squared neutrino mass as a parameter. The lat-
ter is determined from the experimental spectrum by
nonlinear regression. Several recent experiments ob-
tained negative values for the fitted value, which is not
surprising for a mass either equal to zero or comparable
to or smaller than the experimental precision.

The best measurements of the electron neutrino mass
are those of the Russian “Troitsk” group, which has
reported four results for the squared mass since 1995,
(−2.7 eV2/c4, 0.5 eV2/c4, −3.2 eV2/c4, −0.6 eV2/c4)
for a combined result of −1.9 ±3.4stat ±2.2syst eV2/c4

(Lobashev et al., 1999). These results are an example
of an a priori relatively improbable observation. The
question is how to report the estimate of the neutrino
mass and its uncertainty. The authors use a Gaussian
model with fixed variance and the Unified method of
Feldman and Cousins (1999) to obtain a 95% upper
limit of 2.5 eV/c2. An identical experiment yielding
a mass observation of zero would lead to the larger
95% upper limit of 2.8 eV/c2. Thus an arguably worse
measurement produces a smaller upper limit implying
better knowledge of the electron neutrino mass.

The Poisson-with-background problem appeared in
the Karlsruhe Rutherford Medium Energy Neutrino
(KARMEN) experiment, which searched for neutrino
oscillations in (among other modes) the appearance re-
action ν̄µ → ν̄e, by using a beam initially composed of
ν̄µ and counting events consisting of a final positron
and neutron in coincidence resulting from the interac-
tion of a ν̄e with a target proton. There are four back-
ground sources that produce events indistinguishable
from signal events. Three of these are estimated from
the data and the fourth obtained from a simulation.
KARMEN (Eitel and Zeitnitz, 1998) reported zero
events, estimated the mean background as 2.88 ± 0.13
events and used the Unified method to obtain a 90%
upper limit for the signal of 1.07 events for the ap-
pearance reaction of interest. If the experiment had

observed three events total, for example, three back-
ground events and no signal events, it would have re-
ported a 90% upper limit of ∼4.5 events. It is worth
noting that a zero background experiment cannot pro-
duce a 90% upper limit smaller than 2.31 events. Thus
a relatively improbable measurement from an inferior
experiment leads to an upper limit which is smaller
than that resulting from a more probable observation,
and is also smaller than the best limit a much better
experiment can obtain.

While (following the authors of the cited experimen-
tal papers), we have quoted the results of using the Uni-
fied method, even smaller upper limits follow from the
classical Neyman method of setting confidence limits.
It is just this pathology that has motivated numerous
authors cited here to devise alternative methods.

The following features are considered by physicists
to be desirable in a confidence interval construction:

(i) Confidence bounds are determined using a well-
defined principle, which is neither arbitrary nor subjec-
tive.

(ii) They do not depend upon prior knowledge of
the parameter apart from its domain.

(iii) They are equivariant under one-to-one transfor-
mations of the parameter.

(iv) They convey an estimate of the experimental
uncertainty.

(v) They correspond to a precise statement of prob-
ability.

Point (ii) makes confidence bounds for different ex-
perimental results independent. Point (v) is usually in-
terpreted as requiring a frequentist construction with
constant coverage. However, the Bayesian approach
has been advocated by prominent physicists, for exam-
ple, in Orear (1958, 1982), based on lectures by Enrico
Fermi.

The properties of the usual frequentist central and
one-sided intervals for unbounded parameters are con-
sistent with these principles and are generally viewed
as entirely satisfactory. These are:

(i) For parameter µ, the nonuniqueness in choos-
ing an interval is resolved by choosing the most pow-
erful unbiased test against suitable two-sided or one-
sided alternative hypotheses.

(ii) No prior knowledge of µ is required.
(iii) The intervals are equivariant under one-to-one

transformations.
(iv) The length of a confidence interval is deter-

mined, independent of the particular measurement, by
the variance of the parent distribution, so it reflects the
experimental uncertainty.
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(v) The construction has constant coverage: the
probability that a confidence bound covers the true
value is 1 − α.

On the other hand, the Bayesian construction re-
quires a choice of prior, does not guarantee equivariant
intervals, and does not explicitly have constant cover-
age.

Two desirable features that are relevant to the bound-
ed parameter space and are present in all of the recently
proposed methods are:

(vi) The confidence belt transitions from an upper
(or lower) limit to a bounded interval. Physicists refer
to such constructions as unified.

(vii) For any observation the confidence interval is
within the bounded parameter space.

I first review the Neyman and Bayesian construc-
tions for the cases of a bounded normal variate and
of a Poisson variate with background. I illustrate the
difficulties that appear when the data set is a priori
relatively improbable. I consider several of the re-
cently proposed constructions for these cases and dis-
cuss them with respect to the principles listed above.

2. NORMAL AND POISSON BOUNDS

2.1 Classical and Bayesian Constructions

The construction of frequentist confidence limits
and intervals was developed by Neyman (1937) from
the theory of hypothesis testing. For the measurement
of a parameter θ , we have the sampling distribution
f (X; θ) of an estimate X. A confidence belt B is a
set in the space of (X, θ) pairs defined by the up-
per boundary function θ = θU(X) and lower boundary
function θ = θL(X), where for an estimate X the inter-
val [θL(X), θU (X)] is a 1−α confidence interval for θ .
Note that intersecting B with the line θ = θ0 gives an
acceptance region for testing the null hypothesis that
θ = θ0. The probability that the confidence interval
contains the true value of the parameter is the cover-
age and is 1 −α by construction. This construction can
produce a lower limit, upper limit or confidence inter-
val. The defining principle does not fully specify the
limit or interval. The optimality requirement suggested
by Neyman is to minimize the coverage of false val-
ues, which usually minimizes the expected length of
the confidence interval (Pratt, 1961).

In the Bayesian theory, the credible interval has
(posterior) probability 1 − α and the usual optimality
condition is that it contains the largest values of the
posterior pdf. The construction does not guarantee
constant coverage and requires selecting the prior.

2.1.1 Normal variate with nonnegative mean. For
a normal variate X, distributed as n(X;µ,σ0), where
−∞ < µ < ∞, the 1 − α upper limit for a single
measurement X is X +f σ0. The 1 −α confidence belt
for µ is [X − gσ0,X + gσ0]. For 1 − α = 0.6827(0.9),
f = 0.475(1.28) and g = 1(1.64).

The treatment for µ ≥ 0 is discussed, for example,
by Cox and Hinkley (1974, Section 7.2). The upper
limit max(0,X + f σ0) is shown in Figure 1, and is
zero for X ≤ −f σ0. This construction has coverage
1 − α for all µ > 0. For µ = 0, it overcovers, with
coverage 1.0, since the upper limit is ≥ 0 for any X.
The confidence interval [max(0,X−gσ0), max(0,X+
gσ0)], also shown in Figure 1, contains only zero for
X ≤ −gσ0. The construction has coverage 1 − α for
µ > 0 and is conservative for µ = 0, with coverage
1 − α/2. It gives a unified description, since for small
X, the lower limit is 0, making the interval effectively
an upper limit.

The Neyman confidence interval for X < 0 under-
estimates the uncertainty in µ. The worst cases are
X ≤ −f σ0 (for upper limits) and X ≤ −gσ0 (for the
confidence belt), where the interval contains only 0.
Except at µ = 0, the most powerful test for µ is insen-
sitive to the absence of alternatives µ′ < 0. Although
there are fewer alternative means µ′ < µ than for the
unbounded case, the hypothesis test is unchanged. In
other words, a negative measurement is known a priori
to be less than maximally probable, yet the hypothe-
sis test does not make use of this additional informa-
tion. It seems reasonable to reduce the power of the
test against smaller alternatives in favor of increased

FIG. 1. The solid lines give the 68.27% confidence belt and the
dashed line the 68.27% upper limit contour, both for n(X;µ,1)

with nonnegative µ in the classical Neyman construction. g = 1.0
and f = 0.475. For X ≤ g(f ), the confidence interval is empty.
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FIG. 2. The solid curves give the 68.27% confidence belt and the
dashed curve the 68.27% upper limit contour, both for n(X;µ,1)

with nonnegative µ in the Bayesian construction (uniform prior).
The modification of Roe and Woodroofe (2001) is shown as a dotted
line.

power against larger alternatives for small µ, which
makes the upper bound less restrictive. This is the strat-
egy of the methods discussed below. I note that for
X ≤ gσ0 the 1 − α explicit upper limit, derived from
the most powerful test against smaller alternatives, is
max(0,X + f σ0) while the 1 − α confidence interval,
derived from the (less powerful) unbiased test, has the
larger upper bound max(0,X + gσ0).

