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Abstract. It is shown how saddlepoint methods may be used to approxi-
mate reliabilities and failure rates of finite stochastic systems with feed-
back loops. Some countably infinite state systems including birth–death
processes are also considered. The use of saddlepoint methods requires
as input the moment generating functions (MGFs) for the system fail-
ure time distributions. Some new explicit formulas for these MGFs are
given that are amenable to symbolic computation and which also make
the numerical computation of saddlepoint approximations quite simple
and convenient.
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1. INTRODUCTION

The reliability of a system at time t is the prob-
ability the system is working properly, where the
meaning of properly depends on the particular ap-
plication. If, as often occurs in practical settings, the
system has a finite or countable number of states,
then they can be partitioned into two groups: those
for which the system works and those for which it
does not. The waiting time for system failure is the
random variableW defined as the time for first pas-
sage of the system into the collection of nonworking
states. Its distribution determines the reliability of
the system as

R�t� = Pr�W > t��(1)

Exact computation of (1) is generally possible only
for small finite systems when the system is Markov
and not otherwise (see Høyland and Rausand,
1994). A much wider range of examples can be con-
sidered if the exact calculation of R�t� is replaced
with highly accurate approximation, as occurs when
using saddlepoint methods.
There are two major purposes for this paper.

First, it considers the saddlepoint approximation
to R�t� using the Lugannani and Rice (1980) ap-
proximation and a related approximation in Wood,
Booth and Butler (1993) based upon the moment
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generating function (MGF) of W. The accuracy
with which R�t� is determined in the examples
below suggests that saddlepoint approximations
are highly suited for use in this particular class of
applications. The reader may judge this accuracy,
without sorting through all the details of the meth-
ods and examples, by examining Figures 1�5�7�9
and 16 which compare R�t� with the two saddle-
point approximations, denoted as R̂�t� and R̆�t�,
respectively. Associated failure rates z�t� and vari-
ous saddlepoint approximations for them, denoted
by ẑ�t�� z̃�t� and z̆�t�� are also presented in Figures
2�6�8�10 and 17� The percentage relative errors
in determining R�t� and z�t� are given whenever
possible as in Figures 3�11 and 18.
The second major purpose of the paper is to in-

troduce some new simple expressions for the MGF
of W� Generally the MGF of W has been very dif-
ficult to compute, particularly so when the system
has feedback loops. Now, however, there is no diffi-
culty at all if the new explicit cofactor rules of Sec-
tion 4 are used. These cofactor formulas give the
MGF of W in the context of a finite semi-Markov
system. There are three separate rules which con-
cern: (1) first passage from one state to another, (2)
first return to a starting state and (3) first passage
from a state to a subset of states. Each MGF ex-
pression is explicit in terms of certain cofactors and
all the expressions lead to explicit saddlepoint for-
mulas which make subsequent saddlepoint compu-
tations very simple.
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As examples, we first introduce a GI/M/1 queue
with Gamma interarrivals in Section 2. This is a
simple system for which saddlepoint methods pro-
vide highly accurate approximations to reliability
and failure rate functions. We return to this ex-
ample in Section 6 to develop all its details con-
nected with MGF determination and saddlepoint
implementation and to further consider other in-
terarrival distributions such as compound Poisson
and inverse Gaussian. Section 7 considers the re-
liability of a redundant and repairable system (see
Høyland and Rausand, 1994, Sections 4.6 and 4.7
and Chapter 6) that is semi-Markov. With the inclu-
sion of additional system states, the system becomes
Markov which allows us to compute exact reliabili-
ties for comparison with the saddlepoint approxima-
tions. The determination of reliabilities and failure
rates of finite Markov systems is reviewed in Sec-
tion 8.
The concept of modular systems in which a system

may be considered as a network of subsystems is in-
troduced in Section 10. Modular usage of the cofac-
tor rules leads to the development of recursive for-
mulas for the MGF of W in random walks and het-
erogeneous birth–death processes. Practically, these
recursions now allow for very simple saddlepoint ap-
proximation to the first passage and return distri-
butions in heterogeneous birth–death processes. A
load sharing queue and a null persistent random
walk provide examples of such systems. The ran-
dom walk example demonstrates the breakdown in
accuracy of the Lugannani and Rice (1980) approx-
imation when used with heavy-tailed distributions;
the inverse Gaussian-based approximation of Wood,
Booth and Butler (1993) maintains its high accu-
racy in this setting. The net consequence of these
recursions and the cofactor rules is that reliabili-
ties may now be approximated in a much broader
class of stochastic feedback systems than has been
previously considered.
A rather simple and insightful presentation of

the feedback theory underlying the cofactor rules
is presented in Section 9. These cofactor rules have
been previously derived in Butler (1997a, 1997b)
using more difficult arguments. In the latter article,
they were shown to be analytically equivalent to
the more complicated Pyke–Howard rule, developed
in Pyke (1961) and Howard (1964, 1971, Sections
10.10, 11.11), as well as Mason’s loop sum formula,
developed in Mason (1953, 1956) and discussed,
for example, in Whitehouse (1983) and Phillips
and Harbor (1996). The work of both Mason and
Howard finds its origin in the cybernetics move-
ment at MIT that dealt explicitly with feedback
systems about which we are particularly concerned.

In determining first passage distributions, saddle-
point approximations have previously been used in
conjunction with Mason’s loop sum formula in But-
ler and Huzurbazar (1993, 1997) and in conjunction
with the Pyke–Howard rule in Butler and Huzur-
bazar (1995). The cofactor rules however are clearly
simpler and easier to use than either of these pre-
vious formulas. The main difficulty with the Pyke–
Howard rule is that (1) it involves O�n� more com-
putational effort where n is the number of system
states, and (2) the computation of the MGF can
be inaccurate and unstable, particularly near zero
where it has a removable singularity. The difficulty
in using Mason’s loop sum formula is that it re-
quires a listing of all the system feedback loops over
which it sums. Human error in compiling such a list
is a serious drawback to its use with large compli-
cated systems. Phillips and Harbor (1996) point out
that Mason’s formula

� � �must be used with extreme care, since (feed-
back loop) terms in either the numerator or de-
nominator of the transfer (MGF) function can
easily be overlooked. Furthermore, there is no
method available that will give an indication
in the case that terms have been overlooked.

Now, an available method for finding these over-
looked terms is machine computation using the new
cofactor rules which are without error. Also, in re-
sponse to this same problem, Zhou, Wang and Zhao
(1995) have written specialized software to auto-
mate the listing of all system feedback loops. Their
complicated software, however, is no longer needed
since its cofactor equivalent in (4) automatically
sums over all feedback loops in its determination
of the cofactors; essentially each determinant may
be expressed as a permutation sum which can
be shown equivalent to summing over all feed-
back loops. See Butler (1997b) for details of this
development.

2. EXAMPLE: GI/M/1 QUEUE
Suppose tasks arrive one at a time at a server,

and that the interarrival times are distributed
as independent and identically distributed (i.i.d.)
Gamma�2�2� with mean 1 and variance 1/2� Sup-
pose a single server completes tasks at rate 2 with
service distribution Exponential(2). The state of
the system is the total number in queue and un-
der service by the server. Suppose that the system
is deemed to have failed when the queue length
reaches 5� so that the system failure time W is
the first passage time to queue length 5� The dis-
tribution of W is quite complicated but completely
determined by our description of the process.
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Fig. 1. The almost indistinguishable plots of R̂�t� �dashed� and
R�t� �solid� versus t for the GI/M/1 queue with Gamma�2�2�
interarrivals.

The complete development of this example is
given in Section 6 where the exact CDF and density
ofW are also computed. This provides a baseline for
comparison of the exact expression for R�t�� plot-
ted in Figure 1 as a solid line, with the saddlepoint
approximation R̂�t� (dashed), described in Section
5. The plot reveals hardly any graphical difference.
True failure rate z�t� (solid) and two saddlepoint
approximations ẑ�t� (dashed, unnormalized; see
Section 5) and z̃�t� (dotted; normalized) are plotted
in Figure 2 to demonstrate the high accuracy of z̃�t��
The asymptote for z�t� has z�∞� = 0�00741� Figure
3 shows the relative errors (expressed as percent-
ages) connected with the two previous graphs and
plots. That is,

100

(
R̂�t�
R�t� − 1

)
% and 100

(
z̃�t�
z�t� − 1

)
% versus t

are plotted as the solid and dashed lines in Fig-
ure 3. In addition, the relative error of the inverse

Fig. 2. Plot of z�t� �solid�� ẑ�t� �dashed� and z̃�t� �dotted� versus
t for the GI/M/1 queue with Gamma�2�2� interarrivals.

Fig. 3. Percentage relative errors in saddlepoint approximation
for R�t� �solid = normal base, dotted = inverse Gaussian base�
and z�t� �dashed� for the GI/M/1 queue with Gamma�2�2� in-
terarrivals.

