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The Spectral Envelope and Its Applications
David S. Stoffer, David E. Tyler and David A. Wendt

Abstract. The concept of the spectral envelope was recently introduced
as a statistical basis for the frequency domain analysis and scaling of
qualitative-valued time series. In the process of developing the spectral
envelope methodology, many other interesting extensions became evi-
dent. In this article we explain the basic concept and give numerous ex-
amples of the usefulness of the technology. These examples include anal-
yses of DNA sequences, finding optimal transformations for the analysis
of real-valued time series, residual analysis, detecting common signals
in many time series, and the analysis of textures.

Key words and phrases: Spectral envelope, optimal scaling, Fourier
analysis, latent roots and vectors, principal components, canonical cor-
relation, signal detection, optimal transformations, coherency, random
fields, categorical-valued time series, EEG sleep states, DNA, US GNP
growth rate, residual analysis, long range dependence, matching se-
quences, functional magnetic resonance imaging (fMRI), pain perception,
textures, image retrival.

The reader will note that the various statistics
presented are immediate functions of the dis-
crete Fourier transforms of the observed val-
ues of the time series� � � � The discrete Fourier
transform is given such prominence because
it has important empirical and mathematical
properties. Following the work of Cooley and
Tukey (1965), it may be computed rapidly. The
definitions, procedures, techniques, and statis-
tics discussed are, in many cases, simple exten-
sions of existing � � �multivariate analysis tech-
niques. This pleasant state of affairs is in-
dicative of the widely pervasive nature of the
important statistical and data analytic proce-
dures. David Brillinger (1975, page viii)

1. INTRODUCTION
The concept of spectral envelope for the spec-

tral analysis and scaling of categorical time series
was first introduced in Stoffer, Tyler and McDougall
(1993). Since then the idea has been extended in
various directions (not only restricted to categorical
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time series) and we will explore these problems as
well. Most of the reference material is reserved for
the discussion in Section 7. First, we give a brief
introduction to spectral analysis and the concept of
scaling.

1.1 Spectral Analysis

Briefly, spectral analysis has to do with partition-
ing the variance of a stationary time series, �Xt�
t = 0�±1�±2� � � ��� into components of oscillation
indexed by frequency ω, and measured in cycles per
unit of time, for −1/2 ≤ ω ≤ 1/2. Given a numerical-
valued time series sample,Xt� t = 1� � � � � n, that has
been centered by its sample mean, the sample spec-
tral density (or periodogram) is defined in terms of
frequency ω,

In�ω� =
∣∣∣∣∣n−1/2

n∑
t=1

Xt exp�−2πiωt�
∣∣∣∣∣
2

= n−1
∣∣∣∣∣ n∑
t=1

Xt cos�2πωt�
∣∣∣∣∣
2

(1.1)

+ n−1
∣∣∣∣∣ n∑
t=1

Xt sin�2πωt�
∣∣∣∣∣
2

�

The periodogram is essentially the squared-correla-
tion of the data with sines and cosines that oscillate
at frequency ω.
The spectral density, f�ω�, of a stationary time se-

ries can be defined as the limit (n → ∞) ofE�In�ω�
,
provided that the limit exists; details can be found
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in many of the time series texts listed in Section 7. It
is worthwhile to note that f�ω� ≥ 0� f�ω� = f�−ω�
and ∫ 1/2

−1/2
f�ω�dω = 2

∫ 1/2

0
f�ω�dω = σ2�(1.2)

where σ2 = var�Xt� < ∞. Thus, the spectral den-
sity can be thought of as the variance density of
a time series relative to frequency of oscillation.
That is, for positive frequencies between 0 and
1/2, the proportion of the variance that can be at-
tributed to oscillations in the data at frequency ω
is roughly 2f�ω�dω. If the time series Xt is white
noise, that is, E�Xt� is independent of time t, and
cov�Xs�Xt� = 0 for all s �= t, then f�ω� ≡ σ2. The
designation white originates from the analogy with
white light and indicates that all possible periodic
oscillations are present with equal strength.
If n is a highly composite integer, the fast Fourier

transform provides for extremely fast calculation of
In�j/n�, for j = 1�2� � � � � �n/2
, where �n/2
 is the
greatest integer less than or equal to n/2. The fre-
quencies ωj = j/n are called the fundamental (or
Fourier) frequencies. The sample equivalent of the
integral equation (1.2) is

2
��n−1�/2
∑

j=1
n−1In�j/n� + n−1In�1/2� = s2�(1.3)

where s2 is the sample variance of the data; the last
term is dropped if n is odd. One usually plots the pe-
riodogram, In�ωj�, versus the fundamental frequen-
cies ωj = j/n, for j = 1�2� � � � � �n/2
, and searches
the graph for peaks. As previously mentioned, large
values of the periodogram at ωj indicate that the
data are highly correlated with the sinusoid that is
oscillating at a frequency of j cycles in n observa-
tions.
As a simple example, Figure 1 shows a time plot

of 128 observations generated by

Xt = cos
(
2π�ω0t+φ
)+ εt�

t = 1� � � � �128�
(1.4)

where ω0 = 13/128 is the frequency of oscilla-
tion, φ = 10/128 is a phase shift, and εt ∼ iid
N�0�1�. Figure 2 shows the standardized peri-
odogram, In�ω�/s2, of the data shown in Figure 1.
Note that there is a large value of the periodgram
at ω = 13/128 and small values elsewhere [if there
were no noise in (1.4) then the periodogram would
only be nonzero at ω = 13/128].
The periodogram is not consistent for the spec-

tral density. To overcome this problem, one typically
smooths the periodogram. This problem has been
thoroughly studied and we will only discuss this
matter briefly. Interested readers can see Brillinger

(1975, Chapter 7), Hannan (1970, Chapter 5) or one
of the other texts listed in Section 7. One technique
for smoothing is to take a symmetric moving aver-
age of the periodogram, that is,

f̂�ωj� =
m∑

q=−m
hqIn�ωj+q��(1.5)

where the weights are chosen so that hq = h−q are
positive and

�m
q=−m hq = 1. A simple average cor-

responds to the case where hq = 1/�2m + 1� for
q = −m� � � � �0� � � � �m. The number m is chosen to
obtain a desired degree of smoothness. Larger val-
ues of m lead to smoother estimates, but one has to
be careful not to smooth away significant peaks (this
type of situation has been called leakage because
the power from one frequency leaks into another
frequency). For f̂�ω� to be consistent under general
conditions, the weights must satisfy

�
h2
q → 0 as

m → ∞, but m/n → 0 as n → ∞.
Another related approach is window spectral es-

timation. Specifically, consider a window function
H�α�, −∞ < α < ∞, that is real-valued, even,
of bounded variation, with

∫∞
−∞H�α�dα = 1, and∫∞

−∞ �H�α��dα < ∞. The window spectral estima-
tor is

f̂�ω� = n−1
n−1∑
q=1

Hn�ω− q/n�In�q/n��(1.6)

where Hn�α� = B−1
n

�∞
j=−∞H�B−1

n �α + j
� and Bn

is a bounded sequence of nonnegative scale param-
eters such that Bn → 0 and nBn → ∞ as n → ∞�
Estimation of the spectral density requires spe-

cial attention to the issues of leakage and of the
variance-bias tradeoff typically associated with the
estimation of density functions. Readers who are un-
familiar with this material can consult one of the
many texts on the spectral domain analysis of time
series listed in Section 7.
An analogous theory applies if one collects k

numerical-valued time series, say X1t� � � � �Xkt, for
t = 1� � � � � n. In this case, write Xt = �X1t� � � � �Xkt�′
as the k×1 column vector of data. The periodogram
is now a k× k complex matrix,

In�ω� =
[
n−1/2

n∑
t=1

Xt exp�−2πitω�
]

(1.7)

×
[
n−1/2

n∑
t=1

Xt exp�−2πitω�
]∗

where * means to transpose and conjugate. Smooth-
ing the periodogram also proceeds analogously
to the univariate case; for example, in (1.5) and
(1.6) one would simply replace the univariate peri-
odogram with the multivariate one given in (1.7).
The population spectral density matrix, f�ω�, can
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Fig. 1. Time series generated from (1.4).

again be defined as the limit as n tends to infinity
of E�In�ω�
. The spectral matrix f�ω� is Hermitian
[f∗�ω� = f�ω�] and nonnegative definite. The diag-
onal elements of f�ω�, say fii�ω�, for i = 1� � � � � k�
are the individual spectra and the off-diagonal
elements, say fij�ω�� for i �= j = 1� � � � � k� are re-
lated to the pairwise dependence structure among
the k sequences (these are called cross-spectra). A
frequency-based measure of the cross-correlation

Fig. 2. Periodogram of data generated from (1.4).

between the series Xit and Xjt is the squared-
coherency given by

ρ2ij�ω� =
�fij�ω��2

fii�ω�fjj�ω�
�(1.8)
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Table 1
Infant EEG sleep states (per minute) (read down and across)

ah qt qt al tr qt al ah
ah qt qt ah tr qt al ah
ah qt tr ah tr qt al ah
ah qt al ah qh qt al ah
ah qt al ah qh qt al ah
ah tr al ah qt qt al ah
ah qt al ah qt qt al ah
ah qt al ah qt qt al ah
tr qt tr tr qt qt al tr
ah qt ah tr qt tr al
tr qt al ah qt al al
ah qt al ah qt al al
ah qt al ah qt al al
qh qt al ah qt al ah

1.2 Scaling Categorical Time Series

Our work on the spectral envelope was motivated
by collaborations with researchers who collected
categorical-valued time series with an interest in
the cyclic behavior of the data. For example, Table 1
shows the per minute sleep-state of an infant taken
from a study on the effects of prenatal exposure to
alcohol. Details can be found in Stoffer et al. (1988),
but briefly, an electroencephalographic (EEG) sleep
recording of approximately two hours is obtained
on a full term infant 24 to 36 hours after birth, and
the recording is scored by a pediatric neurologist for
sleep state. Sleep state is categorized, per minute,
into one of six possible states: qt: quiet sleep, trace
alternant; qh: quiet sleep, high voltage; tr: transi-
tional sleep; al: active sleep, low voltage; ah: active
sleep, high voltage and aw: awake. This particular
infant was never awake during the study.
It is not too difficult to notice a pattern in the data

if one concentrates on active versus quiet sleep (that
is, focus on the first letter). But it would be difficult
to try to assess patterns in a longer sequence, or if
there were more categories, without some graphical
aid. One simple method would be to scale the data,
that is, assign numerical values to the categories and
then draw a time plot of the scales. Since the states
have an order, one obvious scaling is

qt = 1 qh = 2 tr = 3 al = 4

ah = 5 aw = 6�
(1.9)

and Figure 3 shows the time plot using this scaling.
Another interesting scaling might be to combine the
quiet states and the active states,

qt = 1 qh = 1 tr = 2 al = 3

ah = 3 aw = 4�
(1.10)

The time plot using (1.10) would be similar to
Figure 3 as far as the cyclic (in and out of quiet

sleep) behavior of this infant’s sleep pattern. Fig-
ure 4 shows the periodogram of the sleep data us-
ing the scaling in (1.9). Note that there is a large
peak at the frequency corresponding to 1 cycle every
60 minutes. As one might imagine, the general ap-
pearance of the periodogram using the scaling (1.10)
(not shown) is similar to Figure 4. Most of us would
feel comfortable with this analysis even though we
made an arbitrary and ad hoc choice about the par-
ticular scaling. It is evident from the data (without
any scaling) that if the interest is in infant sleep cy-
cling, this particular sleep study indicates that an
infant cycles between active and quiet sleep at a
rate of about one cycle per hour.
The intuition used in the previous example is lost

when one considers a long DNA sequence. Briefly,
a DNA strand can be viewed as a long string of
linked nucleotides. Each nucleotide is composed of
a nitrogenous base, a five-carbon sugar, and a phos-
phate group. There are four different bases that can
be grouped by size: the pyrimidines, thymine �T�
and cytosine �C�, and the purines, adenine �A� and
guanine �G�. The nucleotides are linked together
by a backbone of alternating sugar and phosphate
groups with the 5′ carbon of one sugar linked to
the 3′ carbon of the next, giving the string direc-
tion. DNA molecules occur naturally as a double
helix composed of polynucleotide strands with the
bases facing inwards. The two strands are com-
plementary, so it is sufficient to represent a DNA
molecule by a sequence of bases on a single strand.
Thus, a strand of DNA can be represented as a se-
quence of letters, termed base pairs (bp), from the
finite alphabet �A� C� G� T�. The order of the nu-
cleotides contains the genetic information specific
to the organism. Expression of information stored
in these molecules is a complex multistage process.
One important task is to translate the informa-
tion stored in the protein-coding sequences (CDS)
of the DNA. A common problem in analyzing long
DNA sequence data is in identifying CDS that are
dispersed throughout the sequence and separated
by regions of noncoding (which makes up most of
the DNA). Table 2 shows part of the Epstein–Barr
virus (EBV) DNA sequence. The entire EBV DNA
sequence consists of approximately 172,000 bp.
One could try scaling according to the pyrimidine-

purine alphabet, that is, A = G = 0 and C = T = 1,
but this is not necessarily of interest for every CDS
of EBV. There are numerous possible alphabets of
interest; for example, one might focus on the strong–
weak hydrogen bonding alphabet C = G = 0 and
A = T = 1. While model calculations as well as ex-
perimental data strongly agree that some kind of pe-
riodic signal exists in certain DNA sequences, there
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Fig. 3. Time plot of the EEG sleep state data in Table 1 using the scaling in (1.9).

is a large disagreement about the exact type of pe-
riodicity. In addition, there is disagreement about
which nucleotide alphabets are involved in the sig-
nals (e.g., compare Ioshikhes, Bolshoy and Trifonov,
1992 with Satchwell, Drew and Travers, 1986); more
details are provided in the discussion in Section 7.