For an unbounded normal variate, the Bayesian
1 − α upper limit for a uniform prior is identical to
the Neyman 1 − α upper limit, that is, X + f σ0. For
the bounded mean µ ≥ 0, the Bayesian upper limit
is X + σ0�

−1[1 − α�( X
σ0

)], where � is the standard
normal distribution function. It gradually decreases
for X < 0 and is never zero. The Bayesian central
interval for the bounded mean (uniform prior, largest
posterior pdfs) is [max(X − d, 0),X + d], where
d = σ0�

−1[1 − α�( X
σ0

)] for −∞ < X ≤ x0 and d =
σ0�

−1[1
2 + 1

2�( X
σ0

)] for x0 < X < ∞, where x0 =
σ0�

−1( 1
1+α

). For 1 − α = 0.6827 (x0 = 0.7034σ0)
these bounds are shown in Figure 2. The explicit upper
limit coincides with the confidence belt upper bound
for X ≤ x0.

2.1.2 Poisson variate with background. The confi-
dence intervals for the Poisson distribution p(N;µ0)

can only have approximately constant coverage be-
cause of discreteness. For a Poisson variate N distrib-
uted as p(N;µ + b), where b is known and nonnega-
tive and µ is nonnegative, Figure 3 shows the classical
Neyman 90% upper limit contour and 90% confidence

FIG. 3. The solid contours give the 90% confidence belt and the
dashed contour the 90% upper limits, both for p(N;µ + 3) in the
classical Neyman construction. For N = 0, the confidence interval
is empty. µ0 = µ + b.

belt, both for b = 3. The latter is unified in that for a
small observation N the lower bound is zero so we ef-
fectively have an upper limit. For both constructions,
that upper limit is zero for N − b sufficiently small, in
analogy to the Gaussian-with-boundary problem. The
explicit upper limit contour is everywhere distinct from
the confidence belt upper bound.

The Bayesian 90% upper limit contour and 90% con-
fidence belt (uniform prior, largest posterior probabili-
ties) for b = 3 are given in Figure 4. The upper bound
for N = 0 is 2.31 independent of b for either construc-
tion, an intuitively attractive result that motivated the
construction of Roe and Woodroofe (1999) and is dis-
cussed below. The explicit upper limits coincide with
the confidence belt upper bound for N < 7.

2.2 Proposed Constructions

The freedom in choosing an optimality condition has
been exploited by several authors who have proposed
confidence interval constructions that take into account
the relative improbability of small measurements. The
resulting constructions are unified and give larger
upper limits for X < 0 (or N < b) than the classical
Neyman construction in an effort to make them useful
measures of confidence.

2.2.1 Unified approach. For the Gaussian-with-
boundary problem, Feldman and Cousins (1998) apply
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FIG. 4. The solid contours give the 90% confidence belt and the
dashed contour the 90% upper limits, both for p(N;µ + 3) in the
Bayesian construction (uniform prior). The modification of Roe and
Woodroofe (2001) is shown as a dotted line.

the (generalized) likelihood ratio test (LRT); for each µ

the acceptance region is obtained from

R = n(X;µ,σ0)

maxµ′≥0 n(X;µ′, σ0)
≥ c,(1)

subject to the coverage requirement. The LRT has
recently been discussed by Perlman and Wu (1999),
who emphasize that optimality (maximum power) is
not necessarily the best criterion for a hypothesis test.
Let µbest be that value of µ′ ≥ 0 that maximizes
n(X;µ′, σ0) for the observation X. For X ≥ 0, µbest =
X. However, for X < 0, µbest = 0, giving larger values
for R than for the unconstrained case. Therefore for
small µ, where acceptance regions contain X < 0,
they are shifted to the left, giving reduced power
against smaller alternatives µ′. The corresponding test
is biased. The construction has constant coverage for
all µ and the resulting confidence intervals always
contain some µ > 0 as shown in Figure 5. However,
for X0 < 0, the interval is short, and like that of the
Neyman construction, underestimates the uncertainty
in µ.

The same principle is applied to the Poisson-with-
background case. The construction, shown in Figure 6,
yields intervals that always contain some µ > 0, but
are short for N < b, showing the same behavior as
the Gaussian case. For N = 0, the interval significantly
depends upon b.

FIG. 5. The 68.27% confidence belt for n(N;µ,1) with nonneg-
ative µ in the Unified approach.

A construction called the New Ordering approach is
proposed by Giunti (1999), in which µref replaces µbest

in the expression for R, where µref ≥ 1 is the Bayesian
expectation value for the measurement N . That µref ≥
µbest increases the shift to the left of the acceptance
region, thus further diminishing the power of the test
against µ′ < µ. This Bayesian-motivated frequentist
construction gives less restrictive upper bounds than
the classical Neyman and Unified methods, as shown
in Figure 6.

FIG. 6. The 90% confidence belt for p(N;µ + 3) in the Unified
(solid ) and New Ordering (dotted ) constructions, the latter for
N ≤ 10.
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2.2.2 Maximum Likelihood Estimator approach. Man-
delkern and Schultz (2000a) argue that X (or N − b)
is an unsuitable estimate for the nonnegative parame-
ter µ. They obtain an estimator µ∗ from a likelihood
function which incorporates the constraint µ ≥ 0. For
the Gaussian-with-boundary problem we have

L(µ) =
N∏

i=1

n(Xi;µ,σ0)θ(µ),(2)

where θ(µ) = 1 for µ ≥ 0 and 0 otherwise. Maximiz-
ing L for the case of a single measurement X leads to
µ∗ = max(X, 0) and the pdf,

P (µ∗;µ) = 1√
2πσ0

exp
[
−(µ∗ − µ)2

2σ 2
0

]
(3)

+ δ(µ∗)�(−µ/σ0),

which is normal for µ∗ > 0 plus a Dirac delta function
at µ∗ = 0 multiplied by the remaining probability.
A frequentist confidence belt, shown in Figure 7, is
obtained using Neyman optimality, by applying the
most powerful test against two-sided alternatives, in
this case an unbiased test, to P (µ∗;µ). For µ ≤ gσ0
the test has no power against µ′ < µ, resulting in
an upper bound for X < 0 that is equal to that for
X = 0.

The Poisson-with-background case is treated in ex-
actly the same way, leading to the confidence belt
shown in Figure 8. Unlike the other methods described
here, this construction does not produce more restric-
tive (improved) upper limits for (negative) measure-
ments that are known a priori to be relatively improba-
ble. I thank Carlo Giunti (INFN Torino) for informing

FIG. 7. The 68.27% confidence belt for N(X;µ,1) with non-
negative µ in the Maximum Likelihood Estimator approach.
f = 0.475.

FIG. 8. The 90% confidence belt for p(N;µ+3) in the Maximum
Likelihood Estimator approach.

me of the earlier work of S. Ciampolillo (1998), who
constructed the same confidence intervals using a dif-
ferent rationale for obtaining the estimator.

The authors conclude that, for a particular experi-
ment, the observation X < 0 gives no more information
regarding µ than the observation X = 0. For an analy-
sis of several experiments, one would compute an over-
all mean from all of the data, again leading to a non-
negative overall estimator µ∗. Thus if the overall mean
were negative, the corresponding upper bound would
be the same as for zero overall mean.

2.2.3 Conditional Probability approach. Roe and
Woodroofe (1999) observe, for the Poisson-with-back-
ground problem, that since the observation N = 0 im-
plies that zero signal (and zero background) is seen, the
resulting estimate for µ is zero, independent of b. They
argue that the confidence interval for µ for N = 0 must
also be independent of b, as in the Bayesian construc-
tion, which effectively conditions on the observation.
Noting that N = Ns + Nb implies Nb ≤ N , they con-
sider the probability for N ′ conditioned on Nb ≤ N ,

q(N ′;µ,b,Nb ≤ N)

=




p(N ′;µ + b)

Pb(N)
, if N ′ ≤ N,

N∑
j=0

p(j;b)p(N ′ − j;µ)

Pb(N)
, if N ′ > N,

(4)

where Pb(N) is the cumulative Poisson probability for
mean b.
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FIG. 9. The 90% confidence belt for p(N;µ + 3) in the Condi-
tional Probability approach. The modification of Mandelkern and
Schultz (2000b) is shown as a dotted line. The solid (dotted ) con-
tours give the limits before (after) adjustment for coverage. The
unmodified construction undercovers for those µ where the solid
lower limit contour is to the left of the dotted contour and vice
versa.

For each N > Nb a conditional confidence belt is
constructed. The acceptance region is obtained from

q(N ′;µ,b,Nb ≤ N)

maxµ′≥0 q(N ′;µ′, b,Nb ≤ N)
≥ c,(5)

subject to
∑

N ′ q(N ′;µ,b,Nb ≤ N) ≥ 1−α. For the set
of hypothetical experiments [N ′ = Ns +Nb, Nb ≤ N ],
the construction is said to have conditional coverage.