Gaussian-based approximation R̆�t� (dotted) from
Wood, Booth and Butler (1993) is given.

3. SYSTEM PRELIMINARIES
3.1 Coin-Tossing Example
Consider how we might characterize or summa-

rize the dynamic behavior of a finite state stochas-
tic system with feedback. For purposes of illustra-
tion, let us also work with a specific and simple sys-
tem resulting from a sequence of i.i.d. coin tosses
or Bernoulli�p� trials with p = Pr(heads). Suppose
we are interested in the current run length of heads
and, in particular, the time required to achieve the
first run of three heads. Our system is a sequence
of independent coin tosses and the system charac-
teristic of interest is the run length of heads whose
values 	0� � � � �3
 represent the states of the system.
The dynamic change of the system in state i is to
either move to state i+1 with probability p in time
a or to move to state 0 with probability q = 1−p in
time b� This dynamic behavior can be summarized
in two equivalent ways: either pictorially or alge-
braically. Figure 4 is a flowgraph giving the picto-
rial description of dynamic change. The nodes in the
flowgraph are the states and the directed branches
indicate the possible state changes of the system.
The system begins in source node B, which has only
an outgoing branch, and ends in sink or destina-
tion node E, having only an incoming branch. Feed-
back occurs in this system because states 0�1 and
2 may be revisited as the process evolves. The sys-
tem has three feedback loops: 0 → 0� 0 → 1 → 0
and 0 → 1 → 2 → 0� Each branch has associated
with it a quantity we call the branch transmittance.
This is the probability of taking the branch times
the MGF for the holding time in its node of origin
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given that it takes that branch. The rationale for
defining transmittance in such a manner becomes
clear in the discussion below. The transmittances of
transitions B → 0 and 3 → E are 1 = 1 × e0 in-
dicating that passage is certain and instantaneous.
These branches can be removed if we assume that
the system begins in node 0 and ends in node 3� All
information about the dynamic behavior of this sys-
tem appears in its flowgraph structure and branch
transmittances.
An equivalent algebraic summarization of Figure

4 is specified in the 4×4 matrix of branch transmit-
tances

��s� = {
�ij�s�

} =


qebs peas 0 0
qebs 0 peas 0
qebs 0 0 peas

0 0 0 0


 �(2)

when accompanied by the information that 0 and
3 are the source and sink nodes. Possible tran-
sitions occur with nonzero entries in � and the
branch transmittances are listed in the appropriate
cells. The algebraic characterization of the system
in terms of ��s� will be the basis for our MGF and
saddlepoint computations in Sections 4 and 5.

3.2 n-state semi-Markov Process

We now generalize the discussion to a general n-
state stochastic feedback system with state space
S = 	1� � � � � n
. In this setting, flowgraphs become
difficult to draw, particularly when the system has
many states and/or many branch transmittances. It
is therefore expedient to characterize the stochas-
tic system in terms of the matrix of one-step branch
transmittances. Whether our process is in discrete
or continuous time, let the n-state system admit
transitions according to the probability transition
matrix �pij� where 0 ≤ 


j pij ≤ 1 for all i. Suppose
also that the holding time in state i is dependent
not only upon i but also upon the next destination
state, j� say. Then, given that passage from state
i to j is assured, let the holding time in state i
have MGF �ij�s�� The n×n matrix of branch trans-
mittances is defined as ��s� = {

pij�ij�s�� i� j ∈ S
}
�

The matrix function ��s� characterizes the dynamic

Fig. 4. Flowgraph of the waiting time for the first occurrence of
three straight heads.

behavior of the particular stochastic system. In ad-
dition, the collection of all systems or stochastic pro-
cesses which may be so characterized is referred to
as the class of n-state semi-Markov processes and
is discussed in Pyke (1961). Our treatment below
considers only nonexplosive processes; that is, pro-
cesses that cannot achieve an infinite number of
state changes in finite time.

4. COFACTOR RULES

Three cofactor rules yielding first passage MGFs
are introduced. The proofs are deferred to Section
9 where they are developed using the flowgraphs of
their associated feedback systems.

4.1 Single Destination Cofactor Rules

First passage probabilities and MGFs are speci-
fied in the theorems below for the general n-state
semi-Markov process. Without any loss in general-
ity we take state 1 as the source and state n as the
destination state.
Define the first passage transmittance from state

1 to state n as

f1n�1n�s� = E
{
exp �sW1n�1�W1n<∞�

}
�(3)

where W1n is the first-passage time from state 1 to
state n� According to this, f1n = Pr�W1n <∞� is the
probability of passage and �1n�s� is the conditional
MGF of W1n given W1n < ∞, or given that such
passage is assured. When f1n < 1, the distribution
of W1n is defective with Pr�W1n = ∞� = 1 − f1n�
The maximal convergence neighborhood for �1n�s��
about s = 0� is defined as the largest connected
neighborhood of 0 for which the expectation in (3) is
finite.
Define state i as relevant to first passage from

state 1 to state n if it is a possible intermediate
state during such passage. Designate states 1 and
n as relevant if passage 1 → n is possible.

Theorem 1 (Single destination cofactor rule). The
first passage transmittance from state 1 to state n �=
1 is

f1n�1n�s� =
�n�1�-cofactor of 	In −��s�

�n�n�-cofactor of 	In −��s�


�= �−1�n+1 ∣∣�n1�s�∣∣∣∣�nn�s�∣∣ �

(4)

The ratio �4� is well defined over an maximal con-
vergence neighborhood of 0 of the form �−∞� c� for
some c > 0 under these conditions:

(i) The system states S = 	1� � � � � n
 are exactly
those relevant to passage from 1 → n with all rele-
vant states and no irrelevant states.
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(ii) The intersection of the maximal convergence
neighborhoods for the MGFs in the first n − 1 rows
of ��s� is an open neighborhood of 0�

For the coin-tossing example, expression (4) af-
fords a simple computation of the first passage
transmittance from state 0 to 3� Since f03 = 1� this
transmittance becomes the MGF and is

�03�s� = p3e3as
{
1− qebs − pqe�a+b�s

−p2qe�2a+b�s
}−1

�
(5)

With a = 1 = b� (5) is well known and essentially
given in Feller [1968, XIII.7, (7.6)] as a probability
generating function. However, compare the differ-
ent difficulties in derivation. Feller’s development
requires a good deal of understanding and thought
within the context of his development of recurrent
events. The derivation from (4) is an elementary and
rather thoughtless exercise in symbolic computation
using Maple V within which the possibility for mis-
take is minimal. From (5), a saddlepoint approxima-
tion for the first passage distribution function is a
routine exercise.
We now consider the case of first return to state

1, a situation that has been excluded from consider-
ation in the theorem above.

Theorem 2 (First return cofactor rule). The first
return transmittance for state 1 is

f11�11�s� = 1−
∣∣In −��s�∣∣

�1�1�-cofactor of 	In −��s�


�= 1−
∣∣In −��s�∣∣∣∣�11�s�

∣∣ �

(6)

The ratio �6� is well defined over a maximal conver-
gence neighborhood of 0 of the form �−∞� c� for some
c > 0 under these conditions:

(i) The system states S = 	1� � � � � n
 are exactly
those relevant to passage from 1 → 1�

(ii) The intersection of the maximal convergence
neighborhoods for the MGFs in ��s� is an open
neighborhood of 0�

The coin-tossing example provides a simple con-
text for illustrating first return to state 0. State
3, achieved with three straight heads, is absorbing
and therefore irrelevant to passage from 0 → 0 so
it must be excluded when determining ��s� which
now becomes 3 × 3� The first return transmittance
is computed as

f00�00�s� = qebs + qebspeas + qebs�peas�2

using Maple V. The first return probability is com-
puted by setting s = 0 and simplifies to f00 = 1−p3�

This answer might have been expected because its
complementary event is direct passage to state 1
with three straight heads with probability p3.

4.2 Multiple Destination Cofactor Rule.

Often systems may fail upon entering any one of
several states. In such instances, the first passage
distribution to this collection of failure states de-
termines the reliability of the system. In general,
suppose D = 	m+ 1� � � � � n
 is the subset of failure
states into which the system may pass. The first
passage transmittance from 1 ∈ 	1� � � � �m
 = C to
D is not generally



j∈D f1j�1j�s�� with f1j�1j�s�

determined as above. This is because the summing
of events here is not over disjoint paths; for exam-
ple, first passage to state nmight pass through state
m+ 1 beforehand and such possibilities are not ac-
counted for in this sum. The next result provides
a simple expression for the first passage transmit-
tance from 1 → D� Denote the block form of the
system transmittance matrix as

��s� =
(
�CC�s� �CD�s�
�DC�s� �DD�s�

)
�

where �CC is m ×m taking C into C� �DD is �n −
m� × �n−m� taking D into D� etc. Denote the row
sums of �CD�s� as

�CD�s�1 = �C ·�s� = ��1· · · ·�m·�T �
and let 	Im −�CC�s�
\1 denote the m×�m−1� ma-
trix Im −�CC�s� with its first column removed.