Fig. 4. Periodogram of the EEG sleep state data in Figure 1 based on the scaling in (1.9). The peak corresponds to a frequency of
approximately one cycle every 60 minutes.

If we consider the naive approach of arbitrarily
assigning numerical values (scales) to the categories
and then proceeding with a spectral analysis, the
result will depend on the particular assignment of
numerical values. For example, consider the artifi-
cial sequence ACGTACGTACGT � � � � Then, setting A =
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Table 2
Part of the Epstein-Barr virus DNA sequence (read across and down)

AGAATTCGTC TTGCTCTATT CACCCTTACT TTTCTTCTTG CCCGTTCTCT TTCTTAGTAT
GAATCCAGTA TGCCTGCCTG TAATTGTTGC GCCCTACCTC TTTTGGCTGG CGGCTATTGC
CGCCTCGTGT TTCACGGCCT CAGTTAGTAC CGTTGTGACC GCCACCGGCT TGGCCCTCTC
ACTTCTACTC TTGGCAGCAG TGGCCAGCTC ATATGCCGCT GCACAAAGGA AACTGCTGAC
ACCGGTGACA GTGCTTACTG CGGTTGTCAC TTGTGAGTAC ACACGCACCA TTTACAATGC
ATGATGTTCG TGAGATTGAT CTGTCTCTAA CAGTTCACTT CCTCTGCTTT TCTCCTCAGT
CTTTGCAATT TGCCTAACAT GGAGGATTGA GGACCCACCT TTTAATTCTC TTCTGTTTGC
ATTGCTGGCC GCAGCTGGCG GACTACAAGG CATTTACGGT TAGTGTGCCT CTGTTATGAA
ATGCAGGTTT GACTTCATAT GTATGCCTTG GCATGACGTC AACTTTACTT TTATTTCAGT
TCTGGTGATG CTTGTGCTCC TGATACTAGC GTACAGAAGG AGATGGCGCC GTTTGACTGT
TTGTGGCGGC ATCATGTTTT TGGCATGTGT ACTTGTCCTC ATCGTCGACG CTGTTTTGCA
GCTGAGTCCC CTCCTTGGAG CTGTAACTGT GGTTTCCATG ACGCTGCTGC TACTGGCTTT
CGTCCTCTGG CTCTCTTCGC CAGGGGGCCT AGGTACTCTT GGTGCAGCCC TTTTAACATT
GGCAGCAGGT AAGCCACACG TGTGACATTG CTTGCCTTTT TGCCACATGT TTTCTGGACA
CAGGACTAAC CATGCCATCT CTGATTATAG CTCTGGCACT GCTAGCGTCA CTGATTTTGG
GCACACTTAA CTTGACTACA ATGTTCCTTC TCATGCTCCT ATGGACACTT GGTAAGTTTT
CCCTTCCTTT AACTCATTAC TTGTTCTTTT GTAATCGCAG CTCTAACTTG GCATCTCTTT
TACAGTGGTT CTCCTGATTT GCTCTTCGTG CTCTTCATGT CCACTGAGCA AGATCCTTCT
GGCACGACTG TTCCTATATG CTCTCGCACT CTTGTTGCTA GCCTCCGCGC TAATCGCTGG
TGGCAGTATT TTGCAAACAA ACTTCAAGAG TTTAAGCAGC ACTGAATTTA TACCCAGTGA

G = 0 and C = T = 1 yields the numerical sequence
010101010101 � � � � or one cycle every two base pairs
(ω = 1/2). Another interesting scaling is A = 1�
C = 2� G = 3 and T = 4� which results in the se-
quence 123412341234 � � � � or one cycle every four
bp (ω = 1/4). In this example, both scalings, �A� C�
G� T� = �0� 1� 0� 1� and �A� C� G� T� = �1� 2� 3� 4��
of the nucleotides are interesting and bring out dif-
ferent properties of the sequence. It should be clear,
then, that one does not want to focus on only one
scaling. Instead, the focus should be on finding scal-
ings that bring out all of the interesting features
in the data. Rather than choose values arbitrarily,
the spectral envelope approach selects scales that
help emphasize any periodic feature that exists in
a categorical time series of virtually any length in a
quick and automated fashion. In addition, the tech-
nique can help in determining whether a sequence
is merely a random assignment of categories.

2. THE SPECTRAL ENVELOPE FOR
CATEGORICAL TIME SERIES

As a general description, the spectral envelope is
a frequency-based, principal components technique
applied to a multivariate time series. In this sec-
tion we will focus on the basic concept and its use
in the analysis of categorical time series. Technical
details can be found in Stoffer, Tyler and McDougall
(1993), and the relationship of the spectral envelope
to other established techniques will be discussed in
Section 7.
Briefly, in establishing the spectral envelope

for categorical time series, we addressed the ba-
sic question of how to efficiently discover periodic

components in categorical time series. This was ac-
complished via nonparametric spectral analysis as
follows. Let Xt, t = 0, ±1, ±2� � � � � be a categorical-
valued time series with finite state-space � = �c1,
c2� � � � � ck�. Assume that Xt is stationary and
pj = pr�Xt = cj� > 0 for j = 1�2� � � � � k. For
� = �β1, β2� � � � � βk�′ ∈ Rk, denote by Xt��� the
real-valued stationary time series corresponding
to the scaling that assigns the category cj the nu-
merical value βj, j = 1�2� � � � � k� Our goal was to
find scalings � so that the spectral density is in
some sense interesting and to summarize the spec-
tral information by what we called the spectral
envelope.
We chose � to maximize the power (variance)

at each frequency ω, across frequencies ω∈
�−1/2�1/2
, relative to the total power σ2���=
var�Xt����. That is, we chose ��ω�, at each ω of
interest, so that

λ�ω� = sup
β

{
f�ω���
σ2���

}
�(2.1)

over all � not proportional to 1k, the k × 1 vector
of ones. Note that λ�ω� is not defined if � = a1k
for a ∈ R because such a scaling corresponds to as-
signing each category the same value a; in this case
f�ω��� ≡ 0 and σ 2��� = 0. The optimality crite-
rion λ�ω� possesses the desirable property of being
invariant under location and scale changes of �.
As in most scaling problems for categorical data,

it was useful to represent the categories in terms of
the vectors e1, e2� � � �, ek, where ej represents the
k×1 vector with a one in the jth row and zeros else-
where. We then defined a k-dimensional stationary
time series Yt by Yt = ej when Xt = cj. The time
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seriesXt��� can be obtained from the Yt time series
by the relationship Xt��� = �′Yt. Assume that the
vector process Yt has a continuous spectral density
denoted by fY�ω�. For each ω, fY�ω� is, of course, a
k × k complex-valued Hermitian matrix. Note that
the relationship Xt��� = �′Yt implies that fY�ω;
�� = �′fY�ω�� = �′fre

Y�ω��, where fre
Y�ω� denotes

the real part of fY�ω�. The optimality criterion can
thus be expressed as

λ�ω� = sup
β

{
�′fre

Y�ω��
�′V�

}
�(2.2)

where V is the variance-covariance matrix of Yt�
The resulting scaling ��ω� is called the optimal
scaling.
The Yt process is a multivariate point process,

and any particular component of Yt is the individ-
ual point process for the corresponding state (for ex-
ample, the first component of Yt indicates whether
or not the process is in state c1 at time t�. For any
fixed t, Yt represents a single observation from a
simple multinomial sampling scheme. It readily fol-
lows that V = D−pp′, where p = �p1� � � � � pk�′, and
D is the k×k diagonal matrixD = diag�p1� � � � � pk�.
Since, by assumption, pj > 0 for j = 1, 2� � � � � k, it
follows that rank�V� = k− 1 with the null space of
V being spanned by 1k. For any k×�k−1� full rank
matrix Q whose columns are linearly independent
of 1k, Q′VQ is a �k − 1� × �k − 1� positive definite
symmetric matrix.
With the matrix Q as previously defined, and for

−1/2 < ω ≤ 1/2, define λ�ω� to be the largest eigen-
value of the determinantal equation∣∣Q′fre

Y�ω�Q− λQ′VQ
∣∣ = 0�

and let b�ω� ∈ Rk−1 be any corresponding eigenvec-
tor; that is,

Q′fre
Y�ω�Qb�ω� = λ�ω�Q′VQb�ω��

The eigenvalue λ�ω� ≥ 0 does not depend on the
choice of Q. Although the eigenvector b�ω� depends
on the particular choice of Q, the equivalence class
of scalings associated with ��ω� = Qb�ω� does not
depend on Q. A convenient choice of Q is Q =
�Ik−1 �0
′, where Ik−1 is the �k − 1� × �k − 1� iden-
tity matrix and 0 is the �k − 1� × 1 vector of zeros.
For this choice, Q′fre

Y�ω�Q and Q′VQ are the upper
�k−1�×�k−1� blocks of fre

Y�ω� and V, respectively.
This choice corresponds to setting the last compo-
nent of ��ω� to zero.
The value λ�ω� itself has a useful interpretation;

specifically, λ�ω�dω represents the largest propor-
tion of the total power that can be attributed to the
frequencies ωdω for any particular scaled process
Xt���, with the maximum being achieved by the
scaling ��ω�. Because of its central role, λ�ω� was

defined to be the spectral envelope of a stationary
categorical time series.
The name “spectral envelope” is appropriate since

λ�ω� envelopes the standardized spectrum of any
scaled process. That is, given any � normalized so
thatXt��� has total power one, f�ω��� ≤ λ�ω� with
equality if and only if � is proportional to ��ω��
Although the law of the process Xt��� for any

one-to-one scaling � completely determines the law
of the categorical process Xt, information is lost
when one restricts attention to the spectrum of
Xt���. Less information is lost when one consid-
ers the spectrum of Yt. Dealing directly with the
spectral density fY�ω� itself is somewhat cumber-
some since it is a function into the set of complex
Hermitian matrices. Alternatively, one can view the
spectral envelope as an easily understood, parsi-
monious tool for exploring the periodic nature of
a categorical time series with a minimal loss of
information.
If we observe a finite realization of the station-

ary categorical time series Xt, or equivalently, the
multinomial point process Yt, t = 1� � � � � n, the the-
ory for estimating the spectral density of a multi-
variate, real-valued time series is well established
(as discussed briefly in Section 1.1) and can be ap-
plied to estimating fY�ω�, the spectral density of Yt.
Given an estimate f̂Y�ω� of fY�ω�, estimates λ̂�ω�
and �̂�ω� of the spectral envelope, λ�ω�, and the
corresponding scalings, ��ω�, can then be obtained.
Details on estimation and inference for the sample
spectral envelope and the optimal scalings can be
found in Stoffer, Tyler and McDougall (1993), but
the main result of that paper is as follows: If f̂Y�ω�
is a consistent spectral estimator and if for each
j = 1� � � � � J� the largest root of fre