An overall confidence belt is constructed, given in
Figure 9 for b = 3 and α = 0.1, with the vertical inter-
val for N taken equal to that for N ′ = N from the con-
ditional confidence belt for N > Nb. Since q(N ′;µ,b,

N = 0) = p(N ′;µ), the conditional confidence belt
for N = 0 is independent of b, thus the overall con-
fidence interval for N = 0 is independent of b with up-
per bound 2.44. We have the usual intervals for N � b

since q(N ′;µ,b,Nb ≤ N) → p(N ′;µ + b).
Because of conditioning on the observation, the

overall confidence belt does not have conventional cov-
erage. The undercoverage for b = 3 is minimal (cover-
age ∼0.87 at µ ∼ 0.4), and in any case coverage can-
not be exact for a discrete variate. However, undercov-
erage is more severe for greater b; for b = 10, the min-
imum coverage ∼0.78.

As described by Mandelkern and Schultz (2000b),
and also shown in Figure 9, the construction can

FIG. 10. The 68.27% confidence belt for n(X;µ,1) with nonneg-
ative µ in the Conditional Probability approach. The modification
of Mandelkern and Schultz (2000b) is shown as a dotted line. The
unmodified construction undercovers for those µ where the solid
lower limit contour is to the left of the dotted contour and vice
versa.

be modified to have conventional coverage without
affecting its attractive features, namely the confidence
limits for N ≤ b, by retaining the left-hand boundary
and adjusting the right-hand boundary so that for all µ

the horizontal intervals contain probability greater
than or equal to 1 − α. This ad hoc modification
corresponds to a particular choice of hypothesis test of
significance α for all µ.

Cousins (2000) constructs intervals from a condi-
tional pdf for the Gaussian-with-boundary problem.
The confidence belt has generally poor coverage prop-
erties but asymptotically approaches the classical con-
fidence belt for large µ, as shown in Figure 10, where
I also give the contour modified to have coverage as de-
scribed by Mandelkern and Schultz (2000b). The con-
tour for X ≤ 0 is identical to the Bayesian contour
shown in Figure 2.

2.2.4 Mixed Bayesian–Frequentist approach. Roe
and Woodroofe (2001) suggest a second method, in
which they start with the Bayesian confidence belts
shown in Figures 2 and 4 and make a “conservative
ad hoc modification,” also shown in the figures, to
improve the conventional coverage properties. The
latter consists of a small increase in the upper limits by
applying the one-sided limits for a smaller significance
α′ < α. For the Gaussian-with-boundary problem, they
choose α′ = α/2 and obtain a 68.27% confidence belt
that overcovers (> 95%) for µ < 1.0. The choice
α′ = 0.08 yields a 90% Poisson-with-background belt
for b = 3 that overcovers (> 97%) for µ < 5.0. The
Poisson upper limit for N = 0 is independent of b for
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TABLE 1
The results of different methods for obtaining 68.27% upper limits and confidence intervals, in units of σ0,

for the unknown mean of a Gaussian of variance σ 2
0

Classical Bayesian Unified Max Lik Cond(mod) Bayes-Freq

X lower upper lower upper lower upper lower upper lower upper lower upper

−3.0 0 0 0 0.34 0 0.04 0 1.00 0 0.30 0 0.34
−2.0 0 0 0 0.45 0 0.07 0 1.00 0 0.48 0 0.45
−1.0 0 0 0 0.65 0 0.27 0 1.00 0 0.64 0 0.65

0.0 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00
1.0 0 2.00 0.20 1.80 0.24 2.00 0.53 2.00 0.48 1.81 0.20 2.00
2.0 1.00 3.00 1.03 2.97 1.00 3.00 1.00 3.00 1.00 2.94 1.00 3.00
3.0 2.00 4.00 2.00 4.00 2.00 4.00 2.00 4.00 1.75 3.96 2.00 4.00

fixed α′ but the “appropriate choice” for α′, and thus
the N = 0 upper limit, depends “weakly” on b.

2.3 Summary

Results for the methods discussed above are given in
Tables 1 and 2, which contain the 68.27% bounds for
the Gaussian-with-boundary problem and 90% bounds
for the Poisson-with-background problem. These meth-
ods can be compared from the frequentist point of view.
All have at least approximately constant coverage; in
fact the desire for conventional coverage is an impor-
tant concern for all of the authors. They are all unified
in that they automatically produce upper limits when a
small observation is made. For a nonnegative observa-
tion (I refer to Gaussian observations X < 0 and Pois-
son observations N < b as negative), all give nearly
the same result. The confidence belt is determined by
a hypothesis test against two-sided alternatives for all
possible values of the parameter. The classical Neyman

construction is derived from an unbiased test. How-
ever it produces upper limits that are very small or zero
for modestly negative observations. These do not con-
vey an estimate of the experimental uncertainty. The
Unified (LRT) construction follows from a weaker test
against smaller alternatives but still produces limits
that are overly restrictive for negative observations and
the authors warn against interpreting them as measures
of uncertainty. The test producing the Maximum Like-
lihood Estimator construction is least powerful against
smaller alternatives for small µ and gives a conserva-
tive upper limit, no more restrictive than that obtained
when zero is observed. The authors argue that a neg-
ative measurement is no more informative than a non-
negative measurement and should not be rewarded by
a smaller upper limit. The Conditional Probability con-
struction and Mixed Bayesian–Frequentist construc-
tion correspond to tests of intermediate power and, for
a negative observation, yield upper bounds (for a non-

TABLE 2
Results of different methods for obtaining 90% confidence intervals for an unknown nonnegative Poisson signal µ

in the presence of a Poisson background with known mean b = 3.0

Classical Bayesian Unified Max Lik Cond(mod) Bayes-Freq

N lower upper lower upper lower upper lower upper lower upper lower upper

0 0 0 0 2.31 0 1.08 0 4.69 0 2.44 0 2.53
1 0 1.70 0 2.84 0 1.88 0 4.69 0 2.95 0 3.09
2 0 3.17 0 3.55 0 3.04 0 4.69 0 3.75 0 3.82
3 0 4.69 0 4.35 0 4.42 0 4.69 0 4.80 0 4.71
4 0 5.60 0 5.33 0 5.60 0 5.60 0 6.01 0 5.74
5 0 7.04 0 6.44 0 6.99 0 7.04 0 7.28 0 6.85
6 0 8.64 0 7.63 0.15 8.47 0.16 8.64 0.16 8.42 0 8.07
7 0.29 9.54 0.55 9.21 0.89 9.53 0.90 9.54 0.90 9.58 0.55 9.29
8 0.99 11.08 1.21 10.62 1.51 11.00 1.66 11.08 1.66 11.02 1.21 10.62
9 1.70 12.30 1.90 11.91 1.88 12.30 2.44 12.30 2.44 12.23 1.90 11.91

10 5.43 13.55 2.64 13.24 2.63 13.50 3.23 13.55 3.00 13.51 2.64 13.24
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negative parameter) that are modestly more restrictive
than when zero is observed.

3. DISCUSSION

The experimenter is placed in a quandary when the
data set obtained from an experiment is a priori rela-
tively improbable, such as a negative estimate for an
intrinsically positive parameter. If the experimental re-
sult is extremely improbable, it is plausible to discard
the measurement as systematically flawed or the model
as incorrect. However, a procedure that discards im-
probable measurements a posteriori or calls for repeat-
ing an experiment depending upon its results clearly
biases the final answer. In many cases it is impossible
or impractical to repeat an experiment, such as results
from astronomical events or from gigantic experiments
which require years of operation and/or cost millions
of dollars. In any case the systematic errors are likely
to be different. The experimenter must report the result
in such a way that it conveys information about the pa-
rameter, including a measure of statistical uncertainty
or confidence.

The classical method for reporting confidence, the
Neyman confidence interval, works well for unbounded
parameters, but is unsatisfactory to many scientists
when the parameter is bounded. The models in which
recognizably improbable data are possible and this
problem appears are estimation of a bounded normal
mean and estimation of a Poisson mean which is the
sum of an unknown signal and a known nonnega-
tive background. I have reviewed the classical Ney-
man and Bayesian constructions of confidence bounds
and recently proposed modifications for these models.
None of the constructions seems satisfactory. A fully
justified principle has not been articulated for any of
the methods; some have explicitly ad hoc features.
While some methods produce very stringent upper lim-
its for only modestly improbable measurements, an-
other gives much more conservative limits. The re-
action of a scientist may be to question whether any
method is meaningful if there are so many different
ways of setting confidence intervals.

I conclude by asking several questions:

• Is the frequentist approach that which best satisfies
the needs of scientists for reporting experimental
results?

• Is the requirement for constant coverage important?
• Is the subjectiveness of the Bayesian approach

overstated?

• Since Neyman optimality does not seem appropriate
for choosing among frequentist constructions for
this problem, is there a suitable alternative criterion?

• Are there more flexible models that avoid the diffi-
culties described here, that for example take into ac-
count the intrinsically incomplete knowledge of ex-
perimental uncertainties? Perhaps a technique other
than confidence bounds (or credible intervals) may
be useful.