Theorem 3. The first passage transmittance
from state 1 ∈ C = 	1� � � � �m
 to subset D =
	m+ 1� � � � � n
 in an n-state system is

f1D�1D�s� =
∣∣�C ·�s� 	Im −�CC�s�
\1

∣∣∣∣Im −�CC�s�
∣∣ �(7)

under the conditions specified below, where the nu-
merator matrix is Im −�CC�s� with its first column
replaced with �C ·�s�. Expression �7� is well defined
over an maximal convergence neighborhood of 0 of
the form �−∞� c� for some c > 0 under these condi-
tions:

(i) The system states 	1� � � � � n
 are exactly those
relevant to passage from 1 → D�

(ii) The intersection of the maximal convergence
neighborhoods for the MGFs in the first m rows of
��s� is an open neighborhood of 0�

The coin-tossing example provides simple verifi-
cation for the validity of this expression. Take D =
	2�3
 and compute the first passage transmittance
from 0 → D as
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f0D�0D�s� =∣∣∣∣ 0 −peas
peas 1

∣∣∣∣∣∣∣∣1− qebs −peas
−qebs 1

∣∣∣∣
= p2e2as

1− qebs − pqe�a+b�s �(8)

Since passage to state 3 is through 2� this trans-
mittance must also be the first passage transmit-
tance to state 2 and is easily shown to agree with
f02�02�s� when computed from (4).

5. SADDLEPOINT APPROXIMATIONS

The previous section has provided simple for-
mulas for the computation of first-passage MGFs.
What remains is to discuss the determination of
approximate distribution functions and reliabili-
ties from these MGFs. SupposeW is a first-passage
time whose transmittance f� �s� has been deter-
mined using one of the cofactor rules. It is only
necessary to approximate the distribution of the
finite portion of W since it is known to put mass
1− f at infinity. In general, the reliability function
is

R�t� = Pr�W > t� = Pr�W > t�W <∞�+ �1− f��
and a saddlepoint approximation will be used to ap-
proximate the first term. Since all our numerical
examples have f = 1� we shall suppress the second
term and assume it is 0�
We may start from either an explicit formula for

� �s�� determined from symbolic computation in
Maple V, or use the cofactor rules to numerically
compute � �s� in terms of the matrix ��s�� Saddle-
point approximation to R�t� using the Lugannani
and Rice (1980) approximation discussed by Daniels
(1987) starts from K�s� = ln� �s�� the cumulant
generating function (CGF) of W defined on �−∞� c�
for some c > 0� The approximation for R�t� requires
that we first find the saddlepoint ŝ = ŝ�t� as the
unique solution to the saddlepoint equation

K′�ŝ� = t(9)

in �−∞� c�� Based upon this, then

R̂�t� = 1−"�ŵ� −φ�ŵ�( 1
ŵ

− 1
û

)
�

t �= E�W� =K′�0��
(10)

where " and φ are the standard normal distribution
and density, and ŵ and û depend on t implicitly as

ŵ = sgn�ŝ�√2 	ŝt−K�ŝ�
 and

û = ŝ√K′′�ŝ��
(11)

In systems with few states, and therefore small
� , there may be some advantage in computing K

symbolically from the cofactor rules. Then symbolic
differentiation of K gives an expression for K′ use-
ful in solving for the saddlepoint ŝ� and further dif-
ferentiation gives K′′ to compute û�
An alternative approach in numerical computa-

tion of R̂�t� is to specify K′ and K′′ in terms of the
� matrix. For example, in first passage from 1 → n�
differentiation of

K�s� = ln
�−1�n+1 ∣∣�n1�s�∣∣∣∣�nn�s�∣∣(12)

gives

K′ = tr
(
�−1
n1 �̇n1 −�−1

nn�̇nn
)

(13)

with the dependencies on s suppressed and �̇n1 �=
d�n1�s�/ds� Furthermore,

K′′ = tr
{
�−1
n1 �̈n1 −

(
�−1
n1 �̇n1

)2
−�−1

nn�̈nn +
(
�−1
nn�̇nn

)2}
�

(14)

where �̈n1 �= d2�n1�s�/ds2� These computations
are quite simple and have been successfully used
by the author in systems with up to n = 250 states.
The computation of reliabilities and first passage
distributions in many difficult settings should now
become routine when using these expressions.
Failure or hazard rate approximation requires an

additional estimate for the density function. The
saddlepoint approximation for the density of W� or
f�t� = −R′�t�� is

f̂�t� = 1√
2πK′′�ŝ� exp

(
−1
2
ŵ2

)
�(15)

as given by Daniels (1954). Combining this with
R̂�t� provides two approximations for the failure or
hazard rate z�t� = f�t�/R�t�:

ẑ�t� = f̂�t�
R̂�t�

and z̃�t� = f̂�t�
R̂�t� ∫∞

0 f̂�u�du
�(16)

the unnormalized and normalized approximations.
Normalization of f̂ will be crucial in achieving ac-
curate approximation to z�t��
The Lugannani–Rice approximation in (10) does

not always succeed in accurately approximating
CDFs of first passage distributions. This was first
discussed in Wood, Booth and Butler (1993) where
the normal-based expression in (10) was unable
to accurately approximate the first return distri-
bution of a simple random walk near to the null
persistent setting (p ≈ 1/2). Further inaccuracies
of (10) for passage time distributions are discussed
in Booth and Wood (1995), Booth (1994) and Butler
and Huzurbazar (1995). In its place, Wood, Booth
and Butler (1993) recommend an inverse Gaussian-
based approximation which does not suffer such
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inaccuracy, at least as concerns the examples pre-
sented in the papers above. A description of this
approximation is given in Appendix A. We de-
note the reliability approximation based on this
method as R̆�t� and the resulting hybrid failure
rate approximation as

z̆�t� = f̂�t�
R̆�t� ∫∞

0 f̂�u�du
�(17)

6. GI/M/1 QUEUE
Reconsider the more general structure of this in-

troductory queue with interarrival times distributed
i.i.d. with CDF G� density g and MGF �0�s�� A sin-
gle server completes tasks at rate µ with service dis-
tribution Exponential�µ�. The state of the system is
the total number in queue and under service. Ad-
ditional tasks that result in a queue length larger
than n are turned away and the system, at that
point, is said to have failed. Failure occurs when
a new task arrives just after passage into state n
but before the current task’s service is completed,
putting the system into state E, the state of failure.
The system has n+2 states labelled i = 0� � � � � n and
E. With a queue limit of n = 4� the transmittance
matrix is

��s� =




0 �0�s� 0 0 0 0
0 �11�s� �0�s− µ� 0 0 0
0 �21�s� �1�s− µ� �0�s− µ� 0 0
0 �31�s� �2�s− µ� �1�s− µ� �0�s− µ� 0
0 �41�s� �3�s− µ� �2�s− µ� �1�s− µ� �0�s− µ�
0 0 0 0 0 0



�

where the entries are

�k�s� = µk

k!

∫ ∞

0
wkesw dG�w��

k = 0� � � � � n− 1�

�i1�s� = �0�s� −
i−1∑
k=0

�k�s− µ��
i = 1� � � � � n �

(18)

Derivations of these values are in Appendix B. Con-
sider the system of (18) with µ = 2 and n = 4 so
that the system failure time W is the first passage
to a queue length of 5.

6.1 Gamma(� = 2, � = 2) Interarrivals Revisited
The transmittances in (18) are based upon the

expression

�k�s� =
µkβα

�β− s�k+α
(
k+ α− 1

k

)
� k = 0� � � � �3�

For integer values of α these are rational expres-
sions which, through the cofactor rules, determine
first-passage MGFs as rational functions� Direct in-
version of such rational MGFs is therefore possible
by partial fraction expansion and leads to the exact

calculation of R�t� and z�t� along with their saddle-
point approximations shown in Figures 1–3.
As determined from (4), �0E�s� is the (multiplica-

tive) inverse of an order 10 polynomial. Its ten roots
are simple poles of �0E�s� which, in this case, are
the distinct values ν1� � � � � ν10 consisting of four real
roots and three complex conjugate pairs. Its partial
fraction expansion yields �0E�s� =


10
i=1 ci/�νi − s��

and the density of W from direct inversion is

fW�t� =
10∑
i=1
ci exp�−νit�

= 7�57× 10−3e−7�41×10
−3t − 4�41

×10−2e−0�857t + 0�240e−2�20t

−0�624e−3�39t
+0�468e−4�05t cos�1�04t�
+0�110e−4�05t sin�1�04t�
−0�0544e−5�05t cos�2�16t�
−0�0446e−5�05t sin�2�16t�
+6�82× 10−3e−5�67t cos�2�98t�
+6�49× 10−3e−5�67t sin�2�98t��

(19)