Y�ωj� is distinct,
then {

νn
[̂
λ�ωj� − λ�ωj�

]/
λ�ωj��

νn��̂�ωj� − ��ωj�
]� j = 1� � � � � J

}(2.3)

converges �n → ∞� jointly in distribution to inde-
pendent zero-mean normal distributions, the first of
which is standard normal; the covariance structure
of the asymptotic (normal) distribution of �̂�ωj� will
be discussed in Section 5. The term νn in (2.3) de-
pends on the type of estimator being used. For ex-
ample, in the case of weighted averaging (we put
m ≡ mn and take mn → ∞ but mn/n → 0 as
n → ∞), as in �1�5�, then ν−2n = �m

q=−m h2
q. If a sim-

ple average is used, that is, hq = 1/�2m + 1�, then
ν2n = �2m + 1�. Based on these results, asymptotic
normal confidence intervals and tests for λ�ω� can
be readily constructed. Similarly, for ��ω�, asymp-
totic confidence ellipsoids and chi-square tests can
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be constructed; details can be found in Stoffer, Tyler
and McDougall (1993, Theorems 3.1–3.3).
Peak searching for the smoothed spectral enve-

lope estimate can be aided using the following ap-
proximations. Using a first-order Taylor expansion,
we have

log λ̂�ω� ≈ log λ�ω� + λ̂�ω� − λ�ω�
λ�ω� �(2.4)

so that νn�log λ̂�ω� − log λ�ω�
 is approximately
standard normal. It also follows that E�log λ̂�ω�
 ≈
log λ�ω� and var�log λ̂�ω�
 ≈ ν−2n . If there is no sig-
nal present in a sequence of length n, we expect
λ�j/n� ≈ 2/n for 1 < j < n/2, and hence approxi-
mately �1 − α� × 100% of the time, log λ̂�ω� will be
less than log�2/n� + �zα/νn� where zα is the �1− α�
upper tail cutoff of the standard normal distribu-
tion. Exponentiating, the α critical value for λ̂�ω�
becomes �2/n� exp�zα/νn�. From our experience,
thresholding at very small values of α relative to
the sample size works well.
As a numerical example, we show how this tech-

nology can help detect heterogeneities and wrongly
assigned gene segments in DNA sequences. A step-
by-step approach for DNA sequences, using the nu-
cleotide alphabet, is as follows:

• Let Xt denote the DNA sequence of interest.
Holding the scale for T fixed at zero, form 3 × 1
vectors Yt,

Yt = �1�0�0�′ if Xt = A�
Yt = �0�1�0�′ if Xt = C�
Yt = �0�0�1�′ if Xt = G�
Yt = �0�0�0�′ if Xt = T�

The scaling vector is � = �β1� β2� β3�′, and the
scaled process is Xt��� = �′Yt.• Calculate the discrete Fourier transform (DFT)
of the data,

d�j/n� = n−1/2
n∑
t=1

Yt exp�−2πitj/n��

Most statistical packages provide a subroutine to
calculate the DFT of a time series using the fast
Fourier transform. Note that d�j/n� is a 3 × 1
complex-valued vector. Calculate the periodogram,
In�j/n� = d�j/n�d∗�j/n�, for j = 1� � � � � �n/2
, and
retain only the real part, say Iren �j/n��• Smooth the periodogram if desired, using (1.5)
or (1.6). For example, using (1.5) with m = 1 and

triangular weighting, one would calculate

f̂re�j/n� = 1
4
Iren

(
j− 1
n

)
+ 1

2
Iren

(
j

n

)
+ 1

4
Iren

(
j+ 1
n

)
�

• Calculate the 3× 3 sample variance-covariance
matrix, S = n−1�n

t=1�Yt − Y��Yt − Y�′, where Y is
the sample mean of the data.
• For each ωj = j/n, j = 1� � � � � �n/2
, determine

the largest eigenvalue and the corresponding eigen-
vector of the matrix

2n−1S−1/2f̂re�ωj�S−1/2�

Note that S1/2 is the unique square root matrix of S�
• The sample spectral envelope λ̂�ωj� is the

eigenvalue obtained in the previous step. If
b�ωj� denotes the eigenvector obtained in the
previous step, the optimal sample scaling is
�̂�ωj� = S−1/2b�ωj�; this will result in three val-
ues, the value corresponding to the fourth category
(T in this case) being held fixed at zero.

In this example, we focus on a dynamic (or
sliding-window) analysis of the gene labeled BNRF1
(bp 1736-5689) of Epstein–Barr. Figure 5 shows
the spectral envelope [using (1.5) with m = 5:
h0 = 6/36� h1 = 5/36� � � � � h5 = 1/36] of the en-
tire coding sequence (3954 bp). The figure shows a
strong signal at frequency 1/3; the corresponding
optimal scaling was A = 0�04� C = 0�71� G = 0�70�
T = 0, which indicates that the signal is in the
strong–weak bonding alphabet, S = �C� G� and
W = �A� T�.
Figure 6 shows the result of computing the spec-

tral envelope over four 1000 bp windows (the fourth
window is actually 954 bp long) across the CDS,
namely, the first, second, third, fourth quarters of
BNRF1. An approximate 0.001 significance thresh-
old is 0.69%. The first three quarters contain the
signal at the frequency 1/3 (Figure 7a–c); the corre-
sponding sample optimal scalings for the first three
windows were (a) A = 0�06� C = 0�69� G = 0�72�
T = 0; (b) A = 0�09� C = 0�70� G = 0�71� T = 0;
(c) A = 0�18� C = 0�59� G = 0�77� T = 0. The first two
windows are strongly consistent with the overall
analysis; the third section, however, shows some mi-
nor departure from the strong–weak bonding alpha-
bet. The most interesting outcome is that the fourth
window shows that no signal is present. This led to
the conjecture that the fourth quarter of BNRF1 of
Epstein–Barr was actually noncoding.
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Fig. 5. Smoothed sample spectral envelope of the BNRF1 gene from the Epstein–Barr virus.

Fig. 6. Smoothed sample spectral envelope of the BNRF1 gene from the Epstein–Barr virus (a) first section (1000 bp), (b) second section
(1000 bp), (c) third section (1000 bp), (d) fourth section (954 bp).



SPECTRAL ENVELOPE AND ITS APPLICATIONS 233

3. THE SPECTRAL ENVELOPE FOR
REAL-VALUED TIME SERIES

The concept of the spectral envelope presented
in the previous section was extended to real-valued
time series, �Xt� t = 0�±1�±2� � � � � � in McDougall,
Stoffer and Tyler (1997). The process Xt can be
vector-valued but here, we will concentrate on the
univariate case. Further details can be found in Mc-
Dougall, Stoffer and Tyler (1997). The technique is
similar to projection pursuit (Friedman and Stuet-
zle, 1981). Let � denote a k-dimensional vector
space of continuous real-valued transformations
with �g1� � � � � gk� being a set of basis functions
satisfying E�gi�Xt�
 = 0 and E�gi�Xt�2
 < ∞,
i = 1� � � � � k� Analogous to the categorical time se-
ries case, define the scaled time series with respect
to the set � � to be the real-valued process

Xt��� = �′Yt = β1g1�Xt� + · · · + βkgk�Xt�
obtained from the vector process

Yt =
(
g1�Xt�� � � � � gk�Xt�

)′
�

where � = �β1� � � � � βk�′ ∈ Rk. If the vector process,
Yt, is assumed to have a continuous spectral den-
sity, say fY�ω�, then Xt��� will have a continu-
ous spectral density fX�ω; �� for all � �= 0. Not-
ing that fX�ω; �� = �′fY�ω�� = �′fre

Y�ω��, and
σ2��� = var�Xt���
 = �′V�, where V = var�Yt� is
assumed to be positive definite, the optimality cri-
terion,

λ�ω� = sup
��=0

{
�′fre

Y�ω��
�′V�

}
�(3.1)

is well defined and represents the largest proportion
of the total power that can be attributed to the fre-
quency ω for any particular scaled process Xt����
This interpretation of λ�ω� is consistent with the
notion of the spectral envelope introduced in the
previous section and provides the following work-
ing definition: The spectral envelope of a time series
with respect to the space � is defined to be λ�ω�� for
−1/2 ≤ ω ≤ 1/2�
As in the categorical case, λ�ω� = λ�−ω� so it is

suffices to consider λ�ω� for 0 ≤ ω ≤ 1/2� Similarly,
the solution to this problem, as in the categorical
case, is attained by finding the largest scalar λ�ω�
such that

fre
Y�ω���ω� = λ�ω�V��ω�(3.2)

for ��ω� �= 0. That is, λ�ω� is the largest eigenvalue
of fre

Y�ω� in the metric ofV, and the optimal scaling,
��ω�� is the corresponding eigenvector.
If Xt is a categorical time series taking values

in the finite state-space � = �c1� c2� � � � � ck�, where

cj represents a particular category, then an appro-
priate choice for � is the set of indicator functions
gj�Xt� = I�Xt = cj�. Hence, this is a natural gen-
eralization of the categorical case. Note that in the
categorical case, � does not consist of linearly inde-
pendent g’s, but it was easy to overcome this prob-
lem by reducing the dimension by one. In the vector-
valued case, Xt = �X1t� � � � �Xpt�′, we consider � to
be the class of transformations from Rp to R such
that the spectral density of g�Xt� exists. One class
of transformations of interest are linear combina-
tions of Xt. In Tiao, Tsay and Wong (1993), for ex-
ample, linear transformations of this type are used
in a time domain approach to investigate contem-
poraneous relationships among the components of
multivariate time series. We will also discuss an in-
teresting application of this in Section 5. Estimation
and inference for the real-valued case are analogous
to methods described in the previous section for the
categorical case.
We focus on two examples here; numerous other

examples can be found in McDougall, Stoffer and
Tyler (1997). First, a relevant situation may be
when Xt is the residual process obtained from
some modeling procedure. If the fitted model is
appropriate then the residuals should exhibit prop-
erties similar to an iid sequence. Departures of the
data from the fitted model may suggest model mis-
specification, non-Gaussian data, or the existence
of a nonlinear structure, and the spectral envelope
would provide a simple diagnostic tool to aid in a
residual analysis. The following is an example.
The series considered here is the quarterly US

real GNP from the first quarter of 1947 to the first
quarter of 1991. Tiao and Tsay (1994) analyzed
this seasonally adjusted time series by focusing on
growth rate, that is, Zt = log�GNPt/GNPt−1�, and
n = 176. Analysis of the ACF (autocorrelation func-
tion) and PACF (partial autocorrelation function) of
Zt suggested initially that an MA(2) or an AR(3)
model would fit the data. Both models were fit to
the data and were found to be similar; that is, the
infinite AR representation of the fitted MA(2) model
was nearly the fitted AR(3) model, and all parame-
ter estimates were significant. Henceforth, we focus
on the results from the MA(2) fit. The residuals
from this fit are plotted in Figure 7. As Tiao and
Tsay (1994) found, the residuals from the model fit
appear to be uncorrelated; there appears to be one
or two outliers but their magnitudes are not that
extreme. The usual residual analyses showed no
obvious structure among the residuals.
Although the MA(2) [or AR(3)] model appears to

be appropriate, Tiao and Tsay (1994) investigated
the possibility of nonlinearities in GNP growth rate.
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Fig. 7. Residuals from an MA(2) fit to the US GNP growth rate data.

Their overall conclusion was that there is (subtle)
nonlinear behavior in the data, attributable to the
fact that the process behaves differently during ex-
pansion periods than during recession periods.
The spectral envelope, used as a diagnostic tool

on the residuals, clearly indicates that the MA(2) [or
AR(3)] model is not adequate and that further anal-
ysis is warranted. Here, the generating set � = �x,
�x�, x2� was used to get a [smoothed using m =
10 and triangular weighting, h0 = 11/121� h1 =
10/121� � � � � h10 = 1/121 in (1.5)] spectral envelope
for the residuals from the MA(2) fit, and the result
is plotted in Figure 8. It is clear that the residuals
are not iid, and that there is considerable power at
the low frequencies. The presence of spectral power
at very low frequencies in detrended economic se-
ries has been frequently reported and is typically
associated with long range dependence. In fact, our
choice of � was partly influenced by the work of
Ding, Granger and Engle (1993) who applied trans-
formations of the form �Xt�d, for d ∈ �0�3
, to the
S&P 500 stock market series. The estimated opti-
mal transformation at the first nonzero frequency,
ω = 0�006 was �̂�0�006� = �1�20�−2916�′, which
leads to the transformation

y = x+ 20�x� − 2916x2�(3.3)

This transformation is plotted in Figure 9. The
transformation, (3.3), is basically the absolute
value (with some slight curvature and asymme-
try) for most of the residual values, but note that

the effect of extreme-valued residuals (outliers) is
dampened.
In a second example, we consider a contrived data

set where we know the optimal transformation, say
g0, and we determine whether or not the technol-
ogy can find the transformation when g0 is not in
� . The data, Xt, are generated by the nonlinear
model