• Finally, independent of the method for reporting un-
certainty, is it reasonable to obtain a more restrictive
measure of confidence for a priori improbable data
than for the most probable data? In other words does
a fortuitously improbable observation give improved
knowledge of an unknown parameter?
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Comment
George Casella

1. INTRODUCTION

Professor Mandelkern is to be congratulated for
so clearly motivating and explaining a fascinating
problem in statistics. Boundedness of any kind is
always a plague to statistical procedures, as our usual
assumptions tend to break down at a boundary.

This problem is interesting for two reasons. First,
there is the belief that the model is correct (“. . . a
measurement with, for example, a 0.1% or greater
probability may simply be an outlier . . . ”) and second,
there is the reality of frequent observance of data that
have small probability under the model, as “models
in which recognizably improbable data are possible”
seem to produce a lot of improbable data.

My own feelings about the paper and the problem
have come full circle. When I first read the paper my
immediate reaction was that the model was incorrect,
and some hard thinking was required by the physicists.
After some discussion, thought, and re-reading of the
paper, I started to think that the fault was maybe
not with the model, but with the statistics. But there
seemed to be no basis for faulting the statistics, so I am
back to faulting the model.

George Casella is Professor and Chair, Department of
Statistics, University of Florida, Gainesville, Florida
32611-8545 (e-mail: casella@stat.ufi.edu).

2. DOING THE RIGHT THING?

There is no question that the frequentist confidence
intervals are doing the right thing or, at least, doing
what they promise to do. That is, if X ∼ n(µ,σ 2), then
X ± 2σ will cover µ 95% of the time. If µ is restricted
to [0,∞), then X±2σ ∩[0,∞) will do the same thing.
The fact that negative values of X are less probable is
taken into account in the location of the interval.

When an observation is “unlikely” under the hypoth-
esized model, we either can believe that we observed
an unusual occurence, or we can believe that the model
is incorrect, and there is a true model under which the
observation is likely. As Professor Mandelkern wants
to believe that the model is correct, very negative ob-
served values are then extremely strong evidence that
the true mean is zero. The fact that the resulting inter-
vals collapse to a point just reflects the strength of the
evidence.

3. A PERFECT SETUP

There is not much more that the frequentist interval
can do—it is frequentist and doesn’t know how to ef-
fectively use prior information. What we then have is
a perfect set-up for a Bayesian solution. Although Pro-
fessor Mandelkern is concerned with the subjectivity
of the Bayes inference, we can avoid that by using a
Bayesian solution to construct the interval and a fre-
quentist evaluation to evaluate it.
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FIG. 1. One-sided 68% confidence intervals from the “usual”
frequentist method (solid ); the frequentist-calibrated Bayes solu-
tion of (1) (long dashes) and the alternative frequentist model of (2)

(short dashes).

The “uniform prior Bayes” is not a good choice.
Since the improper prior puts infinite mass outside of
every compact set, the resulting interval has an upper
endpoint that is pulled too far from zero. Alternatively,
one can hypothesize an exponential or gamma prior
on µ. As a simple example, for σ = 1 suppose that we
take an exponential (5) prior on µ: that is, we have the
model

X | µ ∼ N(µ, 1), µ ∼ 1
5e−µ/5, µ > 0.(1)

Calculation of the posterior distribution, π(µ | x) is
straightforward, and the upper endpoint of an interval
[0,µB(x)] can be obtained as the solution to the
integral equation

∫ µB(x)
0 π(µ | x) dµ = 1 − αB , where

αB is a specified value.
To eliminate the subjectivity in the Bayes solu-

tion, we now choose αB so that the frequentist cov-
erage probability of [0,µB(x)] is at the desired level.
For example, to attain coverage probability 0.68, we
set 1 − αB = 0.75, and get the interval given in
Figure 1.

4. ENHANCING THE FREQUENTIST SOLUTION

Although it may be reasonable to assume that X ∼
n(µ,σ 2), we should model a bit further. The previous
section showed that a simple Bayesian solution, with
a frequentist calibration, will produce reasonable in-
tervals. But what can be done from a pure frequentist
view? First, it seems reasonable to attempt to further
model the error structure (especially near zero), and

a first thought is a random effects model,

X | µ,a ∼ N(µ + a,σ 2), a ∼ N(0, σ 2
a )

�⇒ X | µ ∼ N(µ,σ 2
a + σ 2).

While this model lessens the “point-mass” problem, it
does not alleviate it, merely resulting in a straight line
confidence bound that hits the axis at a smaller value
of x.

As frequentists, we can go a bit further with mod-
eling the error variance and suppose that it is function
of µ with the necessary properties,

X | µ ∼ N
(
µ,σ 2h(µ)

)
, h(0) = ∞, h(∞) = 1.(2)

One function that satisfies these properties is h(µ) =
[1 + log(1 + µ−1)]2, with the resulting one-sided
confidence interval given in Figure 1. As can be seen,
it provides a reasonable upper bound, not collapsing
to zero, being in between the usual frequentist interval
and the frequentist-calibrated Bayesian interval.

5. IT REALLY MUST BE THE MODEL

At this point it seems clear that it really must be
the model, or at least we must come to the realization
that the model of first choice is inadequate to explain
the situation. Although it is not necessary to totally
abandon the simplicity of assuming X ∼ n(µ,σ 2),
µ > 0, this assumption is only part of what is needed
to accurately model the entire process.

When there is strong prior information, it seems that
we must use this information, in the model, in a strong
way. The frequentist paradigm, while a preferred one
for evaluation, is not the place for building models.
That exercise better fits under the Bayesian umbrella,
where hierarchical models like (1) can often provide us
with both understanding and accurate representation of
a process.

It is important to differentiate between a model (or
a solution), and the mechanism that is used to eval-
uate the worth of the model (or solution). The hier-
archical Bayes model (1) and the frequentist variance
model (2), come from different places. However, each
can produce intervals that maintain a specified level of
frequentist coverage and avoid the “paradox” of col-
lapsing to a point.
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Comment
Leon Jay Gleser

INTRODUCTION

I cannot resist commenting on Professor Mandelk-
ern’s most interesting and timely paper. My own re-
search has concerned some of the issues that bother
him, particularly the meaning and measurement of un-
certainty and the role of measures of uncertainty in the
combining of information.

FREQUENTIST CONFIDENCE INTERVALS AND
RECOGNIZABLE SUBSETS

Frequentist confidence intervals are often described
in textbooks as conveying both a point estimator of a
parameter (usually the midpoint of the interval) and
an indication of one’s uncertainty in that estimate
after the data is drawn (the minimal probability of
coverage, the interval length). However, the probability
of coverage of a confidence interval is a predata
measure of uncertainty; its role as a postdata measure
of uncertainty depends upon assertions such as “If
the probability that the estimator is within d units
of the parameter is 0.95, then the uncertainty that
the parameter is within d units of the estimator is
also 0.95.” Such an assertion is not always true,
as illustrated by Professor Mandelkern’s example of
estimating a mean known to be positive. Although
the standard Neyman 95% confidence interval has
minimum (predata) probability of 0.95 of covering the
true value of the mean, if the sample mean is observed
to be two standard deviations or more to the left of
zero, then the (postdata) conditional probability that
the interval will contain the true value of the mean is
zero.

The subset of samples having the property that the
sample mean is two standard deviations to the left
of zero would have been called a “recognizable sub-
set” by Fisher (1956). A classic example of such a
recognizable subset in the case of confidence inter-
vals is the set of samples in which a one-sided test

Leon Jay Gleser is Professor, Department of Sta-
tistics, University of Pittsburgh, 2732 Cathedral of
Learning, Pittsburgh, Pennsylvania 15260 (e-mail:
ljg@stat.pitt.edu).

of hypothesis concerning the mean is rejected (or ac-
cepted); see Brown (1967). Examples such as these led
Scheffé (1977) to advocate using confidence regions
to construct tests of hypothesis, rather than vice versa,
as in Neyman’s construction of confidence intervals.
Buehler (1959), and later Robinson (1979), introduced
the notion of conditionally admissible tests and con-
fidence intervals—those procedures whose frequentist
control of error (coverage probability, level of signif-
icance) was not adversely affected by the realization
that a given data set belonged to a recognizable sub-
set of samples. A good survey of this literature can be
found in Casella (1987). Although many of the clas-
sic normal-theory procedures were found to be condi-
tionally admissible, Professor Mandelkern’s example
shows that the classic Neyman confidence interval for
the mean is not conditionally admissible in the case
of estimating a positive mean. Extension of this re-
sult to other cases of bounded parameters is obvious.
In short, once something about the data is known, it
is possible for the frequentist properties of the confi-
dence interval to change; the predata measure of risk
is not necessarily the correct postdata measure of un-
certainty.