The true R�t� has been computed using symbolic in-
tegration. The mean and standard deviation of this

distribution, as determined from �0E� are 138 and
135� An important characteristic of the system is its
long term failure rate defined as the value of z�t� as
t→∞� From (19), this value is z�∞� = 0�00741 and
may also be seen as the asymptote for the plot of
z�t� in Figure 2. It is also the right edge of the con-
vergence strip for �0E�s�� a result that holds quite
generally as shown in Butler and Bronson (2000).
In this same figure, the accuracy of z̃�t� shows the
need to normalize the saddlepoint density when ap-
proximating z�t��
6.2 Compound Poisson Interarrivals

Suppose the interarrival distribution of fail-
ures is Y = 
N

i=1Xi where X1�X2� � � � are i.i.d.
Exponential�λ� andN is Poisson�β� with β = 1 and
restricted so N ≥ 1� such restriction prevents Y
from having a point mass at 0� Lengthy calculations
show in this setting that

�k�s� =
µke−ββ

�1− e−β�λk �1− s/λ�
−�k+1� ×

1F1
(
k+ 1�2�β�1− s/λ�−1)� s < λ� k = 0� � � � �3�
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Fig. 5. Plot of R̂�t� �solid�� inverse Gaussian-based R̆�t� �dashed� and an empirical estimate of R�t� �circles� versus t for the GI/M/1
queue with compound Poisson interarrivals.

where 1F1 is the confluent hypergeometric function.
This expression reduces to simple forms for integer
k = 0� � � � �3 using the Kummer transform (13.1.27)
and recurrence relation (13.4.4) of Abramowitz and
Stegun (1970). The resulting failure distribution has
mean 392 and standard deviation 390� The denomi-
nator of the MGF, as determined from cofactor rule
(4), has its smallest positive real root as 2�56 ×
10−3 which is the upper edge of its convergence
strip.
Figure 5 plots the normal-based R̂�t� (solid) and

inverse Gaussian-based R̆�t� (dashed) reliability
approximations against simulated approximations

Fig. 6. Plot of ẑ�t� �dashed�� z̃�t� �solid� and an empirical approximation �circles� versus t for the GI/M/1 queue with compound
Poisson interarrivals.

(circle centers) using 106 failure runs through the
system. Figure 6 compares the unnormalized ẑ�t�
(dashed) and normalized z̃�t� (solid) failure rate
approximations with simulated approximations
(circles) using the 106 failure runs along with ker-
nel density approximation for the unknown density.
The normalized saddlepoint approximation agrees
to high accuracy with the simulation results taking
only several minutes of computing time as opposed
to the several hours required for the simulation.
It furthermore does not suffer from the inherent
roughness problems of kernel density estimation
that exist even with samples of size 106� The nor-
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malization constant of the saddlepoint density is
1�083�

6.3 Inverse Gaussian Interarrivals

An inverse Gaussian interarrival distribution
with mean 1 and variance 1 produces a MGF of
failure time converging on �−∞�1�30× 10−2� where
the right edge is a zero in the denominator of
the cofactor rule. The mean is 79�1 with standard
deviation 76�7� The MGF computation is based
upon

�k�s� =
eµk

k!

√
2
π
�1− 2s�−1/2�k−1/2�Kk−1/2�

√
1− 2s��

s <
1
2
� k = 0� � � � �3�

where Kν denotes a BesselK function. For half-
integer values, this function takes the simple form
of the finite sum in (10.2.15) of Abramowitz and
Stegun (1970). The convergence strip of the inverse
Gaussian interarrival MGF is �−∞�1/2� and not
open; however, the MGF of the failure distribution
has an open convergence strip due to the zero in
the denominator of the cofactor rule.
Figure 7 plots R̂�t� (solid) and R̆�t� (dashed) as

previously described. Figure 8 plots the two nor-
malized failure rates z̃�t� (solid) and the inverse
Gaussian-based hybrid z̆�t� (dashed) in (17). Their
empirical counterparts (circles) are based on 106

simulations making use of the generator for inverse
Gaussian variates in Atkinson (1982). The normal-
ization constant for the saddlepoint density is 1�080�
The strikingly similar behavior of the failure dis-

tributions and their MGFs for these three differ-
ent interarrival distributions suggests that the ac-
curacy and behavior of the saddlepoint approxima-
tions is due more to the system structure as ex-
pressed through the cofactor rule and less to the
actual interarrival distributions used. Certainly the
right tail behavior is determined by the shape of the
MGF just to the left of the smallest positive root of
its denominator.

7. A REDUNDANT AND REPAIRABLE SYSTEM

A partly loaded repairable system with imperfect
switching is an example of a feedback system whose
reliability function and failure rate may be approxi-
mated using saddlepoint methods. See Høyland and
Rausand (1994, Sections 4.6, 4.7) for a discussion of
this and other such examples.
Suppose that a pumping station has four equiv-

alent pumps available for use. Under ordinary
operating conditions, there are two active pumps.
One is designated as the primary pump and has

Fig. 7. Plot of R̂�t� �solid�� inverse Gaussian-based R̆�t�
�dashed� and an empirical estimate of R�t� �circles� versus t for
the GI/M/1 queue with inverse Gaussian interarrivals.

an Exponential�λ� failure time with failure rate λ.
The second active pump is a partly loaded backup
which means that it shares a reduced load with an
Exponential�λ1� failure time with λ1 < λ� If any
of the other pumps are not in queue for repair,
then they are being held in cold standby, which
means that, when activated as either the primary
or backup pump, they will assume the same expo-
nential lifetimes as their predecessors. The pumps
are repairable by four independent servers and
we assume that all individual repair times are
Exponential�µ�� The system is subject to imperfect
switching in the activation of replacement pumps.
Assume that each switching attempt is an inde-
pendent Bernoulli�p = 1 − q� trial and that, once
the switching mechanism has failed for the first
time, the system eventually fails once the currently
active primary pump has failed. Finally, suppose
that attempts to activate new pumps occur only
following the failure of the primary active pump.

Fig. 8. Plot of z̃�t� �solid�� z̆�t� �dashed� and an empirical ap-
proximation �circles� versus t for the GI/M/1 queue with inverse
Gaussian interarrivals.
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The behavior of this pumping system is quite com-
plicated and the task before us is to determine the
MGF of its failure time using one of the cofactor
rules. There is however, some latitude in the des-
ignation of system states. Suppose that the failure
of the primary pump is the trigger that initiates a
change in system state. While waiting for the pri-
mary unit to fail in Exponential�λ� time, the backup
pump has not failed in the interim with probability
r = λ/�λ1 + λ� > 0�5� computed as the competing
risk between Exponential�λ� and Exponential�λ1�
failure times. The destination state following pri-
mary pump failure is state j = 1� � � � �4 under two
conditions: (1) the activations of the new primary
and/or backup pumps are successful, and (2) subse-
quently there are j pumps undergoing repair. The
destination state is failure state 5 when condition
(1) fails, that is, when the switching mechanism
fails to successfully activate all the required pumps.
The initial state is state 0� With this designation
of states, the transmittance matrix is given as (20)
where the states have been ordered 0� � � � �5� En-
try Mλ�s� refers to the MGF of an Exponential�λ�
waiting time and N�s� = qMλ + �1 − r�pqM2

λ� De-
tails for the determination of this form, specifica-
tion of the entries

{
pij

}
and treatment of the n-unit

generalization are given in Appendix C. It should
be clear from the large number of nonzero branch
transmittances that the flowgraph of this system is
very complicated and difficult to draw. The system
is semi-Markov and not Markov because, while in
states 0�1 and 2� destination 5 has a different hold-
ing time than the other possible destinations:

(20) ��s� =




0 prMλ�s� p2�1− r�Mλ�s� 0 0 N�s�
0 p10Mλ�s� p11Mλ�s� p12Mλ�s� 0 N�s�
0 p21Mλ�s� p22Mλ�s� p23Mλ�s� p24Mλ�s� N�s�
0 p31Mλ�s� p32Mλ�s� p33Mλ�s� p34Mλ�s� p3DMλ�s�
0 0 0 pM4µ�s� 0 qM4µ�s�
0 0 0 0 0 0



�

As a numerical example, suppose the primary
unit has failure rate λ = 1 and the single backup
unit has the reduced rate λ1 = 1/2� The fixing rate
is µ = 2 and a successful use of the switch has prob-
ability p = 0�95� We consider two different types of
system failure: (1) passage to state 5 so failure is
due to the switching mechanism, and (2) passage to
either state 4 or 5 so that failure refers to the first
stoppage of all pumps.