Xt = exp
{
3 sin�2πtω0� + εt

}
�

t = 1� � � � �512�
(3.4)

where ω0 = 51/512 and εt is white Gaussian noise
with a variance of 16. This example is adapted from
Breiman and Friedman (1985) where the ACE algo-
rithm is introduced. The optimal transformation in
this case is g0�Xt� = ln�Xt� wherein the data are
generated from a sinusoid plus noise as in (1.4). Of
the 512 generated data, about 98% were less than
4000. Occasionally, the data values were extremely
large (the data exceeded 100,000 about four times).
The periodogram, in decibels (10 log10 I�ωj�), of the
standardized and tapered data is shown in Fig-
ure 10 and provides no evidence of any dominant
frequency, including ω0. (The data were tapered by
a cosine bell. That is, prior to analysis, the data
Xt are replaced by ctXt, for t = 1� � � � � n, where
ct = 1

2�1+ cos�2π��t− t̄�/n���, and t̄ = �n+ 1�/2.)
In contrast, the sample spectral envelope (Fig-

ure 11) computed with respect to � = �x�√x� 3
√
x�

has no difficulty in isolating ω0. Based on Stoffer,
Tyler and McDougall (1993, Theorem 3.2), an ap-
proximate 0.0001 null significance threshold for the
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Fig. 8. Spectral envelope with respect to � = �x� �x�� x2� of the residuals from an MA(2) fit to the US GNP growth rate data.

spectral envelope is 4.84% (the null hypothesis be-
ing that Xt is iid).
Figure 11 compares the estimated optimal trans-

formation with respect to � with the log transfor-
mation for values less than 4000. The estimated
transformation at ω0 is given by

y = −0�6+ 0�0003x− 0�3638
√
x+ 1�9304 3

√
x�(3.5)

Fig. 9. Estimated optimal transformation, (3.3), for the GNP residuals at ω = 0�006�

that is, �̂�ω0� = �0�0003�−0�3638�1�9304�′ after
rescaling so that (3.5) can be compared directly to
y = ln�x�.
Finally, it is worth mentioning the result obtained

when the rather inappropriate basis, �x� x2� x3�,
was used. Surprisingly, the spectral envelope in this
case (Figure 13) looks similar to that of Figure 11.
Also, the resulting estimated optimal transforma-
tion at ω0 is very close to the log transformation.
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Fig. 10. Periodogram, in decibels, of the data generated from (3.4) after tapering by a cosine bell.

In fact, as seen in Figure 12, it looks like what
one would imagine as a linear approximation to
y = ln�x� within the range of most of the data.

4. DETECTING COMMON SIGNALS IN
MULTIPLE TIME SERIES

Frequently, p > 1 time series �Yjt, t = 1� � � � � nj�
for j = 1� � � � � p� are collected with the primary in-

Fig. 11. Spectral envelope with respect to � = �x�√x� 3√x� of data generated from (3.4).

terest being whether any, and how many, have com-
mon cyclic components. The series need not be in
phase and the sample lengths, nj, need not be the
same, but are of the same magnitude. In this case,
a common sample length, n, that is highly compos-
ite is chosen and the data are padded or shortened
accordingly. There are various methods to solve this
type of problem (see MacNeill, 1977, for example),
but here we look at an approach based on the spec-
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Fig. 12. Log transformation, y = ln�x� (solid line), the estimated optimal transformation at ω0 as given in (3.5) (dashed line), and the
estimated optimal transformation at ω0 using the inappropriate basis �x� x2� x3� (short-dashed line).

tral envelope that is developed more thoroughly in
Stoffer (1999). Consider the basic model

Yjt = µj + cjSt−τj + εjt(4.1)

where µj is the mean level of the jth series, St is a
zero mean, unit variance, random signal with spec-
trum fS�ω�, cj is the amplitude (which may be zero)

Fig. 13. Spectral envelope with respect to � = �x� x2� x3� of data generated from (3.4).

corresponding to the jth series and the εjt are in-
dependent white noise processes with variance σ2

j

and independent of St. As described in Section 2,
the spectral envelope, λ�ω�, is a frequency depen-
dent investigation in that its optimality criterion
focuses on individual frequencies. That is, if λ�ω0�
is the spectral envelope at frequency ω0, then the
corresponding optimal scaling, ��ω0�, is optimal at
ω0, but not necessarily anywhere else. Hence, al-
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though the model (4.1) can be extended to the case
of more than one signal as in (6.22), we can con-
centrate on the case of one signal with little loss of
generality.
Denote the individual DFTs by dYj

�ω� for j =
1� � � � � p; they are evaluated over ω in the set of
positive fundamental frequencies �ω = 1/n; 1 =
1�2� � � � � ��n − 1�/2
�� In terms of the model (4.1),
these can be written as

dYj
�ω� = aj dS�ω� + dεj�ω�(4.2)

where dS�ω� and dεj�ω� represent the transforms
of the signal and of the noise, respectively, and aj =
cj exp�−2πiτjω�.
Let Yt = �Y1t� � � � �Ypt�′ be the vector of obser-

vations, and let dY�ω� denote the p × 1 vector
of transforms with jth component dYj

�ω�. If
component j does not contain the signal, then
aj = 0, and we arrange the vectors so that for
0 ≤ q ≤ p, aq+1 = · · · = ap = 0, and none of the
�a1� � � � � aq� are zero. Then, the model (4.2) can be
written as

dY�ω� = adS�ω� + dε�ω��(4.3)
where a is the p×1 complex vector a = �a1� � � � � aq�
0� � � � �0�′, and dε�ω� is the p×1 vector of transforms
with jth component dεj�ω�.
Let fY�ω� be the p×p spectral matrix of Yt. Then,

we have the following decomposition:

fY�ω� = afS�ω�a∗ + fε�ω��(4.4)

where afS�ω�a∗ is a Hermitian block diagonal ma-
trix, and fε�ω� = diag�σ2

1 � � � � � σ
2
p�.

Rather than work with the original series, we
prefer to work with the standardized series, Zt =
V−1/2Yt, where V = diag�σ2

Y1
� � � � � σ2

Yp
�; note that

the diagonal elements of V get contributions from
both the signal (if present) and the noise, that is,
σ2
Yj

= c2j + σ2
j where cj could be zero. Writing (4.4)

in terms of the standardized processes, Zt, we have
fZ�ω� = a�ω�a∗�ω� +D�ω��(4.5)

note that (4.5) is a type of complex factor analytic
representation for fZ�ω� = V−1/2fY�ω�V−1/2. That
is, fZ�ω� is the sum of a rank 1, nonnegative def-
inite Hermitian matrix, a�ω�a∗�ω�, and a diago-
nal positive definite matrix, D�ω�, where a�ω� is a
p× 1 complex-valued vector such that a�ω�a∗�ω� =
V−1/2afS�ω�a∗V−1/2 and the final p − q elements
of a�ω� are zero. In addition, we are restricting at-
tention to case where D�ω� = V−1/2fε�ω�V−1/2 is
constant over ω, that is, D�ω� ≡ diag�σ2

1/σ
2
Y1
� � � � �

σ2
p/σ

2
Yp

�. The value q corresponds to the number
of elements that contain the signal. Since fS�ω� is
real, if the series are in phase, that is, τ1 = · · · =
τq = 0, then fZ�ω� will also be real.

Let � �= 0 be a complex-valued p×1 vector of scal-
ings and consider the standardized, scaled complex
series, Xt��� = �∗Zt. We may now write

fX�ω��� = �∗fZ�ω���(4.6)

where fX�ω��� is the spectral density of Xt���. If
we believe that the series are in phase (τ1 = · · · =
τq = 0), then there is no particular advantage to
considering complex-valued scales and we would re-
strict � to be a vector of real scalings. For generality
we focus on the complex case, the real case follows
as in Sections 2 and 3.
Our goal is to find �, at each ω, to maximize (4.6),

subject to the constraint �∗� = 1. We will denote
the solution by ��ω�. Setting b = V−1/2� leads to
the optimality criterion

λ�ω� = sup
b �=0

{
b∗fY�ω�b
b∗Vb

}
�(4.7)

The function λ�ω� is the spectral envelope because
fX�ω��� ≤ λ�ω�, for any scaling �, with equality
when � = ��ω�. The corresponding scaling ��ω� is
the optimal scaling. The idea in employing (4.7) is
that the right (complex) linear combination of the
p series, namely Xt���ω��, will enhance the signal
and dampen the noise. Note that the role of � in
this section is slightly different than in the previ-
ous section because we are working with the stan-
dardized series. If V = diag�σ2

Y1
� � � � � σ2

Yp
� in (4.7)

was replaced by VY = var�Y�t��, then b in (4.7) is
� of (2.2). The reason that V is preferred to VY in
this problem is that using V leads to the simple de-
composition of (4.5). In addition, simulation studies
showed that using V was superior to VY in identi-
fying signals.
The solution to (4.7) is obtained by finding, at

each Fourier frequency ω, the largest eigenvalue,
λ�ω�, and corresponding eigenvector, ��ω�, of the
matrix fZ�ω� = V−1/2fY�ω�V−1/2� which, as we
previously stated, is the sum of the block diagonal
matrix (with nonzero values only in the upper q×q
portion) a�ω�a∗�ω� = V−1/2afS�ω�a∗V−1/2 and the
diagonal real matrix D�ω� = V−1/2fε�ω�V−1/2 that
is constant with respect to ω. From this it is seen
that if there is a harmonic component near ω in q
of the p series, then λ�ω� will be “large” and the
final p − q components of ��ω� will be zero. In re-
gions where there is no harmonic component, fS�ω�
will be negligible so that λ�ω� will be flat and the
final p − q components of ��ω� will not be zero; in
fact, the modulus of those p−q elements may dom-
inate the first q elements if the signal amplitudes
are large. These facts will lead to reasonable conclu-
sions about the nature of the signal and the number
of elements q that contain the signal. We have also
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found that it is worthwhile to look at the unstan-
dardized results, that is, replace V with the iden-
tity matrix in (4.7); this aids in the identification
of interesting frequencies. Estimation of the spec-
tral envelope and optimal scalings is accomplished
using the techniques of Section 2.
This idea can be extended to the case where some

series contain signals that may be only approxi-
mately the same. Details are provided in Stoffer
(1999), but briefly, to accomplish this, frequency is
modeled as a random effect. We motivate the ideas
with the following example.
Suppose that the time series of interest Yj�t� fol-

low the model
Yj�t� = µj + cjSj�t� + εj�t��

j = 1� � � � � p�
(4.8)

where µj is the level of the jth series, and εj�t� are
independent white noise processes with variance σ2

j

that are independent of the signals. The amplitude
of the jth signal is cj (which may be zero), where
the random signals are given by

Sj�t� = cos
(
2π�ω0 + δj
t+ 2πτj

)
�(4.9)

In (4.9), τj is a fixed phase, ω0 is the common fre-
quency, and δj for j = 1� � � � � p are independent
random uniform perturbations, with δj ∼ U�−4�4�,
and 4 ≥ 0 is some small amount.
In this model, the frequency corresponding to

each time series is a random effect so that the se-
ries are allowed to be only approximately the same.
In addition, it is not necessary for ω0 to be a Fourier
frequency. The expected behavior of the signal is

E�Sj�t��

= 1
24

∫ 4

−4
cos

{
2π�ω0 + δ�t+ 2πτj

}
dδ

= cos
(
2π�ω0t+ τj


)
sinc�2π4t�

(4.10)

using the definition sinc�u� ≡ sin�u�/u, u �= 0 and
sinc�0� ≡ 1. As general statement, (4.10) implies
that the particular signals given in (4.9), satisfy the
general property that

E
{
Sj�t�

} = S0�t− τj�κ�4t�(4.11)

where S0�t − τj� is a fixed harmonic signal (with
arbitrary phase) that oscillates at frequency ω0, and
κ�4t� is a taper that is controlled by 4; the larger
the value of 4 the more dramatic the taper, and
when 4 = 0 the taper has no effect.
If we now consider the DFTs of the data, then we

can write the model (4.8) as
dYj

�ω� = ajdSj
�ω� + dεj�ω��

j = 1� � � � � p�
(4.12)

where aj = cj exp�−2πiτjω�, dSj
�ω� is the DFT

of the individual random signal term cos�2π�ω0 +

δj
t�, and dεj�ω� is the DFT of the individual noise
terms. Note that (4.12) is similar, but not equiva-
lent, to (4.2).
To investigate (4.12), it is easier to work with the

complex version of the signal; that is, let
Sj�t� = exp

{
2πi�ω0 + δj�t

}
�

Then, as in (4.10),

E
{
dSj

�ω�} = n−1/2
n∑
t=1

exp
{−2πi�ω−ω0�t

}
× sinc�2π4t��

(4.13)

which is the tapered (by the sinc kernel) transform
of exp�2πiω0t�. The modulus of E�dSj