The Neyman–Pearson theory of statistical inference
and its generalization to statistical decision theory by
Wald were intended to guide choice of a statistical de-
sign and corresponding analysis of the data. Necessar-
ily, this choice (because it involves the design) is made
predata. Choice of a design–analysis combination is
viewed in the same way as a physicist might view the
choice of a measuring device. Such a device is chosen
to have a required level of accuracy; once the device is
chosen, its measurements are treated as if they are error
free. Similarly, a design–analysis combination is cho-
sen to control certain probabilities of false decision (or
risks of false decision), but once the data is gathered
and a conclusion reached, further assessment of uncer-
tainty is not considered. (The decision is made, and its
risks have been described.) It is unfortunate that Ney-
man’s confidence intervals and Fisher’s fiducial inter-
vals are often confused. Fisher meant his fiducial inter-
vals to describe postdata uncertainty, whereas Neyman
probably did not. (Indeed, Neyman called his inter-
vals “interval estimators” and talked of “confidence.”
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On the other hand, Fisher certainly thought of Ney-
man’s approach as a competitor to his own, and I don’t
find any evidence that Neyman disabused him of this
idea.)

One frequentist response to the problems which
recognizable subsets and conditional inadmissibility
raise is to try to establish a theory of conditional fre-
quentist inference, trying to replace Fisher’s device
of conditioning on ancillary statistics with something
that applies more generally (see, e.g., Fraser and Reid,
1995, 2001). Another approach, implicit in the boot-
strap approach to confidence intervals and made ex-
plicit by Kiefer (1977), is to try to estimate from
the data the risk of the procedure under the true dis-
tribution that governs the data. The latter approach,
however, is subject to the same conditional inadmis-
sibility criticism as the unconditional frequentist ap-
proach.

LIKELIHOOD AS A MEASURE OF UNCERTAINTY

The Likelihood Principle (see Casella and Berger,
2002) proposes the likelihood function as a measure
of evidence about the parameters of the model used to
describe the data. What does the likelihood function
tell us in the two problems discussed by Professor
Mandelkern?

In each case, as the data become less and less
likely under the family of distributions assumed by
the model, the narrowing of the interval corresponds
to an increasing concentration of the likelihood at
the boundary value 0 of the parameter. Consider, for
example, the problem of estimating a positive mean
assuming normality. Following Professor Mandelkern
in assuming that the sample mean X is normally
distributed with mean µ and known standard error d ,
we can write the likelihood function for µ as

L(µ) = f (X | µ)/f (X | 0) = [(
µX − (1/2)µ2)/d2],

where f (x | µ) is the density function of X when the
population mean equals µ. (Recall that the likelihood
function is defined up to a constant of proportionality
that may depend on X.)

It is easy to see that when X < 0 and µ is posi-
tive, L(µ) is strictly decreasing in µ, and further that
the rate of decrease increases the more negative that X

becomes. Thus, the likelihood function of µ becomes
more and more concentrated about 0 the more negative
X becomes, eventually becoming totally concentrated
(spiked) at 0. Consequently, if one is willing to base
inference on the likelihood, more and more unusual

X-values under the model lead to tighter and tighter in-
ferences about µ, in agreement with the evidence (un-
certainty) indicated by the classic Neyman confidence
interval for µ. It follows that any confidence intervals
that keep a constant width as X becomes more nega-
tive, as some of the physicists seem to desire, are indi-
cating not necessarily what the data shows through the
model and likelihood, but rather desiderata imposed
external to the statistical model.

Notice that basing inference about µ solely on the
model does not permit the data to challenge the model.
Consequently, there is no way for the likelihood to
reflect uncertainty about the model. It is possible,
because of the way I have defined L(µ), to test each
possible value of µ against the alternative that X is
normally distributed with zero mean and standard
deviation d . In this case, sufficiently negative values
of X suggest that µ equals 0; less negative values of X

favor either 0 or values close to 0. In many experiments
of the sort that Professor Mandelkern describes, an
inference that the parameter is 0 suggests either that
no quantity was measured (X reflects only background
noise) or else that measurement was insufficiently
accurate to detect the value of the parameter.

In more complex parametric models than the ones
presented by Professor Mandelkern, it is impractical to
present the likelihood of a vector parameter as a mea-
sure of uncertainty. Statisticians seem to disagree how
to construct a measure of evidence or uncertainty for
a single parameter based on a multiparameter likeli-
hood. Two suggestions often advanced are (1) to re-
port the marginal (integrated) likelihood of a parame-
ter, and (2) to report a pseudo-likelihood (with other
parameters replaced by their modal estimators). Other
arguments and issues arise with the use of likelihood
functions. In some problems, likelihood functions are
difficult to compute. Nonetheless, a likelihood function
of a parameter is one measure of uncertainty for that
parameter that directly summarizes what the data has
to say about the value of that parameter through the
model. Consequently, a likelihood function for a pa-
rameter can be communicated without ambiguity from
one scientist to another, and can be combined by multi-
plication with other likelihoods to provide information
across studies about the value of that parameter.

SUMMARY

Statistical measures of uncertainty will have their
limitations, and thus it is necessary to keep clearly in
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mind what information various ways of presenting un-
certainty provide. Of particular importance is the dis-
tinction between predata probabilities of error for sta-
tistical design–analysis procedures and postdata mea-
sures of uncertainty for the values of the parameters
(particularly if given as probabilities). Also, it should
be kept in mind that inference procedures designed
to work in the context of a given model, particularly
likelihood-based procedures, cannot test that model di-

rectly. Checks of the model require separate inference
procedures. In the problems Professor Mandelkern de-
scribes, checks of the model are likely to require meta-
analytic examination of the results of similar experi-
ments; for example, does the problem of estimators
having values outside of the parameter space occur
more often than the model would predict? If so, some
thought should be given to generalizing the model to
account for this extra variability.

Comment
Larry Wasserman

UNCERTAINTY ABOUT WHAT?

Strictly speaking, the Neyman interval is correct in
that it has the advertised coverage. The perception that
the confidence intervals are inadequate arises partly be-
cause it fails Professor Mandelkern’s property (iv) that
the interval should “convey an estimate of experimen-
tal uncertainty.” The question is: what is experimental
uncertainty?

One type of experimental uncertainty is the risk of
the estimator. Consider n observations from a regular
model with unrestricted scalar parameter θ . The usual
interval is I = [θ̂ − ŝezα/2, θ̂ + ŝe zα/2] where ŝe is
the estimated standard error and zα/2 is the upper α/2
quantile of a standard Normal. This interval not only
has correct coverage (asymptotically) but the length of
the interval is proportional to the square root of the
risk (mean squared error) of the point estimator. This
is because the MLE θ̂ has bias O(n−1) and standard
deviation O(n−1/2). The length of the interval will
shrink to 0 if and only if the risk goes to 0.

In the Normal problem with nonnegative mean µ,
the confidence interval fails to represent estimator
uncertainty. For example, when X is very negative,
the length of the Neyman interval is 0, which clearly
underestimates the risk. The risk (with σ = 1) of the
MLE is

R(µ) = µ2[1 − �(µ)] − µφ(µ) + �(µ)

Larry Wasserman is Professor, Department of Statis-
tics, Carnegie Mellon University, Baker Hall 228A,
Pittsburgh,Pennsylvania (e-mail:larry@stat.cmu.edu).

and hence 1/2 ≤ R(µ) ≤ 1. We could supplement the
confidence interval with an estimate of risk. For ex-
ample, the confidence interval for µ leads immediately
to a confidence interval for R(µ) which degenerates
to 1/2 when X is highly negative. At least this makes
clear that there is still experimental uncertainty. To
avoid the dangers of misinterpretation, we could even
demand that the length of the interval never be allowed
to shrink below some function of the estimated risk.
We will then pay a price in conservativeness of the in-
terval but the payoff is that users will not misinterpret
the degenerate interval to imply that their is no uncer-
tainty.

Another type of experimental uncertainty is whether
the model is correct. Professor Mandelkern is cor-
rect that posthoc outlier rejection and posthoc model
changes lead to bias. But it would be straightforward
to modify the model to include the realistic possibil-
ity of model violations and this will lead to more intu-
itive confidence intervals. A simple example of such a
model is the contaminated Normal (1 − ε)N(µ,σ ) +
εN(µ,Kσ) where ε is the probability of an outlier
and K > 1. With only one observation (and contin-
uing to take σ known), (µ, ε,K) are not identifiable
and the confidence interval for µ is [0,∞). One could
argue that this is the correct expression of our uncer-
tainty. This shows how strongly the inferences depend
on model assumptions. Or perhaps one might simply
fix K and ε at reasonable values since this is better
than taking ε = 0. With more observations, one could
treat all the parameters as unknown.
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Comment
David A. van Dyk

1. A PRIORI UNLIKELY DATA OR MODEL
MISSPECIFICATION?

The seemingly poor properties of standard confi-
dence intervals given a priori unlikely data described
by Professor Mandelkern have received much atten-
tion in physics. I am delighted that the author has so-
licited the advice of the statistical community through
this publication and that the editors of Statistical Sci-
ence have given me the opportunity to comment.