First passage to 5. The cofactor rule in (4) gives a
rational expression for f05�05 �s� such that f05 = 1�
so failure is ultimately assured. The mean time un-
til failure is � ′

05�0� = 14�8, while the standard devia-
tion may also be determined from the second deriva-
tive as 14�5� Approximate equality of the mean and

Fig. 9. Plot of R�t� (solid) and R̂�t� (dashed) versus t in the
Markov system for the passages 0 → 5 (higher) and 0 → 	4�5

(lower).

standard deviation suggests an approximate expo-
nential failure distribution, but the exact distribu-
tion is known to be a phase-type distribution (Aalen,
1995 and Neuts, 1981). The convergence strip of
�05�s� is s ∈ �−∞�6�92× 10−2��
Since �05�s� is a rational expression, the exact

reliability function and failure rates can be deter-
mined. This is discussed in Section 8 in a broader
context that relates the traditional solution of
Markov systems to our saddlepoint approximation
based upon the cofactor rules. Figure 9 plots R�t�
and its saddlepoint approximation R̂�t� versus t as
the upper pair of curves and demonstrates virtually
no graphical difference.
Figure 10 compares the failure rate approxima-

tions in (16) as the lower triple of curves. Numeri-

cal integration yields
∫
f̂�u�du � 1�074 which was

used in computing z̃�t�� The true asymptote is given
by z�t� = z�∞� = 0�0692� as discussed in Section 8.
Figure 11 shows the percentage relative errors con-
nected with the two previous graphs as the solid and
dashed lines. The limiting relative error in failure
rate approximation as t→ 0 is determined numeri-
cally as

lim
t→0

100
(
z̃�t�
z�t� − 1

)
= −23�3% �

(First passage to D = 	4�5
). The first-passage
transmittance expression in (7) yields f1D�1D�s�
which is again a rational expression whose exact
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Fig. 10. Plot of z�t� �solid�� ẑ�t� �dashed� and z̃�t� �dotted�
versus t in the Markov system for passages 1 → 5 �lower� and
1 → 	4�5
 (upper).

reliability function and failure rate can be deter-
mined and used for checking saddlepoint accuracy.
The first passage transmittance has f1D = 1� mean
time to failure of � ′

1D�0� = 11�0� standard deviation
10�2� and convergence region �−∞�9�90 × 10−2��
The remaining graphs in Figures 9–11 pertain to
this example and compare the saddlepoint and
exact computations. Again they demonstrate ex-
tremely close agreement. For Figure 10, the true
asymptotic failure rate is z�∞� = 0�099� In Fig-
ure 11, the dotted and dotted-dashed lines plot the
relative error in approximating R�t� and z�t� and

lim
t→0

100
(
z̃�t�
z�t� − 1

)
= −22�4% �

8. FINITE MARKOV SYSTEMS

The traditional approach to computing the relia-
bility for finite Markov systems is to use the solu-
tion to its backward Kolmogorov differential equa-

Fig. 11. Percentage relative errors in saddlepoint approximation
forR�t� versus t for passage 1 → 5 �solid� and passage 1 → 	4�5

�dots�� Similiarly, relative error plots in approximation for z�t�
are the respective dashed and dot-dashed curves.

tion. This approach, while limited to Markov sys-
tems, is another useful method in reliability compu-
tation as shown in Aalen (1995). If ��s� = {

�ij�s�
}

is the n×n matrix of system transmittances among
states S = 	1� � � � � n
 � then the system is charac-
terized as Markov when �ij�s� = pij�1 − s/τi�−1
for all i� j� for example, holding times in state i
are Exponential�τi� and not dependent upon the
destination states. The distribution of first passage
from state 1 to the subset of failure states D =
	m+ 1� � � � � n
 is obtained as follows. Amend the
system so the states in D are absorbing; then the
reliability function is the probability the system is
not in D at time t or

R�t� =
m∑
j=1
p1j�t��(21)

with P�t� = {
pij�t�

}
as the solution to the appro-

priate backward equation of the amended system.
The specifics of this would seem to require consider-
ation of two separate cases: systems with and with-
out states that have self-feedback loops.
When there are no self-feedback loops, denote

� = ��ij� as the n × n infinitesimal generator
matrix in which

�ij =
{
pijτi� if i /∈ D�
0� if i ∈ D� j �= i�

�ii = −∑
j �=i

�ij �
(22)

In block form,

� =
(
�CC �CD

0 0

)
�

where the first m components are block C and
the last n −m components comprise D� According
to standard theory, such as in Karlin and Taylor
(1981),

P�t� = exp�t� �

=
(
exp�t�CC� � −1

CC 	exp�t�CC�−Im
�CD

0 In−m

)
�

as can be shown in this instance when D consists
of absorbing states. The long-term absorption prob-
abilities are limt→∞ PCD�t� = −� −1

CC�CD and the
system reliability is the sum of components of the
first row of exp�t�CC�� computable as a function of
t in Maple V.
Self-feedback loops in a Markov system need to be

removed before it is possible to solve the backward
equation. A self-feedback loop on state i is removed
by amending all transmittances out of state i in the
following manner. Passage from state i → j �= i
has transmittance �k

ii�s��ij�s� if the self-feedback
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loop is taken exactly k times; accordingly, the over-
all transmittance sums over k to give an �i� j�th
transmittance of

∞∑
k=0

�k
ii�s��ij�s�

= �ij�s�
1−�ii�s�

= pij�1− s/τi�−1
1− pii�1− s/τi�−1

= pij

1− pii
(
1− s

τi�1− pii�
)−1
� j �= i�

(23)

Thus, the equivalent system without self-feedback
loops is again Markov with transmittances as in
(23). The infinitesimal generator of this system has
exactly the same form as in (22) which suggests
what we might have expected: we may ignore self-
loops in determining � for a Markov system. With
or without self-feedback loops, the infinitesimal gen-
erator is computed in the same manner.
As an example, consider the partly loaded re-

pairable system with imperfect switching from the
previous section. As presented, the system is not
Markov but it can be made Markov by adding in an
additional state 6� This new state is entered when
the switching mechanism succeeds in connecting
up a new primary unit but fails in connecting a
new backup unit. Transmittances of the former sys-
tem into state 5� such as N�s�, are now split into
two separate pieces, one into 6 and the other into
5. With the states ordered as 	0� � � � �4�5�6
 � the
Markov transmittance matrix is

(24) � =




0 prMλ p2�1− r�Mλ 0 0 qMλ �1− r�pqMλ

0 p10Mλ p11Mλ p12Mλ 0 qMλ �1− r�pqMλ

0 p21Mλ p22Mλ p23Mλ p24Mλ qMλ �1− r�pqMλ

0 p31Mλ p32Mλ p33Mλ p34Mλ p35Mλ p36Mλ

0 0 0 pM4µ 0 qM4µ 0
0 0 0 0 0 0 0
0 0 0 0 0 Mλ 0



�

where an explanation for the transition probabili-
ties is given in Appendix C.
When considering first passage to state 5, the

Markov system yields a 6×6 matrix�CC with eigen-
values −0�0692� −1 with multiplicity 2, −8�15� and
the complex conjugate pair −0�915 ± 0�171i� the
exact reliability as computed in (21) using Maple
V is

R�t� = 1�01e−0�0692t

+0�0133e−0�915t cos�0�171t�
−0�0338e−0�915t sin�0�171t�
−0�0220e−t + 1�85× 10−6e−8�15t�

(25)

The leading term determines the asymptotic order
in t and has an exponent which is the right edge of

the convergence strip for the rational first passage
MGF �05�s�� This calculation of R�t� gives the true
asymptotic failure rate as

z�∞� = lim
t→∞

z�t� = lim
t→∞

−R′�t�
R�t� = 0�0692�

The exact reliability and failure rate used in Figures
9–11 were based upon (25).
For first passage to D = 	5�6
 � the exact reliabil-

ity function is

R�t� = 1�08e−0�0990t − 0�213e−1�0t

+0�137e−0�974t cos�0�180t�
−0�220e−0�974t sin�0�180t��

The asymptote for the true failure rate is z�t� =
0�0990� the smallest real pole of �0D�s��

9. FEEDBACK THEORY FOR FINITE
STOCHASTIC SYSTEMS

The simplicity in form of the cofactor rules in
Section 4 suggests that there should be elementary
derivations that are much simpler than the original
proofs in Butler (1997a, b). We provide these sim-
ple derivations below using methods of matrix al-
gebra. The pictorial analogues to these derivations
are flowgraphs with matrix self-feedback loops. The
algebra and flowgraphs combine to offer consider-
able insight into the nature of stochastic systems

that may have complicated collections of multiple
feedback loops.