�ω�� will be
extremely close to the modulus of the finite trans-
form of exp�iω0t� provided that 4 is not too large
relative to n.
The individual series, Yj�t�, are coherent with

each other when their respective signal amplitudes
are not zero. If in (4.12), ajak = 0 for any pair
j� k = 1� � � � � p, then

E
{
dYj

�ω�d∗
Yk

�ω�} = σ2
j I�0��j− k��(4.14)

where σ2
j is the variance of εj�t� and IA�·� is the

indicator of the set A. If �ajak� > 0 when j �= k,
then

E
{
dYj

�ω�d∗
Yk

�ω�}
= ajakE

{
dSj

�ω�}E{d∗
Sk
�ω�}(4.15)

where E�dSj
�ω�� was given in (4.13), and when

j = k,
E
{�dYj

�ω��2} = �aj�2 E
{�dSj

�ω��2}+ σ2
j�(4.16)

where

E
{�dSj

�ω��2} = ∑
�h�<n

(
1− �h�

n

)
exp

{−2πi�ω−ω0�h
}

× sinc�2π4h��
A key point made in this example is that, even in

the situation of (4.8) and (4.9), we may carry out an
analysis using the spectral envelope. That is, rather
than focus on the p individual transforms, we can
use the interrelationships inherent in the model to
help identify ω0. To do this, we make use of the
cross-spectra among the p time series Yj�t� for j =
1� � � � � p. This enhances the analysis because if a
particular series contains the harmonic component
of interest but with a low amplitude or a lot of noise,
an individual analysis may miss this fact, but this
particular series may match well with other series
containing the harmonic. This particular effect will
be seen in the example in Section 6.
As a general model we take the form of (4.8);

that is,
Yj�t� = µj + cjSj�t� + εj�t��

j = 1� � � � � p�
(4.17)
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but where the signals Sj�t� belong to the general
class signals given by

E�Sj�t�� = S0�t− τj�κ�4t��(4.18)

where S0�t� is a fixed harmonic signal that oscil-
lates at frequency ω0, and κ�4t� is a taper that does
not annihilate S0�t�. Of course we may extend (4.17)
to the case of more than one signal in an obvious
way.
As in the previous example, (4.12), the model can

be written in terms of the DFTs
dYj

�ω� = ajdSj
�ω� + dεj�ω��

j = 1� � � � � p�
(4.19)

where aj = cj exp�−2πiτjω�, dSj
�ω� is the DFT

of the individual random signal term, and dεj�ω� is
the DFT of the individual noise terms. In particular,
dSj

�ω� is the DFT of S0�t�κ�4t�.
Let Y�t� = �Y1�t�� � � � �Yp�t��′ and let dY�ω� de-

note the p× 1 vector of finite transforms with j-th
component dYj

�ω�. As in Section 1, arrange the vec-
tor so that for 0 ≤ q ≤ p, aq+1 = · · · = ap = 0, and
none of the �a1� � � � � aq� are zero. Then the model
(4.19) can be written as

dY�ω� = AdS�ω� + dε�ω��(4.20)

where A is the p×p complex diagonal matrix A =
diag�a1� � � � � aq�0� � � � �0�, and dS�ω� and dε�ω� are
the p× 1 vectors of transforms with jth component
dSj

�ω� and dεj�ω�, respectively.
Let fY�ω� = E�dY�ω�d∗

Y�ω�� be the p×p complex
matrix with elements given by the values in (4.14)–
(4.16), with sinc�2π4t� replaced by the general form
κ�4t�. In an obvious way, based on (4.20), decompose
the elements of fY�ω� as

fY�ω� = AfS�ω�A∗ + fε�ω��(4.21)

where AfS�ω�A∗ is a Hermitian block diagonal ma-
trix and fε�ω� = diag�σ2

1 � � � � � σ
2
p�. This situation

is somewhat different than (4.4); however, (4.21) is
a type of complex factor analytic representation for
fY�ω�; that is, fY�ω� is the sum of a rank r ≤ q ≤ p
nonnegative definite matrix AfS�ω�A∗ and a posi-
tive definite diagonal matrix fε�ω�. The elements
of the matrix fS�ω� depend on n, κ, 4 and ω0. In
particular, if S0�t� = cos�2πω0t�, then from (4.13),
(4.15) and (4.16), the off-diagonal elements of fS�ω�
are of the form (for ease we use the complex version
of the signal)

fS�jk�ω�

= n−1
∣∣∣∣ n∑
t=1

exp
{−2πi�ω−ω0�t

}
κ�4t�

∣∣∣∣2�
j �= k = 1� � � � � p�

(4.22)

while the diagonal elements are

fS�jj�ω� =
∑

�h�<n

(
1− �h�

n

)
× exp

{−2πi�ω−ω0�h
}
κ�4h��

j = 1� � � � � p�

(4.23)

For ω far from ω0, fS�ω� is approximately the zero
matrix (recall that we do not assume that ω0 is a
Fourier frequency) because its elements are convo-
luted Dirichlet kernels evaluated away from zero.
The situation in (4.1)–(4.5) can be thought of as the
case where 4 = 0, in which case all of the elements
of fS�ω� are the same implying that fS�ω� is rank
one.
Again, our preference is to work with the stan-

dardized series Z�t�=V−1/2Y�t�. Thus with fZ�ω�=
V−1/2fY�ω�V−1/2, we put

B�ω�B∗�ω� = AV−1/2fY�ω�V−1/2A∗(4.24)

and
D�ω� = V−1/2fε�ω�V−1/2

= diag
{
σ2
1/σ

2
Y1
� � � � � σ2

p/σ
2
Yp

}(4.25)

and write the model as

fZ�ω� = B�ω�B∗�ω� +D�ω��(4.26)

noting that B�ω� is a p × q matrix such that all of
the elements in the final p − q rows of B�ω� are
zero.
Estimation of the spectral envelope and opti-

mal scalings is accomplished in the usual way so
that cross-spectra can be estimated. We note that
smoothing techniques to estimate the spectral enve-
lope is reasonable even near ω0 because one expects
the spectra to be spread out around this frequency
as seen in (4.22) and (4.23).
For an example, we discuss part of an analysis

that was performed in Stoffer (1999). The analysis
focuses on a study that used functional magnetic
resonance imaging (fMRI) to examine pain percep-
tion in humans (Antognini, Buonocore, Disbrow
and Carstens, 1998). Two types of stimuli were pre-
sented to awake subjects: electric shock (15 mA,
2 Hz) and nonpainful brush. The effects of gen-
eral anesthesia on pain perception were evaluated
by comparing results from alert volunteers with
those from the same volunteers while anesthetized
and paralyzed with 0.15 mg/kg Vecuronium. Data
were collected under two anesthetic conditions,
0.7% (low), and 1.3% (high) Isoflurane. During
the anesthetized conditions a supramaximal shock
(50 mA, 100 Hz) stimulus was added. This stimu-
lus was used to simulate surgical incision without
inflicting tissue damage. The stimulus conditions
were: [1] Awake-brush (5 subjects), [2] Awake-shock



SPECTRAL ENVELOPE AND ITS APPLICATIONS 241

(5 subjects), [3] Low-brush (3 subjects), [4] Low-
supramaximal shock (4 subjects), [5] High-brush
(4 subjects), and [6] High-supramaximal shock (5
subjects). The specific locations of the brain where
the signal was measured were [L1] Cortex: Pri-
mary somatosensory, contralateral; [L2] Cortex:
Primary somatosensory, ipsilateral; [L3] Cortex:
Secondary somatosensory, contralateral; [L4] Cor-
tex: secondary somatosensory, ipsilateral; [L5]
Caudate; [L6] Thalamus: contralateral; [L7] Tha-
lamus: ipsilateral; [L8] Cerebellum: contralateral;
[L9] Cerebellum: ipsilateral.
The data consist of consecutive measures of blood

oxygenation level dependent (BOLD) signal inten-
sity; for details, see Ogawa, Lee, Nayak and Glynn
(1990) and Ogawa and Lee (1990). Areas of acti-
vation were analyzed over time at the level of the
voxel, or three dimensional pixel; the voxel with the
highest activation was chosen from each brain loca-
tion. The sampling rate was one observation every
two seconds for 256 seconds (n = 128). Each stim-
ulus was applied for 32 seconds and then stopped
for 32 seconds; thus, the signal period is 64 sec-
onds. For this analysis, we averaged over subjects
in each stimulus condition (these were evoked re-
sponses and all subjects were in phase) producing
data, Yjt, for each stimulus condition [1]–[6]. Thus,
for a given stimulus condition, Yjt represents the
average BOLD signal intensity at location j, for
j = 1� � � � �9� at time point t, for t = 1� � � � �128�
The types of data encountered in this experiment

are quite varied. For example, Figure 14 shows the
nine time series, one for each location, of the stimu-
lus condition Awake-brush. It is clear from the data,
in this case, that most locations received the brush
signal of approximately four cycles in 128 points.
Figure 15, however, for the stimulus condition High-
brush, is quite different than Figure 14, and it is
not clear whether or not any location received any
signal.
If we focus on real scales, then the results of Sec-

tion 2 [in particular (2.3) with details found in Theo-
rem 3.3 of Stoffer, Tyler and McDougall, 1993] apply.
If the focus is on complex scales, then the first part
of (2.3) remains valid, but �̂�ω� will have a com-
plex multivariate normal distribution. In the anal-
yses that we present here, we focus on the complex
scaling case; the case of real-valued scalings gives
approximately the same results and leads to the
same conclusions about the nature of pain percep-
tion. In this analysis we have n = 128, m = 2 with
weights �h0 = 3/9� h±1 = 2/9� h±2 = 1/9�, so that
νn = √

81/19 = 2�065, and using (2.4), the approx-
imate 0�001 critical threshold for this example is
exp�3�09/2�065�/64 = 7%. Inference about the opti-

Table 3
Scalings for the brush stimulus under conditions awake and

high anesthesia

Awake-brush High-brush

Location
∣∣∣�̂( 4

128

)∣∣∣ ∣∣∣�̂( 4
128

)∣∣∣
L1 0.46 0.50
L2 0.40 0.28
L3 0.45 0.48
L4 0.40 0.43
L5 0.08* 0.34
L6 0.28 0.24
L7 0.15 0.16
L8 0.09* 0.14*
L9 0.39 0.18

*The value of zero is in an approximate 99% confidence region
for this component.

mal (complex) scaling vector can be performed using
Brillinger (1975, Theorems 9.4.3 and 9.4.4) wherein
the asymptotic (n�m → ∞) covariance matrix of the
sample optimal scaling, �̂�ω�, say �β�ω�, is given by

�β�ω� = ν−2n λ1�ω�
p∑
1=2

λ1�ω� �λ1�ω� − λ1�ω��−2

× �1�ω��∗
1�ω��

where �λ1�ω� = λ�ω�� λ2�ω�� � � � � λp�ω�� are the la-
tent roots of V−1fY�ω� arranged in decreasing or-
der, and ��1�ω� = ��ω�� �2�ω�� � � � ��p�ω�� are the
corresponding latent vectors.
We may use this result to form confidence regions

for the components, �̂1� j�ω�, j = 1� � � � � p� of the
optimal scaling vector by approximating the distri-
bution of

2
∣∣�̂1� j�ω� − �1� j�ω�

∣∣2
s2j�ω�

(4.27)

by a χ2 distribution with 2 degrees of freedom. In
(4.27), s2j�ω� is the jth diagonal element of �̂β�ω�,
the estimate of �β�ω�. We can use (4.27) to check
whether or not the value of zero is in the confidence
region by comparing 2�̂�1� j�ω��2/s2j�ω� with χ2

2�1 −
α�, the 1−α upper tail cutoff of the χ2

2 distribution.
First we describe the analysis of the stimulus

condition Awake-brush. We consider 7% to be an
approximate significance threshold for the sample
spectral envelope. Figure 16 shows the sample spec-
tral envelope for the Awake-brush condition. There
is a clear peak in the sample spectral envelope,
λ̂�4/128� = 34%, corresponding to frequency of ω =
4 cycles/128 points, or 4/256 Hz, which corresponds
to the stimulation period of 64 seconds. The mag-
nitudes of the optimal sample scalings for Awake-
brush at this frequency are listed in Table 3. In addi-
tion, Table 3 indicates whether an approximate 99%
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Fig. 14. The BOLD signal intensities at all nine locations for the stimulus condition Awake-brush.

Fig. 15. The BOLD signal intensities at all nine locations for the stimulus condition High-brush.

confidence region of an element of the sample opti-
mal scaling includes zero; these regions are based on
(4.27). Table 3 indicates that locations L5 (caudate)

and L8 (cerebellum: contralateral) are probably not
receiving the signal.
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Fig. 16. The sample spectral envelope, λ̂�ω�� for the Awake-brush stimulus condition. The peak in the spectral envelope occurs at the
frequency ω = 4/128.