It seems to me that the basic difficulty is summarized
well in the final question of Mandelkern’s discussion,
namely, “Is it reasonable to obtain a more restrictive
measure of confidence for a priori unlikely data than
for the most probable data.” To answer this question,
we consider the Poisson case with N ∼ Poisson(µ +
b), where b is assumed to be known from background
calibration. Figure 1 illustrates the sampling distribu-
tion of the 95% confidence interval for µ when µ =
1.25 and b = 2.88. The simulation values are taken
from the description of the KARMEN 2 experiment
given in the article and in Roe and Woodroofe (1999).
The confidence intervals were computed using the fre-
quentist method of Garwood (1936) for µ+ b and sub-
tracting off b. In Figure 1 the horizontal range of each
rectangle corresponds to the confidence interval for the
given observed value of N and the height of each rec-
tangle corresponds to the sampling probability of the
confidence interval; the dashed vertical line indicates
the supposed value of µ = 1.25. That the confidence
interval grows longer as N increases is readily apparent
in Figure 1. Thus, unlikely values of N that are small
can result in highly restrictive measures of confidence,
that is, narrow intervals. Of course, this is wholly de-
pendent on the choice of scale; the corresponding in-
tervals for log(µ) have finite length only for N ≥ 8.
Even on the original scale, this property is not sur-
prising; smaller values of N make smaller values of
µ + b and the correspondingly smaller Poisson vari-
ability more credible. Although the situation is intensi-

David A. van Dyk is Associate Professor, Depart-
ment of Statistics, Harvard University, one Oxford
Street, Cambridge, Massachusetts 02138 (e-mail:
vandyk@stat.harvard.edu).

FIG. 1. The sampling distribution of the standard 95% Poisson
confidence interval for µ with b = 2.88 and µ = 1.25. The
horizontal width of each rectangle is the confidence interval for the
corresponding value of N ; the height of each rectangle indicates
the sampling probability for the interval. The figure illustrates that
if the model is correctly specified, very short intervals should be
rare.

fied by the known background intensity, since µ + b is
bounded below not by zero but by b, the confidence in-
tervals remain a reasonable frequentist summary under
the model. The reason these frequentist intervals are so
short when N = 0 is that under the model and given b

only very small values of µ make N = 0 at all likely.
I emphasize that it is unquestionably reasonable that

smaller values of N result in shorter frequentist inter-
vals but only if the model is a plausible representa-
tion of the data generating mechanism. The italicized
caveat is critical. For any probability calculations (fre-
quentist or Bayesian) to be meaningful and relevant the
statistical model must adequately represent the data. In
theory, this means that if the experiment were repeated
many times, the resulting counts would follow a Pois-
son distribution with intensity µ + b for some µ ≥ 0.
Of course, models should be viewed as tools that offer
a parsimonious summary of the relevant aspects of the
data, rather than a complete and full description. Thus,
model selection is inherently a subjective art: it is de-
pendent not only on the characteristics of the data and
data collection process but also the aims and intentions
of the scientist. Nonetheless, to be useful a model must
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FIG. 2. The posterior distribution of µ ( first panel) and log(µ) (second panel) under a point mass prior for β (b = 3) and with N = 1. The
figure illustrates the effect of the symmetrizing log transformation.

offer a credible summary of the character and variabil-
ity of the scientifically interesting aspects of the data.

A second observation that can be drawn from Fig-
ure 1 is that very short confidence intervals are quite
uncommon. Indeed, frequentist confidence intervals
are not designed to behave well for particular real-
izations of the data, but rather are designed to have
predictable coverage in repeated realizations; if one
is interested in conditioning on the particular realiza-
tion of the data, in principle Bayesian methods are bet-
ter suited. Indeed, the interval in Figure 1 resulting
from N = 0, (0.00, 0.081) has a sampling probability
of about 1.6%; if the probability of such a short in-
terval is considered too high, a higher confidence co-
efficient should be used. Of course, unlikely events do
occur. But if they occur often, one might begin to ques-
tion how their likelihood is being quantified. In partic-
ular, one would expect that such unsatisfactory inter-
vals would be quite rare in physics experiments. This,
however, does not seem to be the case. Instead there
are a variety of proposed statistical quick fixes and
even capacity-crowd workshops devoted to the topic
at CERN and Fermi Lab, all presumably motivated
by the common occurrence of unsatisfactory inter-
vals. (The Workshop on “Confidence Limits” was held
at CERN January 17–18, 2000; see cern.web.cern.ch/
CERN/Divisions/EP/Events/CLW/Welcome.html. The
Workshop on Confidence Limits was held at Fermi Lab
March 27–28, 2000; see conferences.fnal.gov/c12k/.)
I wonder if anyone has undertaken a systematic inves-
tigation of how frequently major physics experiments
result in unsatisfactory intervals. Such an investigation
is clearly mandated.

Since retaining an inadequate model can have un-
predictable consequences for the resulting statistical

inference, careful model checking is unavoidable. Al-
though the methodology of model selection, checking,
and diagnosis is among the most controversial and ill-
defined topics of statistical science, in this case the sit-
uation seems clear cut. If a confidence interval is empty
(e.g., as with N = 1 in Figure 2 of the paper) the ob-
served data is unlikely, as measured by the confidence
coefficient, for any value of the parameter. Put another
way, we can reject the null hypothesis that µ = µ0 for
any µ0 ≥ 0. By any measure, the model does not of-
fer an adequate representation of the scientifically most
interesting aspect of the data. This difficulty cannot
be addressed by reformulating the procedure for com-
puting the confidence interval under the same model.
Thus, the basic notion of developing new, creative, or
ad hoc formulations of interval estimates under the
same model is misguided in this situation.

Mandelkern correctly points out that discarding data
or changing the model a posteriori can bias the final an-
swer. As we shall see, however, retaining an inadequate
model is not the path to unbiased inference! Rather
than worrying about the biases that are introduced by
model checking, the science would be better served by
learning about the form of an adequate model that can
be used in future experimentation and analysis.

2. RESPECIFICATION OF THE MODEL

From my distant vantage point it is impossible to
propose a model that might be more suitable to the
data. Thus, my goal is this section is not to propose a
specific solution (indeed, there is surely no all-purpose
solution), but rather to illustrate the construction of
highly structured models and how they can be used
for statistical inference. A more detailed and specific
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example from my own work in high energy astro-
physics, which uses Poisson models and accounts for
background contamination, blurring, absorption and
stochastic censoring of counts can be found in van
Dyk, Connors, Kashyap and Siemiginowska (2001),
Protassov, van Dyk, Connors, Kashyap and Siemigi-
nowska (2002) and van Dyk and Hans (2002).

For illustration, I propose to generalize the Poisson
model in two ways. First by allowing for stochastic
censoring of the data; based on the problems outlined
in the paper it seems plausible that some instruments
do not detect as many events as some might hope. Sec-
ond, I do not assume that the background intensity, b, is
a known constant. Indeed, it is reported with error bars
for the KARMEN experiment and Mandelkern reports
that b is “measured independently” or “estimated,” pre-
sumably with error. Thus, I propose,

N ∼ Poisson{α(µ + β)},(1)

where α is the proportion of events that are recorded
(e.g., not absorbed or otherwise missed), β is the
background intensity, and µ is the source intensity.
Of course, not all three parameters in (1) are jointly
identifiable. This is not a reason to fix α = 1 and β = b

but rather a reason to aim to design experiments that
can identify the parameters, for example, by obtaining
additional counts due only to background,

NB ∼ Poisson(β),(2)

or by producing M events and observing how many
are detected. Undoubtedly, some such instrumental
calibration is already done—what is important here
is that the uncertainty involved in calibration must be
accounted for in the final analysis.

In the remainder of this section, for simplicity we fix
α = 1, treat µ as the parameter of interest, and treat β

as a nuisance parameter. We discuss Bayesian and
frequentist intervals for µ under (1) and investigate the
consequences of the model misspecification of fixing
β = b when really the data is generated under (1).

In a Bayesian analysis we can replace (2) with a
prior distribution for β . This need not be and indeed
should not be a subjective prior distribution. Rather
data or simulations can be used to construct the
prior distribution; for example, with the KARMEN
experiment the prior specification can reflect such
information as b = 2.88±0.13. In this case, we specify
a conjugate gamma prior distribution with shape and
scale parameters ξβ and ψβ , respectively; that is, β ∼
γ (ξβ,ψβ). Likewise, we specify a prior distribution
for µ, µ ∼ γ (ξµ,ψµ), but this prior distribution is

ordinarily uninformative; for example, for a flat prior
on µ we set ξµ = 1 and ψµ = +∞. The highly
skewed character of the resulting marginal posterior
distribution for µ,

p(µ | N) =
∫ ∞

0
p(µ,β | N)dβ,(3)

is evident in the first panel of Figure 2, which plots
the posterior distribution resulting from N = 1 and a
point mass prior for β; that is, β is fixed at b = 3. Point
estimates are computed using the posterior mean, but
only after a transformation which aims to symmetrize
the distribution, in this case the log transformation;
see the second panel of Figure 2. Equal tailed interval
estimates are invariant to transformation and should
correspond closely to the shortest interval under a
symmetrizing transformation, at least for unimodal
distributions. Alternatively, highest posterior density
intervals or upper bounds can be computed. The effect
of the prior specification (i.e., error in b) is illustrated
in Figure 3, which varies ψβ but fixes ξβ = 3/ψβ and
thus fixes the prior mean of β at 3. A point mass prior
distribution, which fixes β at b = 3 corresponds to
ψβ = 0; as ψβ increases the intervals grow wider.