9.1 Single Destination Cofactor Rule

The first passage transmittance from 1 → n �= 1
is defined as

f1n�1n�s� = E	exp �sW1n�1�W1n<∞�
�
where W1n is the first passage time from state 1 →
n, perhaps having a defective distribution. The dis-
tribution theory for W1n is determined entirely by
�� the transmittance matrix of the semi-Markov
process. Since the process never leaves state n dur-
ing the occurrence of W1n� its distribution theory is
unaltered by working with the semi-Markov process
in which state n has been made absorbing. Let � �n�
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denote the transmittance matrix of such a process
with

� �n��s� =
{
�

�n�
ij �s�

}
�=




�11 · · · �1n
���

���
�n−1�1 · · · �n−1�n

0 · · · 0


 �(26)

Since we are considering nonexplosive processes,
passage from 1 → n in finite time must be in a
countable number of state transitions. With N
counting the number of such transitions, then

f1n�1n�s� =
∞∑
k=1
E
{
exp �sW1n�1�W1n<∞∩N=k�

}
�(27)

Passage in 1 step contributes the term �
�n�
1n � Two-

step transition contributes
n−1∑
j=1

�
�n�
1j �

�n�
jn =

n∑
j=1

�
�n�
1j �

�n�
jn �

which is the �1� n� element of 	� �n��s�
2� More gen-
erally, the kth term of (27) is the �1� n� element of
	� �n��s�
k so that

f1n�1n�s� =
∞∑
k=1

[
�1� n� element of 	� �n��s�
k

]

= �1� n� element of
∞∑
k=1

	� �n��s�
k(28)

= �1� n� element of[
	In −� �n��s�
−1 − In

]
�

Let the cofactor matrix for In −� �n��s� be 	�−1�i+j
���n�
ij �s��
 and use the same notation without expo-

nent �n� for the cofactors of In − ��s�� Then, by
Cramer’s rule,

f1n�1n�s� =
�−1�n+1

∣∣∣��n�
n1 �s�

∣∣∣∣∣In −� �n��s�∣∣ = �−1�n+1 ∣∣�n1�s�∣∣∣∣�nn�s�∣∣ �

These arguments are valid when In−� �n��s� is full
rank. This fact has been shown in Butler (1997a, b)
under the conditions of Theorem 1.
The flowgraph analogue to this argument is given

in Figure 12. The numbers below the nodes give

Fig. 12. A matrix self-loop of the state space S = 	1� � � � � n

into itself with the various nodal dimensions given in parentheses
below.

the dimensions of the nodes with B and E as one-
dimensional source and sink nodes. There are two
different versions of node S, each representing an
n-dimensional node comprised of all the system
states 	1� � � � � n
 � Vector ξi is the n × 1 indicator
vector of its ith component. Thus, branch transmit-
tance ξT1 = (

1�0T
)
effectively inserts the system

from source into state 1� the first component of the
first S� with no time delay. Transition from the first
S to the second version of S has the n × n matrix
branch transmittance ��s�� Upon reaching the sec-
ond S� the system may feedback about this matrix
node with transmittance � �n� given in (26) for k ≥ 0
loops. The final branch transmittance ξn = �0T�1�T
removes the system from the nth component of S
without time delay. The summation computation
in (27) and (28) is equivalent to summing over all
mutually exclusive paths from node B to E and is

ξT1 ��s�
∞∑
k=0

{
� �n��s�

}k
ξn

= ξT1
∞∑
k=1

{
� �n��s�

}k
ξn

= ξT1
[{
In −� �n��s�

}−1
− In

]
ξn

= �1� n� element of
[
	In−� �n��s�
−1−In

]
�

(29)

which gives the cofactor rule. Two versions of ma-
trix node S are required in the flowgraph of Fig-
ure 12 because the transition 1 → n �= 1 requires
at least one state transition in state space S� The
matrix self-feedback loop alone, with transmittance{
In −� �n��s�}−1 � would allow for the possibility of
passage with 0 transitions; thus the elimination of
the first S node would yield the same answer but
the flowgraph algebra would then be incorrect.

9.2 First Return Cofactor Rule

The flowgraph in Figure 12 is easily modified to
yield a very simple derivation of the first return co-
factor rule from state 1 → 1. For the matrix self-
feedback loop of S → S� use instead the matrix
transmittance � �1��s� defined as ��s� with the first
row set to 0 so that state 1 is absorbing. Accord-
ing to the flowgraph, passage B → S starts the
system in state 1� Passage S → S with transmit-
tance ��s� is the mandatory first step into some
state in S� Thereafter, the system accumulates time
by passing through the feedback loop with transmit-
tance � �1��s�� Once the system enters state 1� time
stops and transmittance ξ1 takes the system from
1 ∈ S → E� This yields the first return transmit-
tance,

f11�11�s� = ξT1 ��s�
∞∑
k=0

{
� �1��s�

}k
ξ1
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Fig. 13. Multiple destination flowgraph with destination states
lumped into a single state.

= ξT1 ��s�
{
In −� �1��s�

}−1
ξ1

= �1�1� element of ��s�
{
In−� �1��s�

}−1
�

Using a cofactor expansion of the first column of{
In −� �1��s�}−1 gives

f11�11�s� =
n∑
j=1

�1j�s��−1�1+j
∣∣∣��1�

1j �s�
∣∣∣∣∣In −� �1��s�∣∣

=
n∑
j=1

�1j�s��−1�1+j
∣∣�1j�s�

∣∣∣∣�11�s�
∣∣

= −
n∑
j=1

	In −��s�
1j �−1�1+j
∣∣�1j�s�

∣∣∣∣�11�s�
∣∣

+�−1�2 ∣∣�11�s�
∣∣∣∣�11�s�

∣∣
= −

∣∣In −��s�∣∣∣∣�11�s�
∣∣ + 1 �

The last line results upon recognizing that the nu-
merator is the cofactor expansion of

∣∣In −��s�∣∣ �
9.3 Multiple Destination Cofactor Rule

The first passage transmittance from 1 ∈ C =
	1� � � � �m
 → D = 	m+ 1� � � � � n
 is determined
from the flowgraph in Figure 13. State L is a one-
dimensional lumped state representing the collec-
tion of n −m states in D� One-step branch trans-
mittances into this lumped state from vector node
C are the components of m× 1 vector �C · �= �CD1 �
It should be intuitively clear that the first passage
transmittance is most easily determined by basing
its derivation upon the lumped state and its associ-
ated branch transmittance �C ·� formal justification
for working with the lumped state is given in Ap-
pendix D.
From Figure 13, with ξ1 as the m× 1 indicator of

the first component,

f1D�1D�s� = ξT1 	Im −�CC�s�
−1�C ·

or the first component of the vector 	Im −�CC�s�
−1
�C · � This is the expression in (7) by Cramér’s rule.

9.4 Other Properties

The derivations of these cofactor rules and their
motivation using flowgraphs provide an under-
standing of these formulas as sums over distinct
paths. Each of the three expressions is concerned
with computing the expectation of exp�sW� where
W is a finite waiting time for first passage. The
first-passage transmittances are developed as sums
of contributions over mutually exclusive events and
the partitioning into these disjoint events is given
pictorially through the matrix feedback loops of
Figures 12 and 13.
Suppose that there are no feedback loops in the

n-state system and no states of the system can be
repeated. Such a system is a cascading system and
the cofactor rules simplify further in this context.

Corollary 4. Consider the n-state system of
Theorem 1 and suppose it is also cascading. Then
the first passage transmittance from 1 → n in (4)
further simplifies to

f1n�1n�s� = �−1�n+1 ∣∣�n1�s�∣∣ � n �= 1�(30)

Proof. For a cascading system the entries
of ��s� on or below the diagonal are zero; thus∣∣�nn�s�∣∣ = 1�

The cofactor in (30) has the physical interpreta-
tion as the sum over all cascading paths from 1 → n
each of which cannot feed back upon itself.
A similar result holds for first passage to a subset

of states D�

Corollary 5. Consider the n-state system of
Theorem 3 and suppose it is also cascading in sub-
set C. Then the first passage transmittance from
1 ∈ C→ D in �7� further simplifies to

f1D�1D�s� =
∣∣�C ·�s� 	Im −�CC�s�
\1

∣∣ �
The matrix is Im − �CC�s� with its first column re-
placed with �C ·�s�� the row sums of the m×�n−m�
block �CD�s��

Suppose the system starts in state i with prior
probability πi for i ∈ S so that the prior state vec-
tor is πT = �π1� � � � � πn� with πT1 ≤ 1� This is a
situation in which each individual system state has
its own input. The first passage transmittance to
state n can be computed using the superposition or
additivity of the inputs.

Theorem 6. Suppose an n-state system consists
of all states relevant to passage from 	1� � � � � n− 1
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→ n� Let πT−n = �π1� � � � � πn−1�0�� The first passage
transmittance to state n is

fπn�πn�s� =
1∣∣�nn�s�∣∣

∣∣∣∣	In −��s�
−n
πT−n

∣∣∣∣ �(31)

where 	In −��s�
−n is �n − 1� × n and defined as
In −��s� with its nth row removed.

Proof. The flowgraph in Figure 12 describes
the system; however, now the input branch trans-
mittance from B → S is πT−n rather than ξT1 as
shown. The computation is therefore

fπn�πn�s� = πT−n
[{
In −� �n��s�

}−1
− In

]
ξn�

which reduces to (31) using the arguments given in
(29).