Fig. 17. The sample spectral envelope, λ̂�ω�� for the High-brush stimulus condition. The peak in the spectral envelope occurs at the
frequency ω = 4/128.

Figure 17 refers to the stimulus condition High-
brush. In this case, the spectral envelope shows a
peak, λ̂�4/128� = 18�8% at ω = 4/128, and Table 3
shows that at this frequency, only location L8 (cere-
bellum: contralateral) is probably not receiving the
brush signal. Note that for the anesthetic condition,

the sample spectral envelope (and hence the signal
power) is about half that of the awake conditions;
this is consistent across all stimulus conditions. In
summary, the analyses provided evidence that no-
ciceptive inputs play a role in activating areas of
the cortex that are traditionally considered to be in-
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volved primarily in tactile discrimination. Further-
more, the results contributed to a growing body of
evidence suggesting that the basal ganglia are in-
volved in the perception of pain.

5. QUALITATIVE RANDOM FIELDS

Another extension of optimal scaling and the spec-
tral envelope that is currently under exploration is
the analysis of qualitative spatial data. Here, we
let �Xt� t = �t1� t2�� t1� t2 = 0� ±1� ±2� � � �� be a
homogeneous, categorical-valued, two-dimensional
random field taking values in the finite set � = �c1,
c2� � � � � ck+1�. For example, � could be an eight bit
grayscale or a 256 color palette (k+ 1 = 256). Anal-
ogous to Section 2, for � = �β1, β2,� � � , βk�′ ∈ Rk,
let Xt��� denote the real-valued stationary two-
dimensional random field corresponding to the
scaling that assigns the category cj the numerical
value βj, j = 1, 2� � � � � k and ck+1 the value 0. The
goal is to find scalings � so that the spectral density
(or wave number spectrum) of Xt���, say fX�����,
with � = �ω1�ω2� ∈ �−1/2�1/2
2, is in some sense
interesting. As in the one-dimensional case, we
choose ���� at each fundamental frequency (or
wave number) � so that

λ��� = sup
��=0

{
fX�����
σ2���

}
�(5.1)

where σ2��� = var�Xt�����
Building on the ideas of Section 2, identify the cat-

egorical random field, Xt, with the k × 1 multiple
indicator process Yt defined by Yt = ej if Xt = cj�
j = 1� � � � � k, and Yt = 0 if Xt = ck+1, where ej is
a k × 1 vector with a one in the jth position and
zeros elsewhere, and 0 is a k×1 vector of zeros. As-
sume the existence of the k×k nonsingular spectral
density fY���. The scaled series can be written as
Xt��� = �′Yt and hence the wave spectrum of Xt
can be written as fX��� = �′fre

Y����. The optimal-
ity criterion is

λ��� = sup
��=0

{
�′fre

Y����
�′V�

}
�(5.2)

where V is the variance-covariance matrix of Yt�
Again the problem is reduced to an eigenvalue prob-
lem. The optimality criterion λ��� and the result-
ing optimal scaling ���� have interpretations anal-
ogous to the one-dimensional case described in Sec-
tion 2. In addition, inference and estimation of λ���
and ���� follow from Section 2 results.
The applications that motivate this are auto-

mated image retrieval and pattern recognition with
potential use in computer vision. Efforts of digi-
tizing massive archives of image, film and video

have created a demand for automated retrieval sys-
tems. Such systems would save the time and effort
needed to browse entire databases, for example, in
medical image query; see Liu and Picard (1996) for
a recent discussion. In particular, the spectral en-
velope appears to have potential in the analysis of
textures.
Textures are homogeneous patterns or spatial ar-

rangements of pixels that regional intensity or color
alone does not sufficiently describe. Textures may
consist of structured and/or random placement of el-
ements, but also may be without fundamental sub-
units. Texture is an important element to human
vision and has been found to provide cues to scene
depth and surface orientation. Due to the diversity
of textures appearing in natural images it is diffi-
cult to narrowly define texture.
Most research on texture is conducted on the Bro-

datz (1966) texture collection which provides a set
of mostly homogeneous texture images. It has been
hard to adequately model texture and the substan-
tial body of work on texture has not yet produced
any clear solutions for the problems of texture anal-
ysis, classification and synthesis. Several recent
content-based image retrieval systems utilize tex-
ture feature sets to aid in the retrieval of images.
Within the applications of satellite image retrieval,
recent systems by Li and Turek (1996), for ex-
ample, use texture to retrieve images based upon
the detection of various features of the earth’s ter-
rain. The IBM QBIC system (Niblack et al., 1993)
uses several texture features for the retrieval of
photographic images. Both the whole images and
manually identified regions are indexed by texture
in the QBIC system.
Consider an n1 × n2 image, say �Xt; t = �t1� t2��

ti = 1� � � � � ni; i = 1�2�, using an 8-bit gray
scale. That is, at each pixel, t, Xt takes on one
of 28 = 256 values from the vector of gray lev-
els, g = �0�1� � � � �255�′. Currently, there are many
compression techniques that are based on trans-
forms of the image. The current standard is JPEG,
which uses the discrete cosine transform (see Rao
and Yip, 1990, e.g.) applied to 8 × 8 pixel blocks
of �Xt�. Recently, there has been a considerable
amount of interest in using wavelet transforms to
obtain a more sparse decomposition of an image,
thus requiring less storage space; for an introduc-
tion to wavelet analysis of images, see Bruce and
Gao (1996).
Current compression methods consider the gray

levels of an image as fixed, quantitative values that
will not be altered. We feel that there may be some
advantage to investigating the possibility of reduc-
ing the number of gray levels contained in an image
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before any compression takes place. For example,
in larger images, one may bin the 256 gray levels
by a factor of four (leaving 26 = 64 gray levels) as
an initial reduction. In addition to using the spec-
tral envelope as a compression method, we will also
consider the benefits of using the methodology to re-
duce the number of gray levels needed to reproduce
an image. This problem is examined in more detail
in Wendt (1999).
For our example, we use the herringbone weave

texture. Figure 18 shows the original 256 × 256
texture using an 8-bit grayscale. In Figure 19a we
reduced the image to 128 × 128 pixels; in addi-
tion, the 8-bit gray scale was binned by a factor
of 4, resulting in 26 = 64, rather than 28 = 256
gray levels. Although these reductions were per-
formed primarily to reduce processing time, the
reductions combined give the image its noisy ap-
pearance. Figure 20 shows the smoothed (using a
Gaussian smoother) sample spectral envelope of
the reduced image, where, for clarity, any value of
the sample spectral envelope that is below an ap-
proximate α = 10−14 threshold is zeroed out. Due to
folding, that is, λ�ωx�ωy� = λ�−ωx�−ωy�, we only
display frequencies in �−1/2�1/2� × �0�1/2�.
Optimal reconstruction of the image using all

of the pertinent information in the spectral enve-
lope and the corresponding palettes (scalings) is
currently under investigation. Let �Yt� t = �t1� t2�;
t1 = 1� � � � � n1; t2 = 1� � � � � n2� denote an image
(or part of an image) such as the reduced her-
ringbone image in Figure 19a. As discussed above
(5.2), Yt is the indicator vector process associated
with the image Xt. The image, in terms of Yt, is
decomposed as

Yt =
∑
j

d�j�ψt�j��(5.3)

where �ψt�j�� forms an orthonormal basis over the
two-dimensional lattice, and j = �j1� j2� for ji =
1� � � � � ni, and i = 1�2. Smaller values of �d�j�� are
thresholded to the zero vector, and the image is ap-
proximated by

Ŷt =
∑
j∈�

d�j�ψt�j��(5.4)

where � is a set containing a small number of
indices j.
We focus on Fourier analysis here, but the theory

does not preclude the use of any other basis such as
a wavelet basis or Walsh functions (e.g., Ferryanto,
1995 extends the work of Stoffer, 1987 to estimating
the Walsh spectral density of two-dimensional ran-
dom fields). In this case, ψt�j� in (5.3) are the com-
plex exponentials, ψt�j� = exp�−2πi�ωj1

t1+ωj2
t2���

where ωji
= ji/ni for i = 1�2, and the coefficients,

d�j�, are the corresponding DFTs. In this example,
thresholding was accomplished by retaining values
for which the estimated spectral envelope exceeded
some small α-level threshold, and by zeroing out
the remaining values (this is called hard shrink-
age). Of course, continuous (soft) shrinkage func-
tions such as those discussed in Donoho and John-
stone (1994, 1995) could be employed. In Figure 20,
we used a hard shrinkage method with a threshold
level at α = 10−14. Next, we consider the reconstruc-
tion of the image Xt, say X̂t, using the estimate
Ŷt. Let g = �g1� � � � � gk�′ denote the k × 1 vector of
gray levels associated with the image. In terms of
the original image and the associated indicator pro-
cess, we have Xt = g′Yt. A natural candidate for
the reconstruction of Xt would be X̂t = g′Ŷt, ap-
propriately discretized. However, we may use the
information in Ŷt to further reduce the dimension
of g. To do this, let ej be the indicator vector asso-
ciated with gray level gj. Then we set X̂t = gj if
�Ŷt − ej� ≤ �Ŷt − ei�, for all i = 1� � � � � k, where
� · � is a norm. In this example we used Euclidean
distance, but statistical distance would also be ap-
propriate. In this way, we may get a reduction in
the number of gray levels needed to reproduce the
image.
Figures 19b, c show reconstructions of the image

in Figure 19a based on this technique. In this exam-
ple, we choose � in (5.4) using the two-dimensional
extension of (2.4) at various choices of α. In one case
(Figure 19b) we used α = 10−18 and this resulted in
selecting seven frequency pairs to be included in � .
In the another case (Figure 19c) we used α = 10−14

and this resulted in � consisting of fourteen fre-
quency pairs. Of course, thresholding at a smaller
level yields a more precise image reconstruction. In
addition, this method led to a reduction in gray lev-
els from 44 for the original image, to 26 for the re-
duced image displayed in Figure 19c.

6. MATCHING SEQUENCES

In this section we consider the problem of quan-
tifying the degree to which two categorical time se-
ries are coherent [see (1.8)]. The goal is to discover
whether the sequences contain similar patterns and
the problem is motivated by the matching of two
DNA sequences (e.g., Waterman and Vingron, 1994).
This approach builds on the ideas used in defining
the spectral envelope for a qualitative-valued time
series; technical details can be found in Stoffer and
Tyler (1998). We continue to focus on methods that
are computationally simple and fast and can be ap-
plied to long sequences.
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Fig. 18. Herringbone weave from the Brodatz texture collection; this is a 256× 256 image in 8-bit gray levels.

6.1 The General Problem

In the general case, X1t and X2t, t = 0� ±1�
±2� � � �, are categorical time series taking values in
possibly different state-spaces of dimensions k1 + 1
and k2 + 1� respectively. Consider two nonconstant
transformations g and h with g�X1t� and h�X2t�
being real-valued time series such that g�X1t� has
continuous spectral density fgg�ω� and h�X2t� has
continuous spectral density fhh�ω�. We denote the
complex-valued cross-spectral density of the two se-
ries g�X1t� and h�X2t� by fgh�ω�. As discussed in
Section 1.1, a measure of the degree of similarity
between the sequences g�X1t� and h�X2t� at fre-
quency ω is the squared coherency

ρ2gh�ω� =
�fgh�ω��2

fgg�ω�fhh�ω�
�(6.1)

Fig. 19. (a) The reduced herringbone weave image (compare to Figure 18); this is 128× 128 using a 6-bit gray scale; (b) reconstruction
using the seven largest spectral envelope peaks �α = 10−18�; (c) reconstruction using the fourteen largest spectral envelope peaks �α =
10−14��

Of course the value of ρ2gh�ω� will depend on
the choices of the transformations g and h. If X1t
and X2t are independent, then so are g�X1t� and
h�X2t�, for any g and h, in which case ρ2gh�ω� = 0
for all ω. The main goal here is to find g and h,
under various constraints, to maximize the squared
coherency ρ2gh�ω�. If the maximized value of ρ2gh�ω�
is small we can say that the two sequences X1t and
X2t do not match at frequency ω. If the maximized
value of ρ2gh�ω� is large, then the resulting trans-
formations g and h can help in understanding the
nature of the similarity between the two sequences.
Analogous to Section 2, we identify the categorical

sequence X1t with the multiple indicator process
Y1t. Recall that Y1t is a k1 × 1 vector with a one in
the jth position ifX1t is in state j (j = 1� � � � � k1) at
time t and zeros elsewhere. If X1t is in state k1+1,
then Y1t is the zero vector. Similarly, we identify
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Fig. 20. The smoothed sample spectral envelope, λ̂���� for the 128× 128 herringbone weave image, using a 6-bit gray scale, as shown
in Figure 19a. For clarity, small values are shown as zero.