Frequentist regions for (µ,β) can also be computed.
In this case, however, one generally incorporates infor-
mation regarding β through data, for example, as in (2)
rather than via a prior distribution. A joint confidence
region (with confidence coefficient 1 − α) can be com-

FIG. 3. The effect of the error in b on the 90% posterior interval
for µ. The figure illustrates how the confidence intervals for µ

grow wider as the error in b increases, measured here via the
prior parameter, ψβ . The solid lines correspond to the upper and
lower limits of the highest posterior density interval under the log
transformation of µ; the dotted lines corresponds to the upper and
lower limits of the equal tailed interval; and the dashed line is an
upper limit.
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FIG. 4. Bias of the maximum likelihood estimate ( first panel) and under coverage of the nominal 90% interval (second panel) caused by
model misspecification. The figures assume the data are generated according to model (1) with various values of µ and β (and α = 1), but
is fit with β fixed at b = 3.

puted as

{(µ,β) : (N,NB) ∈ R(µ,β)},(4)

where for each µ ≥ 0 and β ≥ 0, R(µ,β) is a set of
values of (N,NB) such that Pr{(N,NB) ∈ R(µ,β) |
µ,β} ≥ 1 − α. Such regions are often constructed as
acceptance regions for a particular α-level hypothesis
test, perhaps with attention paid to the power of the test.
Constructing a frequentist “marginal” interval for β

is both more subjective and analytically complicated
than for the Bayesian marginal interval. Ideally, we
condition on a sufficient statistic for the nuisance
parameter β (Neyman, 1937), but such a statistic is not
always forthcoming.

We conclude by illustrating the effect of model mis-
specification, by computing the bias of the maximum
likelihood estimate and the coverage of the standard
frequentist interval of Garwood (1936). Both the es-
timate and the interval are computed with β fixed at
b = 3, but the data is generated under (1) with vari-
ous values of µ and β (and α = 1); the results appear
in Figure 4. Although the bias induced by this simple
model misspecification is clear, we emphasize that this
is only an illustration of the perils of model misspeci-
fication. In the current situation, the error in b may be
small and the effects correspondingly small. Nonethe-
less, frequent a priori unlikely data and empty confi-
dence intervals are strong evidence of model misspeci-
fication. Unfortunately, the biases resulting from ignor-
ing the misspecification are not easily quantified.

3. ARE BAYESIAN METHODS TOO SUBJECTIVE?

The subjective nature of specifying a prior distribu-
tion, as required with Bayesian methods, has been re-
peatedly pointed out. Here Mandelkern’s first desirable
feature for confidence intervals explicitly forbids bas-
ing intervals on arbitrary or subjective “principles.” Of
course, the principles behind Bayesian methods, that
is, the principles of probability calculus, are anything
but arbitrary and subjective. Indeed, the principles be-
hind other methods may be far more subjective, espe-
cially in the presence of nuisance parameters. When
given a choice, basing a frequentist interval on a more
powerful test is preferred, but not at the expense of the
conditionality principle, for example, conditioning on
ancillary statistics. Of course, ancillary statistics and
the corresponding intervals may not be unique. Even
without nuisance parameters there may be no clear op-
timal interval; witness the variety of methods outlined
in Section 2 of the paper. On the other hand, given the
model (including the prior specification) the posterior
distribution of the parameters of interest is uniquely de-
fined by probability calculus.

This leaves three seemingly subjective tasks in com-
puting a Bayesian interval: reducing the inference
to an interval, selecting the likelihood, and selecting
the prior distribution. The first task is not unique to
Bayesian methods and there are of course guiding prin-
ciples; highest posterior density intervals result in the
shortest interval for a given parameterization and equal
tailed (or other percentile based) intervals are invariant
to one-to-one monotone transformations. Nonetheless,
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the real problem stems from a desire to construct an in-
terval to summarize the posterior distribution. The pos-
terior distribution itself is invariant to transformations
and is a much more informative summary of the statis-
tical inference. It should be preferred over any particu-
lar Bayesian interval.

The second task, specifying a model for the sampling
distribution (or likelihood), is truly subjective. In any
given analysis some models are clearly inappropriate,
but there always remain models among which the data
are unable to distinguish. In some cases we make a par-
simonious choice and in others the choice has little ef-
fect on the final analysis. In any case, specification of
the sampling distribution is a subjective task common
to all statistical analyses. The choice is critical, some-
times highly influential, and thus should be approached
with care and checked when possible against the data,
rather than holding to an arbitrary initial proposal.

I save the seemingly most potent criticism for last.
Indeed in her discussion of Bayesian methods as a po-
tential solution to the difficulties encountered by fre-
quentist methods in the presence of nuisance parame-
ters, Reid pointed to the necessary specification of a
“prior [distribution] for a high-dimensional nuisance
parameter” as justification for her conclusion that “the
fact that the Bayesian approach is logically consistent

strikes me as somewhat irrelevant” (Reid, 1995, see
also McCullagh, 1995). Here, however, these concerns
do not seem to apply. In particular, the prior distribu-
tions for nuisance parameters are neither subjective nor
uninformative; they are based on calibration data and
merely enable the inference to reflect uncertainty in
the calibration variables. The parameter of interest is
of low dimension, dimension one in the current model
formulation, where p(µ) ∝ 1 is an obvious choice.
Even with higher dimensional parameters, hierarchical
models or hierarchical prior specifications serve to mit-
igate Reid’s concern. The sensitivity of the final analy-
sis to the choice of prior distribution as well as the fre-
quency properties of the resulting intervals can be ex-
plored. Indeed, in this case, a prior distribution seems
neither difficult to specify nor subjective, at least not
when compared with the subjective nature of the prin-
ciples underlying the alternatives.
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Comment
Michael Woodroofe and Tonglin Zhang

We thank Professor Mandelkern for his informative
review of statistical problems that have been plaguing
physicists and his attempts to address them. We have
some minor quibbles with the “desirable features,”
some brief comments on the Bayesian and unified
methods with known b and σ 2, and more extensive
comments on treating σ 2 as an estimated parameter
instead of a known one.

Quibbles. In (i), statisticians have been searching
for a general method that is neither arbitrary or sub-
jective and makes intuitive sense for a long time now
without any general consensus on what that method

Michael Woodroofe is Professor and Tonglin Zhang is
a graduate student Department of Statistics, University
of Michigan, 4082 Frieze Building, Ann Arbor, Michi-
gan 48109 (e-mail: michael@umich.edu).

is. In (ii), there is certainly a need for a method that
does not require prior information; but using prior in-
formation should not be precluded when it exists. Also,
requiring equivariance under one-to-one transforma-
tions, as in (iii), rules out many intuitive optimality cri-
teria.

Known b and σ 2. The unified method was devel-
oped explicitly to deal with problems of a restricted
parameter space. It clearly provides an improvement
over the Neyman intervals and has attracted a wide fol-
lowing among physicists. We agree with Mandelkern,
however, that it can produce unbelievably short inter-
vals. The Bayesian intervals are not especially short in
the Poisson case, as is clear from Mandelkern’s Fig-
ure 4. In the extreme case N = 0, the length of the
Bayesian interval is log(1/α), and this is the right an-
swer in the absence of prior information. To elaborate,
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suppose that N = B + S, where B ∼ Poisson(b) and
S ∼ Poisson(θ) are independent, b is known, and θ is
unknown. If N = 0, then B = 0 and S = 0, and com-
mon sense dictates that the confidence interval for θ

should be the same as if we had observed (only) S = 0.
When S = 0 is observed the Bayesian and Neyman up-
per credible/confidence bounds are both log(1/α), and
the unified bound is only slightly larger. So we do not
believe that the Bayesian intervals are counterintuitive
in the Poisson case.

In the normal case, the Bayesian credible interval
shrinks to {0} as x → −∞; that is, letting u(x) =
x + d(x) denote the upper credible limit,

lim
x→−∞ u(x) = 0.(1)

This may appear counterintuitive, for reasons given
in the paper, but it is consistent with the solution
to the Poisson case (which we maintain is the right
solution). For if b is large, then X = 2[√N − √

b] is
approximately normal with mean µ = 2[√b + θ −√

b]
and unit variance; and if N = 0, then upper credible
bounds for θ and µ are log(1/α) and

2

[√
b + log

(
1

α

)
− √

b

]
<

1√
b

log
(

1

α

)

= 2

|x| log
(

1

α

)
.