10. MODULAR SYSTEMS

In all the systems discussed above, the branch
transmittances could have been first-passage trans-
mittances of subsystems whose detailed structures
have been suppressed in order to make the over-
all system and its flowgraph look simpler. This is
the modular concept by which systems are perceived
as comprised of subsystems and further subsubsys-
tems in an effort to provide hierarchical organiza-
tion to a system with many states. The modular
concept is extremely powerful and general and has
deeper implications for the analysis of large complex
systems when used in conjunction with the afore-
mentioned cofactor rules.
A simple example in which the modular concept

provides a simple first passage analysis concerns
the first return to state 0 in a birth-death process
as first considered in Butler and Huzurbazar (1995).
Consider the infinite state system in which S is
the set of integers. Split state 0 into two versions:
source state 0 to which the system cannot return,
and sink state 0′� the version to which the sys-
tem can return. Create the module, or first passage
transmittance, representing first return to state 1
from higher numbered states and denote it as �+

11�
Figure 14 shows this modular system. The cofactor
rule applied to this flowgraph gives

f00′�00′ �s� =
�01�s��10�s�
1−�+

11�s�
�

More generally if the module for first return to state
i from the right has transmittance �+

ii�s�� then a
recursion relation for the modular transmittances
is

�+
ii�s� =

�i� i+1�s��i+1� i�s�
1−�+

i+1�i+1�s�
� i = 0�1� � � � �(32)

This yields a recursive computation of f00′�00′ �s� as
�+

00�s��
A two-sided birth–death process that considers

first return to state 0 by allowing for negatively
numbered states would consist of two modules
connected in parallel: Figure 14 as one module
and its mirror image as the second module over
the negative states. If �−

ii�s� denotes the first re-
turn transmittance to state i from lower-numbered
states, then

�−
ii�s� =

�i� i−1�s��i−1� i�s�
1−�−

i−1� i−1�s�
� i = 0�−1� � � �(33)

is the mirror image recursion. The overall first
return transmittance is now �+

00�s� + �−
00�s�� In

the setting of a homogeneous random walk with
�i� i+1�s� = pes and �i� i−1�s� = qes� then

�+
ii�s� = �+

i+1� i+1�s� = �−
ii�s� = �−

i+1� i+1�s� ∀i
and the common value can be resolved from recur-
sions (32) and (33) by extracting the negative so-
lution in the quadratic equations. This yields the
known result

�−
00�s� = �+

00�s� = 1
2 − 1

2

√
1− 4pqe2s(34)

found by Feller [1968, Section XI.3, (3.13)] from a
different point of view involving the renewal theory
of generating functions. The numerical example of
the next section is a two-sided random walk with
p = 1/2 and Exponential�1� holding times so that
�i� i−1�s� = �i� i+1�s� = 1/2�1 − s�−1. If the walk
starts at 0� the first return transmittance is

f00′�00′ �s�
= 1/2�1−s�−2

1−
(
1/2−1/2

√
1−�1−s�−2

) � s ≤ 0�
(35)

Modular system concepts also give the first-
passage transmittance from state 0 to n in a
general birth–death process. The modular trans-
mittances are shown in the first system of Figure
15 as �0� n−1, the first-passage transmittance from
state 0 to n−1, and �−

n−1� n−1, the first return trans-
mittance to state n − 1 from the lower numbered
states.

Fig. 14. Modular system for first return to state 0 in a birth–
death process.
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Fig. 15. Modular system for first passage to state n in a birth–
death process.

Applying the cofactor rule, then

�0� n�s� =
�0� n−1�s��n−1� n�s�
1−�−

n−1� n−1�s�
(36)

is a recursion of �0� n in n� Its computation also de-
pends on a recursion of �−

n−1� n−1 in n given by the
second modular system of Figure 15 as

�−
n−1� n−1�s� =

�n−1� n−2�s��n−2�n−1�s�
1−�−

n−2� n−2�s�
�(37)

Recursions (36) and (37) together provide simple
computations of �0� n even for large values of n such
as n = 1000� Saddlepoint methods also require com-
putation of the first two derivatives, � ′

0� n and � ′′
0� n.

These can also be computed recursively by analyti-
cally differentiating the two recursions and carrying
through the six-dimensional recursions of the terms

�−
n−1� n−1 �

− ′
n−1� n−1 �

− ′′
n−1� n−1 �0� n � ′

0� n � ′′
0� n �

The only limitation in their use is the stability and
accuracy of computations resulting from the accrue-
ment of roundoff error, a limitation found in all re-
cursive computations.
In the homogeneous random walk setting, the ex-

pression for �−
n−1� n−1 in (34) can be used to show

that the recursion in (36) is

�0�n�s� =
pes

1− �1/2− 1/2
√
1− 4pqe2s�

�0� n−1�s�

= �1−
√
1− 4pqe2s

2qs
�n�

This is a known result in Feller [1968, Section XI.3,
(3.6) and part (d)] derived from a quite different
point of view.

10.1 Load Sharing Repairable System with
Perfect Switching

Repairable systems are feedback systems of prac-
tical importance that are most often characterized
as queueing systems. Some flowgraph examples
of queues are given in Butler and Huzurbazar
(1993, 1995) and include finite and infinite state
M/M/p queues and anM/G/1 queue. The load shar-
ing queue considered here assumes that working
units share a common workload. If there are n
units among which i are working, let λi be the

common failure rate of each working unit and
Exponential(λi) the common failure distribution.
When, for example, tasks arrive at rate λ0� the
choice of λi = λ0/i matches the service and arrival
rates of tasks. Suppose perfect switching and m in-
dependent servers with common fixing rate µ and
distribution Exponential(µ). The system is a non-
homogeneous birth–death process. Passage out of
state i� representing the state in which i units have
failed, is a competition between the failure of n − i
working units with failure rates λn− i and the re-
pair of im = min�i�m� units with repair rate µ; the
branch transmittances are

�i� i−1�s� =
imµ

ti
Mti

�s�

and

�i� i+1�s� =
�n− i�λn− i

ti
Mti

�s�� i = 0� � � � � n�

where ti = imµ+ �n− i�λn− i. System failure occurs
in state n and the first passage transmittance to
state n is �0� n computed from the recursions along
with saddlepoint ingredients � ′

0� n � ′′
0� n �

10.2 Null Persistent Random Walk

This is a system with a countably infinite num-
ber of states on the integers. A simple random walk
starts at zero and has an Exponential(1) holding
time in each state. Consider the first return time to
state zero with transmittance (35) which is also the
MGF of first return due to null persistence of the
recurrence. Its convergence strip is �−∞�0� which
is not open; however, the saddlepoint equation can
always be solved for t ∈ �0�∞� and saddlepoint ap-
proximations are available.
Figure 16 plots R̆�t� (dashed) versus an empiri-

cal estimate (circles) based on simulation of 106 re-
turns; the smaller inset plot shows the accuracy for

Fig. 16. Plot of inverse Gaussian-based R̆�t� �dashed�� R̂�t�
�solid� and an empirical estimate of R�t� �circles� versus t for
the first return time of the random walk.
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t ∈ �0�200� and also plots R̂�t� as the solid line.
The Lugannani and Rice approximation fails miser-
ably with reliability estimates turning negative at
t = 5 and continuing to decrease to −15 at t = 1516�
By contrast, the inverse Gaussian-based approxima-
tion R̆�t� agrees quite closely with the simulation.
At t = 8 the value of α̂ for the inverse Gaussian
base has grown to 103 and continues to increase out
to 1010 at t = 1516� This suggests that the inverse
Gaussian base is approaching the stable law with
index 1/2� a heavy-tailed distribution with mean∞�
The accuracy of this approximation for this contin-
uous waiting distribution agrees with its accuracy
when used (with continuity correction) to approxi-
mate the analogous discrete random walk in which
holding times are fixed at 1 (Wood, Booth and But-
ler, 1993 and Booth and Wood, 1995). Figure 17 plots
z̆�t� (solid) versus t and empirical estimates (cir-
cles). The accuracy of the normal-based density ap-
proximation, as the numerator of z̆�t�� is reflected in
this plot and contrasts sharply with the extreme in-
accuracy of the Lugannani and Rice approximation,
its CDF counterpart. The normalization constant for
the saddlepoint density is 1�000�
This example has been used to illustrate and con-

trast the failure of the Lugannani and Rice approx-
imation with the success of the inverse Gaussian
based approximation for heavy-tailed distributions.
The particular heavy-tailed distribution was also
chosen because there are explicit expressions for its
Bessel density and CDF. Feller [1971, Section XIV.7,
(6.16)] gives the density as

f�t� = t−1I1�t�e−t� t > 0�(38)

where I1 is a BesselI function of order 1. Integra-
tion, using Abramowitz and Stegun (1970, 11.3.14),

Fig. 17. Plot of z̆�t� �solid� and an empirical approximation
�circles� versus t for the first return time of the random walk.