X2t with the k2×1 multiple indicator processes Y2t.
We assume the existence of the ki × ki �i = 1�2�,
nonsingular spectral density matrices f11�ω� and
f22�ω� of Y1t and Y2t, respectively, and denote the
k1 × k2 cross-spectral matrix between Y1t and Y2t
by f12�ω�.
To describe the problem in terms of scaling cat-

egorical time series, let � = �α1� � � �, αk1�′ ∈ Rk1 ,
� �= 0, be a vector of scalings associated with the cat-
egories of the first series, X1t, and let � = �β1� � � � �
βk2

�′ ∈ Rk2 , � �= 0, be a vector of scalings associated
with the categories of the second series, X2t. That
is, define the real-valued series

X1t��� = αj if X1t is in state j

for j = 1� � � � � k1,

X2t��� = βj if X2t is in state j

for j = 1� � � � � k2,

(6.2)

where, in addition, X1t��� = 0 if X1t is in state
k1 + 1, and X2t��� = 0 if X2t is in state k2 + 1.
Since the scaled series can be written asX1t��� =

�′Y1t, and X2t��� = �′Y2t, the squared-coherency
between X1t��� and X2t��� can be written as

ρ212�ω����� = ��′f12�ω���2[
�′fre

11�ω��
] [

�′fre
22�ω��

] �(6.3)

Setting a = fre
11�ω�1/2� and b = fre

22�ω�1/2�, sub-
ject to a′a = 1 and b′b = 1, define

Q�ω� = fre
11�ω�−1/2f12�ω�fre

22�ω�−1/2

= Qre�ω� + iQim�ω�
(6.4)

and write (6.3) as

ρ212�ω�a�b� =
[
a′Qre�ω�b]2 + [

a′Qim�ω�b]2�(6.5)

The goal is to find a and b to maximize (6.5) for
each ω of interest. Several approaches to the max-
imization are available; one approach is based on
the following observation.

Result 1. Fix ω and drop it from the notation.
Then (6.5) can be written as

ρ212�a�b� = a′(Qrebb′Qre +Qimbb′Qim
)
a

= b′(Qreaa′Qre +Qimaa′Qim
)
b�

(6.6)

Let b0 be an arbitrary real-valued k2×1 unit length
vector. Define the sequence of vectors aj to be the
eigenvector corresponding to the largest root of the
at most rank 2� nonnegative definite matrix

Qrebj−1b
′
j−1Q

re′ +Qimbj−1b
′
j−1Q

im′
(6.7)

and the sequence bj to be the eigenvector correspond-
ing to the largest root of the at most rank2� nonneg-
ative definite matrix

Qre′aja
′
jQ

re +Qim′
aja

′
jQ

im�(6.8)
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for j = 1�2� � � � � Then, from the first part of (6.6) it
follows that ρ2�aj+1�bj� ≥ ρ2�a�bj� for any a of unit
length, and from the second part of (6.6) it follows
that ρ2�aj+1�bj+1� ≥ ρ2�aj+1�b� for any b of unit
length. Thus,

ρ2�aj+1�bj+1� ≥ ρ2�aj+1�bj� ≥ ρ2�aj�bj��(6.9)

The algorithm described by Result 1 can be
used to find the optimal scalings at each fre-
quency, ω, of interest. The algorithm is initialized
by setting b0 equal to either �1�Qre�ω�′Qre�ω�

or �1�Qim�ω�′Qim�ω�
, depending on which vec-
tor [we denote the eigenvector corresponding to
the largest eigenvalue of matrix A by �1�A�] pro-
duces the larger value of (6.5) for arbitrary a. In
turn, ��ω� and ��ω� can be taken proportional to
fre
11�ω�−1/2a�ω� and fre

22�ω�−1/2b�ω�, respectively,
where a�ω� and b�ω� maximize (6.5). Note that the
algorithm requires only the computation of latent
roots and vectors of at most rank2, nonnegative
definite matrices, regardless of the dimension of
the state-spaces. Moreover, by (6.9), the objective
function increases with each step. Unfortunately, it
does not guarantee convergence to the global maxi-
mum. From simulations, however, it appears to be
the case that the algorithm usually converges; Stof-
fer and Tyler (1998) also provide tight bounds for
the maximum of (6.5).

6.2 Common Scalings
In many cases, the processes X1t and X2t are de-

fined on the same state-space, � = �c1� � � � � ck+1��
for example, DNA sequences. To enhance the inter-
pretation in such cases, it would be appropriate to
choose common scalings. Henceforth, set k1 = k2 =
k, and assume that Y1t and Y2t have the same spec-
tra, that is, f11�ω� = f22�ω� = f�ω�, for at least
all ω of interest. Realistic models that satisfy these
conditions will be discussed later.
Let � = �β1� � � � � βk�′ ∈ Rk, � �= 0, be a vector

of scalings common to the categories of both series,
that is, the real-valued series are

X1t��� = βj if X1t = cj�

X2t��� = βj if X2t = cj�

for j = 1� � � � � k. The scale associated with cate-
gory ck+1 is held fixed at zero for both sequences.
We restrict attention to the frequencies ω for which
f11�ω� = f22�ω� = f�ω�. Since the scaled series are
Xit��� = �′Yit, for i = 1�2, the squared coherency
between X1t��� and X2t��� can be written as

ρ212�ω��� = ��′f12�ω���2
��′fre�ω��
2 �(6.10)

Setting b = fre�ω�1/2�, subject to the standardiza-
tion b′b = 1, and writing

Q�ω� = fre�ω�−1/2f12�ω�fre�ω�−1/2

= Qre�ω� + i Qim�ω��
(6.11)

we may write (6.10) as

ρ212�ω�b� =
[
b′Qre�ω�b]2 + [

b′Qim�ω�b]2�(6.12)

Although Qre�ω� and Qim�ω� in (6.12) are not nec-
essarily symmetric, we may assume, without loss of
generality, that they are since

ρ212�ω�b� =
[
b′Qre�ω�b]2 + [

b′Qim�ω�b]2
= [

b′Qre
s �ω�b

]2 + [
b′Qim

s �ω�b]2�(6.13)

where
Qre

s �ω� =
[
Qre�ω� +Qre�ω�′]/2 and

Qim
s �ω� = [

Qim�ω� +Qim�ω�′]/2�(6.14)

Our goal is to find b to maximize (6.13) for each
ω of interest. The maximization can still be accom-
plished iteratively via the algorithm (6.7) and (6.8)
in conjunction with the following result.

Result 2. Under the conditions described in Sec-
tion 4.1, if in Result 1� k1 = k2 = k and the matrices
Qre and Qim are symmetric, the maximum value of
ρ212�a�b� is attained when a = b.

Since Qre
s �ω� and Qim

s �ω� are symmetric, Result 2
can be used to maximize (6.13), initializing the al-
gorithm by setting b0 equal to either �1�Qre

s �ω�2
 or
�1�Qim

s �ω�2
, depending on which vector produces
the larger value of ρ212�ω�b0�. The sequence

bj = �1
[
Qre

s �ω�bj−1b′
j−1Q

re
s �ω�

+Qim
s �ω�bj−1b′

j−1Q
im
s �ω�]�(6.15)

for j = 1�2� � � � � replaces the alternating se-
quences defined in (6.7) and (6.8). Note that
ρ212�ω�bj� ≥ ρ212�ω�bj−1�. The optimal scaling,
��ω�, is chosen proportional to fre�ω�−1/2b�ω�,
where b�ω� maximizes (6.13). Another important
consequence of Result 2 is that it gives sufficient
conditions under which choosing common scales
is not only parsimonious but optimal. Specifically,
if Qre�ω� and Qim�ω� are both symmetric, then
the maximum of ρ212�ω�a�b� [see (6.5)] is achieved
when a = b.

6.3 Models and Applications
For practical applications of the theory presented

in Section 4.2, we address two problems. First is
the case where the two sequences under investi-
gation are in phase and contain at most one com-
mon pattern. They may be subsequences of larger
sequences. This will be termed local alignment. The
case of global alignment, where we do not assume
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that the sequences are in phase will be discussed
next. The local model is

Yit = pi + St + eit�(6.16)

where pi = �pi1� � � � � pik�′ is the vector of positive
probabilities pij = Pr�Xit = cj�, for i = 1�2 and
j = 1� � � � � k. In addition, St is a realization of a sta-
tionary k × 1 vector-valued time series that is un-
correlated with the stationary k × 1 vector-valued
series eit, i = 1, 2. There may be some dependence
structure between St and eit; refer to Stoffer (1987)
for details. Furthermore, St has k× k spectral den-
sity matrix fss�ω�, and eit, i = 1, 2, have common
k × k spectra denoted by fee�ω�. It is hypothesized
that the process St is common to both sequences.
Let � = �β1� � � �, βk�′ ∈ Rk, � �= 0, be a vector of

scalings associated with the categories �c1� � � � � ck�.
As before, define the real-valued series Xi�t��� =
βj if Xit = cj� j = 1� � � � � k, and Xi�t� β� = 0 if
Xit = ck+1, for i = 1, 2. It can be shown that, in this
case, the conditions of Result 2 are met, and hence,
the optimal strategy is to select the common scales
for the sequences X1t and X2t.
Note that Xit��� = �′Yit = �′pi + �′St + �′eit, for

i = 1�2. Let f11�ω��� be the spectrum of scaled pro-
cess X1t���; similarly, let f22�ω��� denote the spec-
trum of X2t��� and let f12�ω��� denote the cross-
spectrum betweenX1t��� andX2t���. The following
conditions hold:

fii�ω��� = �′{fre
ss�ω� + fre

ee�ω�
}
�� i = 1�2�

f12�ω��� = �′fre
ss�ω���

(6.17)

The coherence between X1t��� and X2t��� is seen
to be

ρ12�ω��� = �′fre
ss�ω��

�′�fre
ss�ω� + fre

ee�ω�
�
�(6.18)

If fss�ω� = 0, then ρ12�ω��� = 0 for any scal-
ing �. Thus, the detection of a common signal can
be achieved by considering the maximal coherency
under the model conditions. Setting b = �fre

ss�ω� +
fre
ee�ω�
1/2�, subject to b′b = 1, write (6.18) as

ρ12�ω�b� = b′[fre
ss�ω� + fre

ee�ω�
]−1/2

fre
ss�ω�

× [
fre
ss�ω� + fre

ee�ω�
]−1/2b�(6.19)

Hence, the problem is again an eigenvalue prob-
lem, and the maximum value of (6.19) is the largest
scalar λ�ω� such that[

fre
ss�ω� + fre

ee�ω�
]−1/2

fre
ss�ω�

× [
fre
ss�ω� + fre

ee�ω�
]−1/2b�ω�=λ�ω�b�ω��

(6.20)

The optimal scaling, ��ω�, is taken proportional
to �fre

ss�ω� + fre
ee�ω�
−1/2b�ω�. This value will max-

imize the coherency at frequency ω between the
two sequences, with the maximum value being
λ�ω�. That is, ρ12�ω��� ≤ ρ12�ω���ω�� = λ�ω�,

with equality only when � is proportional to ��ω��
Estimation proceeds in an obvious way: given con-
sistent (smoothed) estimates f̂ij�ω�, for i� j = 1�2
as described in Section 1.1, put

f̂re
ss�ω� =

[
f̂re
12�ω� + f̂re

21�ω�
]/
2 and

f̂re
ss�ω�+ f̂re

ee�ω� =
[
f̂re
11�ω� + f̂re

22�ω�
]/
2�

(6.21)

A frequency-based test of the null hypothesis that
fss�ω� = 0 was also developed for this model. We
will not discuss the test here, but details can be
found in Stoffer and Tyler (1998).
The model can be extended to include the possi-

bility that there are more than one signal common
to each sequence and that the sequences are not
necessarily aligned. The global model is

Y1t = p1 +
q∑

j=1
Sjt + e1t and

Y2t = p2 +
q∑

j=1
Sj�t−τj + e2t�

(6.22)

where Sjt, j = 1� � � �, q, are zero-mean realizations
of stationary k×1 vector-valued time series that are
mutually uncorrelated, and in addition are uncorre-
lated with the zero-mean, stationary k × 1 vector-
valued series e1t and e2t. Furthermore, Sjt has k×k
spectral density matrix fSj