So (1) does not seem unreasonable when applied to
X = 2[√N − √

b]. To the extent that (1) appears
counterintuitive, it does so because large values of −x

cast doubt on the model.

Estimated nuisance parameters. Reassessing the
model can introduce biases, as Mandelkern says, but
it is necessary sometimes and does not always intro-
duce severe biases. In the present context, the values
of σ 2 and b were assumed known. This is almost cer-
tainly an oversimplification (recalling that b was given
by b = 2.88 ± 0.13 in an example). We show below
how treating σ 2 as an estimated, rather than known,
parameter in the normal case leads to important dif-
ferences in the nature of the confidence bounds for
negative x. Thus, suppose that there are independent
data S2 ∼ σ 2χ2

r /r and X ∼ Normal(µ,σ 2), where
0 ≤ µ < ∞ and 0 < σ 2 < ∞ are both unknown, but
r ≥ 1 is known. Then σ 2 is unbiasedly estimated by S2,
and the likelihood function is

L(µ,σ 2 | x, s2) ∝ 1

σ r+1
exp

[
−rs2 + (x − θ)2

2σ 2

]
.

This simple change in the model has a profound effect
on the nature of the Bayesian credible intervals for
large values of −x/s.

Estimated σ 2: The Bayesian view. In the enlarged
model, credible intervals for µ may be obtained from
the (improper) prior dµdσ 2/σ 2 over 0 ≤ µ < ∞,
0 < σ 2 < ∞. After some routine calculation, the
(marginal) posterior distribution of µ is

g(µ | x, s) = 1

Hr(t)
hr

(
µ − x

s

)
,

where t = x/s and hr and Hr are the density and
distribution function of the t-distribution on r degrees
of freedom. Equivalently, the posterior distribution of
(µ − x)/s, given X = x and S = s, is a t-distribution
with r degrees of freedom, conditioned to exceed −t .
There is then a complete analogue with the results of
Roe and Woodroofe (2001). Letting t0 = H−1

r [1/(1 +
α)], a level 1 − α Bayesian credible interval for µ

has the form [s8(t), su(t)] = [max(0, x − sd), x +
sd], where d = H−1

r [1 − αHr(t)] if t ≤ t0 and d =
H−1

r [1
2 + 1

2 (1−α)Hr(t)] if t > t0. Further, a level 1−α

credible interval has (frequentist) coverage probability
at least (1 − α)/(1 + α), even without any ad hoc
modification, and the latter bound is conservative. See
Zhang and Woodroofe (2001) for the derivations.

Graphs of the 8(t) and u(t) are included in Figure 1
for selected α and r . Comparing the latter figure
with Mandelkern’s Figure 2 shows that including an
unknown σ 2 in the model changes the nature of
the upper credible limit qualitatively for large values
of −x. In the enlarged model the upper confidence
limit is decreasing in x for fixed s when −x is large
and even approaches ∞ as x → −∞. The explanation
for this behavior is that if −x is large, then the
posterior distribution of σ 2 can be quite diffuse, even if

FIG. 1. Bayesian confidence limits when s = 1.
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FIG. 2. Unified confidence limits for δ = µ/σ .

s = 1. Comparing Figure 1 with Mandelkern’s Figure 3
shows that the Bayesian approach with estimated
σ 2 discounts large values of −x to an even greater
extent that the maximum likelihood approach (with
known σ 2).

The unified approach. Including an estimated σ 2 in
the model causes some problems for the unified ap-
proach, which is naturally suited to one parameter fam-
ilies or to constructing confidence regions for the vec-
tor of all parameters in a multiparameter model. There
are three possible ways to proceed. It is straightforward
to construct confidence regions for (µ,σ 2), but then
projections on the µ axis will lead to very long inter-

vals. It is natural to reduce by invariance. The unified
method can be applied to the distributions of T = X/S

to construct confidence intervals for µ/σ . The family
of noncentral t-distributions is hard to use in this way,
however. A simpler approach is to use the likelihood
ratio statistic for composite hypotheses, Hδ :µ/σ = δ.
That is, letting

Rδ(t) = supµ=δσ L(µ,σ 2 | x, s2)

supµ,σ≥0 L(µ,σ 2 | x, s2)
,

where L(µ,σ 2 | x, s2) is the likelihood function, the
unified confidence intervals for δ are {δ :Rδ(t) ≥ cδ},
where cδ are determined by Pδ[Rδ(T ) ≥ cδ] = 1 − α.
Here Rδ(t) depends only on t by scale invariance,
and T = X/S has the noncentral t-distribution with
r degrees of freedom and noncentrality parameter δ.
After some calculation,

Rδ(t) =
[
r + t2−
r + 1

](r+1)/2

ψδ(t)
r+1

· exp
(
−1

2
δ2 + 1

2
δtψδ(t)

)
,

where t2− is the square of the negative part of t and

ψδ(t) =
√

δ2t2 + 4(r + 1)(t2 + r) + δt

2(t2 + r)
.

If δ = 0, then ψ0(t) =
√

(r + 1)/(r + t2), R0(t) = 1

for −∞ < t ≤ 0, and R0(t) = [r/(r + t2)](r+1)/2

is decreasing in 0 ≤ t < ∞. For δ > 0, let τδ =

FIG. 3. The minimum unified upper confidence limit for δ.



SETTING CONFIDENCE INTERVALS FOR BOUNDED PARAMETERS 171

δ
√

r/(r + 1). Then, differentiation shows that Rδ(t)

is increasing in −∞ < t ≤ τδ and decreasing in τδ ≤
t < ∞. Further, limt→∞ Rδ(t) = 0, and

lim
t→−∞ Rδ(t) =

[√
δ2 + 4(r + 1) − δ

2
√

r + 1

]r+1

· exp
[
−δ2 + δ

√
δ2 + 4(r + 1)

4

]

by direct calculation. So {t :Rδ(t) ≥ cδ} = {t :aδ ≤
t ≤ bδ}, where −∞ ≤ aδ < bδ < ∞ are determined by
Pδ[aδ ≤ T ≤ bδ] = 1 − α, and Rδ(aδ) ≥ Rδ(bδ) with
equality if aδ > −∞. It is straightforward to compute
aδ and bδ numerically and to solve the equation au = t

and b8 = t for u(t) and 8(t), which then serve as the
upper and lower boundaries of a level 1−α confidence
interval for δ. Graphs of 8(t) and u(t) are included in
Figure 2 for selected α and r .

In this case, the upper boundary is increasing in t

and has a positive limit, δ0 say, as t → −∞. Letting
Hr,δ denote the noncentral t-distribution with r degrees
of freedom and noncentrality parameter δ, δ0 is the
solution to the equation Rδ(−∞) = Rδ[H−1

r,δ (1 − α)]
and is graphed as a function of r in Figure 3 for selected
values of α. So shorter intervals are again obtained
for large values of −t , but they do not shrink to 0 as
t → −∞. In any case a small value of δ can arise from
a small µ, a large σ , or both.

Rejoinder
Mark Mandelkern

I think I can speak for physicists in appreciating
the interest of the statistical community in the prob-
lem of confidence intervals for bounded parameters.
The variety of comments by five distinguished math-
ematical statisticians suggests that our community has
not overlooked a satisfactory procedure that has pre-
viously been published. The comments have two main
themes: (1) that a Bayesian solution may be most suit-
able, perhaps with frequentist modification to rational-
ize the coverage properties as suggested by Professor
Casella in his comment and previously by Mandelk-
ern and Schultz (2000a, b) and Roe and Woodroofe
(2001); (2) that enlargement or respecification of the
model, even a posteriori, may be appropriate. A num-
ber of distinct suggestions have been made in the latter
regard.

While the procedure used to compute a confidence
interval is usually discussed in the original experimen-
tal work, it is rarely carried forward to subsequent ex-
perimental papers, reviews and theoretical analyses.
For this reason it is important for intervals to be eval-
uated in a consistent and uniform way. Consistency is
certainly more important than are the absolute values
obtained. It would be particularly valuable if statisti-
cians working in this area would propose a procedure
for computing confidence intervals, which could then
be adopted as a standard by the experimental physics
community.

Finally, it may be most appropriate to, at least in am-
biguous cases, give up the notion of characterizing ex-
perimental uncertainty with a confidence interval and
instead, as suggested by Professor Gleser in his com-
ment, to present the likelihood function for this pur-
pose. It is interesting that Enrico Fermi, who intro-
duced the likelihood method to physicists (Orear, 1958,
1982), suggested that likelihood functions for different
experiments be multiplied for overall estimation of pa-
rameters.
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