Fig. 18. Plot of the exact percentage relative error of R̆�t� �solid�
and z̆�t� �dashed� versus t�

yields reliability
R�t� = �I0�t� + I1�t��e−t� t > 0�(39)

Figure 18 plots the percentage relative errors of
R̆�t� and z̆�t� as compared with their true coun-
terparts determined from (38) and (39). Beyond t =
800� these errors continue to decrease to the respec-
tive errors of 0�05% and 0�03% at t = 1516�
The example provides a strong argument for rou-

tine computation of the inverse Gaussian-based ap-
proximation as a companion to the Lugannani and
Rice approximation. Appendix A demonstrates that
this involves hardly any further computation. One
of its most important roles, however, is in determin-
ing whether or not the Lugannani and Rice approx-
imation can be trusted. From past numerical expe-
rience, what can be said about the Lugannani and
Rice approximation is that it is either extremely ac-
curate when “working properly” or extremely bad as
seen with this example. Our recommendation is to
trust it when the inverse Gaussian-based approxi-
mation is close but otherwise not. If these two ap-
proximations should differ considerably, then fur-
ther comparison to the integrated saddlepoint den-
sity is in order, which could require considerably
more computational effort.

APPENDIX

A. Inverse Gaussian-Based Saddlepoint
Approximation

Let 8α and γα be the CDF and density of an in-
verse Gaussian distribution, with mean parameter
α > 0 and variance α3� to be used as the base dis-
tribution of the approximation. Then

Pr	W > t
 � R̆�t�

= 1− 8α̂�ξ̂� − γα̂�ξ̂�
(

1
wξ̂

− 1
ûξ̂

)
� t �=K′�0��
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where α̂� ξ̂� wξ̂ and ûξ̂ are chosen in the following
way. First α̂ is determined as the value of α match-
ing the third standardized cumulants of the tilted
inverse Gaussian base with the tilted true distribu-
tion under approximation; this yields

α̂ = 	K′′′ �ŝ�
2
3 	K′′ �ŝ�
3


3+ ŵ

√√√	K′′′ �ŝ�
2
	K′′ �ŝ�
3




−1

�(40)

where ŵ is given in (11). This simplifies expression
(20) in Wood, Booth and Butler (1993). The value ξ̂
is

ξ̂ = α̂+ 1
2 α̂

2
(
ŵ2 + ŵ

√
ŵ2 + 4α̂−1

)
�(41)

which simplifies expression (27) in Wood, Booth and
Butler. Then wξ̂ is

wξ̂ = 1
2

(
α̂−2 − ξ̂−2

)
and

ûξ̂ = û
{
K′′
Iα̂

(
wξ̂

)}−1/2
�

where û is given in (11) and KIα is the cumulant
generating function of γα. Our use of the approxi-
mation in this form assumes that K′′′�ŝ� ≥ 0� which
has always been the case when dealing with first
passage CGFs. The expression for α̂ in (40) must
also be positive, which was always the case except
in the extreme left tail of W� In such instances, it
suffices to simply set α̂ equal to its first positive
value in the left tail occurring over the time grid
used in plotting.

B. GI/M/1 Queue

Let W ∼ G be the interarrival time and
Exponential(µ) the fixing distribution. The branch
transmittance from state i = 1� � � � � n to state
j = 2� � � � � i+ 1� is

�ij�s� = EW	Pr�complete i− j+ 1

tasks during time W �W�esW


= EW
{ �µW�i−j+1
�i− j+ 1�!e

−µWesW
}
�

which leads to the values in (18). Passage to state
j = 1 is the complementary event to those above
and is computed as above by replacing the probabil-
ity with 1−
i−1

k=0 Pr (complete k tasks in timeW �W�
to give �i1�s� = �0�s� −


i+1
j=2�ij�s��

C. Partly Loaded Repairable System with
Imperfect Switching

The transmittance matrix of this system is de-
rived in the more general setting with n operating
units (pumps) instead of 4 and with an equal num-
ber of servers. The absorbing state due to switching
failure is now state n+ 1� Passage out of state i� in
which i failed units are under repair, depends upon
(1) how many units can be fixed before the primary
unit fails in time P ∼ Exponential(λ), and (2) how
the backup failure time B ∼ Exponential(λ1� com-
pares to P� Let Zi denote the number of units fixed
prior to primary unit failure. The transition prob-
abilities depend on gi1�z� = Pr�Zi = z�P < B��
which involves an event with a single switching,
and gi2�z� = Pr�Zi = z�P > B�� an event requir-
ing two switchings. Before deriving each of these,
we summarize the transition probabilities in terms
of these mass functions. The arguments for getting
these probabilities involve two essential issues: (1)
accounting for whether P < B or B < P and (2)
requiring a single switching (w.p. p) in the former
setting and two switchings ( w.p. p2) in the latter.

From state i = 1� � � � � n− 2�

�ij�s� =




pgi1�i�Mλ�s�� j = 1�
	pgi1�i− j+ 1�
+p2gi2�i− j+ 2�
Mλ�s�� j = 2� � � � � i+ 1�

p2gi2�0�Mλ�s�� j = i+ 2�
0� otherwise�
N�s� = �1− r�pqM2

λ�s��+qMλ�s�� j = n+ 1�

From state 0� �00 = 0 = �03 = · · · = �0n� �01�s� =
prMλ�s�� and �02�s� = p2�1− r�Mλ�s�� �0�n+1�s� =
N�s��

From state n− 1� �n−1�0 = 0 and

�n−1� j�s� =




p2gn−1�n− j�Mλ�s�� j = 1� � � � � n− 2�
pgn−1�1�Mλ�s�� j = n− 1�
gn−1�0�Mλ�s�� j = n�
pq

{

z≥2 gn−1�z�

}
M2
λ�s�

+q {
z≥1 gn−1�z�}Mλ�s�� j = n+ 1�

where gi�z� = Pr 	Zi = z
 = gi1�z� + gi2�z��
From state n� �nj = 0 for j �= n − 1� n + 1�

�n�n−1�s� = pMnµ�s�� and �n�n+1�s� = qMnµ�s��
Derivation of gi1�z� and gi2�z� for z = 0� � � � � i:

Use Zi�P ∼ Binomial�i�1− e−µP� so that

gi1�z� = EP 	Pr�Zi = z�P�Pr�B > P�P�


=
∫ ∞

0

(
i

z

)
�1− e−pµ�z�e−pµ�i−ze−pλ1λe−pλ dp(42)

=
(
i

z

)
λ

z∑
k=0

�−1�k
(
z

k

)
	�i+k− z�µ+λ1+λ
−1
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from the Binomial formula. The same argument but
without the term Pr�B > P�P� = e−pλ1 gives

gi�z� =
(
i

z

)
λ

z∑
k=0

�−1�k
(
z

k

)
	�i+ k− z�µ+ λ
−1 �

which is (43) with λ1 set to 0� Now gi2�z� = gi�z� −
gi1�z��
The Markov representation of this system, when

state n + 2 is included (state 6 in the numerical
example) is the same as the above with the following
qualifications:

�i� n+2 = �1− r�pqMλ�

�i� n+1 = qMλ�
i = 0� � � � � n− 2�

�n−1�n+2 = pq
{∑
z≥2
gn−1�z�

}
Mλ�s�

and

�n−1� n+1 = q
{∑
z≥1
gn−1�z�

}
Mλ�s��

Passage out of state n+2 is only to state n+1 with
transmittanceMλ�

D. Legitimacy of Lumping Destination States

Create state n + 1 to which the system passes
instantaneously from any state in D� Now consider
the process with n + 1 states characterized by the
transmittance

�∗�s� =

�CC�s� �CD�s� 0

0 0 1
0T 0T 0


 �

where the blocks correspond to C�D� and n+1 with
dimensions m�n − m� and 1 and bold indicates a
vector or matrix of zeros or ones. Since passage is
instantaneous and certain to state n+1 from D� the
waiting time for passage 1 → n + 1 in this system
is the same as passage from 1 → D in the original
n-state system. Formally,

f1D�1D�s� = f∗1� n+1� ∗
1� n+1�s��

where stars refer to characteristics of the �n + 1�-
state system. From (4),

f∗1� n+1�
∗
1� n+1�s�

=
�−1�n+2

∣∣∣∣	Im −�CC�s�
\1 −�CD�s� 0
0 In−m −1

∣∣∣∣∣∣∣∣Im −�CC�s� −�CD�s�
0 In−m

∣∣∣∣
�

To evaluate the numerator, we move the last column
and place it as the first column; this entails n −

1 column exchanges with a sign change for each
interchange. Thus

f∗1� n+1�
∗
1� n+1�s� = �−1�n+2 × �−1�n−1

×

∣∣∣∣0 	Im −�CC�s�
\1 −�CD�s�
−1 0 In−m

∣∣∣∣∣∣Im −�CC�s�
∣∣(43)

= �−1� ∣∣ [0 	Im−�CC�s�
\1
]+�CD�s��−1�0� ∣∣∣∣Im−�CC�s�
∣∣ �

where the numerator determinant has been eval-
uated using its block structure. Adding the block
components in the numerator of the last expression
leads to the multiple state transmittance in (7).
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