�ω�, j = 1� � � �, q, and
eit, i = 1, 2, have common k× k spectra denoted by
fee�ω�. It is hypothesized that the processes Sjt are
(stochastic) signals that are common to both time
series X1t and X2t, or equivalently, Y1t and Y2t.
There is no need to specify the phase shifts,

τ1� � � � � τq, or the integer q ≥ 0; however, the prob-
lem of their estimation is interesting. We consider
the following method to help decide whether or not
q = 0� Using the notation established in this section
with ω ∈ �−π�π
,

f11�ω� = f22�ω�=
q∑

j=1
fSj

�ω�+fee�ω� and

f12�ω� =
q∑

j=1
fSj

�ω� exp�iωτj��
(6.23)

Let � = �β1� � � �, βk�′ ∈ Rk, � �= 0, be a vector of
scalings, write Xit��� = �′Yit, for i = 1�2, so that
the squared coherency between X1t��� and X2t���
is

ρ212�ω��� =
∣∣�q

j=1 �′fre
Sj
�ω�� exp

(
iωτj�

∣∣2∣∣�′fre�ω��∣∣2 �(6.24)

where f�ω� = f11�ω� = f22�ω�. Setting b =
fre�ω�1/2�, with the constraint b′b = 1, write
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(6.24) as

ρ212�ω�b� =
∣∣∣∣∣b′

{
q∑

j=1
fre�ω�−1/2fre

Sj
�ω�

× fre�ω�−1/2 exp�iωτj�
}
b
∣∣∣∣2�

(6.25)

Define the complex-valued matrix Q�ω� as

Q�ω� =
q∑

j=1
fre�ω�−1/2fre

Sj
�ω�

× fre�ω�−1/2 exp�iωτj�
= Qre�ω� + i Qim�ω��

(6.26)

and note that both Qre�ω� and Qim�ω� are symmet-
ric matrices (but not necessarily positive definite).
As noted in Section 4.2, Result 2, it follows that the
optimal strategy is to select the scalings to be the
same for both sequences. Now, write (6.25) as

ρ212�ω�b� =
[
b′Qre�ω�b]2 + [

b′Qim�ω�b]2�(6.27)

Given consistent spectral estimates f̂ij�ω�, we can
estimate f�ω� by f̂�ω� = 1

2 �f̂11�ω� + f̂22�ω�
 so that
consistent estimates of Qre�ω� and Qim�ω� are, re-
spectively,

Q̂re�ω� = [
f̂re
11�ω� + f̂re

22�ω�
]−1/2

× [
f̂re
12�ω� + f̂re

21�ω�
]

(6.28)

× [
f̂re
11�ω� + f̂re

22�ω�
]−1/2�

Q̂im�ω� = [
f̂re
11�ω� + f̂re

22�ω�
]−1/2

× [
f̂im
12�ω� − f̂im

21�ω�
]

(6.29)

× [
f̂re
11�ω� + f̂re

22�ω�
]−1/2

�

The estimated squared coherency can be maxi-
mized via Result 2 withQre�ω� andQim�ω� in (6.27)
replaced by their estimates (6.28) and (6.29), re-
spectively. In particular, the recursion (6.15), with
Qre

s �ω� and Qim
s �ω� replaced by (6.28) and (6.29),

can be employed. The estimated optimal scaling vec-
tor at any particular frequency, �̂�ω�, is taken pro-
portional to f̂re�ω�−1/2b̂�ω�, where b̂�ω� is the max-
imizing vector. Some discussion of the finite sample
null behavior in this case is given in Stoffer and
Tyler (1998).
We illustrate the concepts in this section by

matching two DNA sequences. In Section 2 we saw
a rather strange result about the gene BNRF1 of
the Epstein–Barr virus (EBV). There, it was found
that although a cycle of 1/3 could be found in most
of the gene, the last 1000 bp appeared to contain no
cyclic behavior and might be considered to be non-
coding; see Figures 5 and 6. Herpesvirus saimiri
(HVS) also contains a gene labeled BNRF1 because

similarities between the two have been noted by
molecular biologists. The spectral envelope of the
entire HVS-BNRF1 gene looks similar to Figure 5,
but, unlike Figure 6, HVS-BNRF1 has consider-
able power at frequency 1/3 in the final 1000 bp.
It is of interest to know if the two genes match
in the final 1000 bp even though there is no evi-
dence that the last part of EBV-BNRF1 is actually
coding. Figure 21 shows the maximum squared co-
herency using two models, the local model [thick
line], (6.16), and the global model [thin line], (6.22).
Because the local model is contained in the global
model, it will always be the case that the result
from the global model will envelope the result from
the local fit, assuming that the spectra are esti-
mated in the same way (that is, in Figure 21, the
thick line is never above the thin line). In both
cases, triangular smoothing with m = 15 was used.
The two methods are in agreement, but the evi-
dence that the series match at ω = 1/3 appears
stronger in the local case. In fact, there is a signifi-
cant peak at ω = 1/3 (at the 0.01 level when using
the maximum F-statistic approach; this is detailed
in Stoffer and Tyler, 1998). Thus, using the local
model, we are lead to conclude that there is a sig-
nificant match between the two genes in the final
1000 bp. The estimated optimal common scaling at
ω = 1/3 for the local model was A = 59�4� C = 0�8�
G = 64�9� T = 0 (the global model had A = 60�8�
C = 5�6� G = 67�1� T = 0) which indicates that the
match is in the purine-pyrimidine (A = G, C = T)
alphabet.

7. DISCUSSION AND OTHER REFERENCES

There are a number of texts devoted primar-
ily to spectral analysis, for example Bloomfield
(1976), Brillinger (1975), Hannan (1970), Priest-
ley (1981) and Percival and Walden (1993). There
are also many texts on time series analysis that
present spectral analysis integrated with time do-
main (regression) analysis, for example, Brockwell
and Davis (1991), Chatfield (1989), Fuller (1995)
and Shumway and Stoffer (2000). The material on
scaling time series is rather sparse and we do not
know of any particular references besides those al-
ready mentioned. The basic idea, however, has been
extensively used for the analysis of contingency
tables and regression with qualitative variables;
these come under a number of different titles such
as dual scaling, for example, Nishisato (1980) and
correspondence analysis, for example, Greenacre
(1984). These and related topics are also discussed
in Breiman and Friedman (1985) where the focus
is on obtaining optimal transformations, numeri-
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Fig. 21. Maximum squared coherency between EBV-BNRF1 and HVS-BNRF1 using two models, the local model [thick line], (6.16), and
the global model [thin line], (6.22).

cally, in various situations. For a recent survey, see
Michailidis and De Leeuw (1998).
Fourier analysis of categorical time series has

been applied successfully in molecular genetics
for quite some time. For example, McLachlan and
Stewart (1976) and Eisenberg, Weiss and Tewill-
ger (1984) studied the periodicity in proteins with
Fourier analysis. They used predefined scales (or
alphabets) and observed the ω = 1/3�6 frequency
of amphipatic helices. Because predetermination of
the scaling is arbitrary and may not be optimal,
Cornette et al. (1987) reversed the problem, and
started with a frequency of ω0 = 1/3�6 and pro-
posed a method to establish an “optimal” scaling
at ω0 = 1/3�6. In this setting, optimality roughly
refers to the fact that the scaled (numerical) se-
quence is maximally correlated with the sinusoid
that oscillates at a frequency of ω0. Viari, Sol-
dano and Ollivier (1990) generalized this approach
to a systematic calculation of a type of spectral
envelope (which they called λ-graphs) and of the
corresponding optimal scalings over all fundamen-
tal frequencies. While the aforementioned authors
dealt exclusively with amino acid sequences, vari-
ous forms of harmonic analysis have been applied
to DNA by, for example, Tavaré and Giddings
(1989), and in connection to nucleosome positioning
by Satchwell, Drew and Travers (1986) and Bina
(1994). The basic technique of the spectral envelope
for categorical time series is similar to the meth-
ods established in Tavaré and Giddings (1989) and
Viari, Soldano and Ollivier (1990); however, there

are some differences. In particular, the techniques
differ by the optimality criterion used. Also, the
spectral envelope methodology is developed in a
statistical (rather than visual) setting to allow the
investigator to distinguish between significant re-
sults and those results that can be attributed to
chance.
As indicated in Section 2, the spectral envelope

and related topics could come under the general
titles of principal component analysis or canonical
analysis of time series in the spectral domain. These
topics are discussed in detail in Chapters 9 and 10
of Brillinger (1975) and there is a connection be-
tween Brillinger’s work and ours. Specifically, the
spectral envelope can be viewed as a special case of
Brillinger’s principal components. In the language
of Brillinger (1975, Section 9.3), suppose we want to
approximate Yt, a k× 1 stationary time series with
mean �Y, variance-covariance matrix V, and spec-
tral matrix fY�ω�, by finding a scalar process, Zt,
defined by

Zt =
∞∑

j=−∞
b′
t−jYj�(7.1)

and absolutely summable k×1 filters �bt� and �ct�,
so that the error of approximation, Yt − Ŷt is small
relative to mean squared error, where Ŷt = �Y +�∞

j=−∞ ct−jZj. If b�ω� is the transform of bt, and
fZ�ω� the spectral density of Zt, then the problem
becomes one of finding a complex vector b�ω�, sub-
ject to the constraint that b∗�ω�Vb�ω� = 1 such
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that

fZ�ω� = b∗�ω�fY�ω�b�ω�
is maximized. The solution, of course, is that b�ω� is
the eigenvector corresponding to the largest eigen-
value of fY�ω� in the metric of V, say λ�ω�, and
fZ�ω� = λ�ω� with b�ω� so chosen in (7.1) [also, the
transform of ct is b∗�ω�].
In the language of scaling, we would state the

same problem as: given a vector process Yt, find a
complex vector b such that, at a given frequency ω,
the time series Zt�b� = b∗Yt has the largest possi-
ble spectrum (subject to b∗Vb = 1). The solution is
to choose b = b�ω�, that is, the eigenvector corre-
sponding to the largest eigenvalue of fY�ω� in the
metric of V. In this case the spectrum of Zt�b�ω��,
say fZ�ω�b�ω��, attains the largest possible value,
λ�ω�.
Hence, Brillinger’s approach can be seen as a scal-

ing problem with complex-valued scales. If we re-
strict b�ω� to be real, then Sections 2 and 5 have Yt

being the multiple indicator process associated with
a categorical-valued process. In Section 3, b�ω� was
also restricted to be real, but the Yt process was gen-
erated by a space of transformations. In Section 4,
we took the scalings b�ω� to be real or complex de-
pending on whether or not it was advantageous to
do so. In the real case, the material in Sections 2
and 3 apply, and in the complex case, Brillinger
(1975, chapter 9) applies.
The discussion of matching sequences, Section 6,

is related to canonical analysis. Let Y1t and Y2t be
as defined in Section 6. Brillinger (1975, chapter 10)
discusses a time series extension of canonical corre-
lation analysis that could be used in Section 6 as a
special case. Briefly, consider real constants µi and
ki × 1 linear filters �bit� such that

� �bit� < ∞,
i = 1, 2. The real-valued univariate series

Z1t = µ1 +
∞∑

j=−∞
b′
1� t−jY1j

and

Z2t = µ2 +
∞∑

j=−∞
b′
2� t−jY2j

having maximum squared-coherency ρ212�ω� at each
ω subject to b∗

i�ω�fii�ω�bi�ω� = 1, for i = 1, 2,
where bi�ω� is the Fourier transform of �bit�, are
given by finding the largest scalar λ�ω� such that,
with f21�ω� = f∗

12�ω�,
f22�ω�−1/2f21�ω�f11�ω�−1f12�ω�f22�ω�−1/2v�ω�

= λ�ω�v�ω��
The maximum squared-coherency achieved between
Z1t and Z2t is λ�ω�, and b1�ω� and b2�ω� are taken

proportional to f11�ω�−1f12�ω�f22�ω�−1/2v�ω� and
f22�ω�−1/2v�ω�, respectively.
An interpretation of the maximal squared co-

herency that is consistent with the notion of scaling
and the spectral envelope established in Sec-
tion 6 can be given. Specifically, we may regard
λ�ω� as a “coherency envelope” in the following
sense. Let bi be complex-valued ki × 1 vectors,
i = 1�2, and consider the scaled complex-valued
processes Z1t�b1� = b∗

1Y1t and Z2t�b2� = b∗
2Y2t

having squared coherency ρ212�ω�b1�b2�. If we
find b1 and b2 so that the squared coherency
between Z1t�b1� and Z2t�b2� is maximized at a
particular frequency ω = ω0, then the maximum
squared coherency at frequency ω0 is λ�ω0�, and the
complex-valued scalings for which the maximum
squared coherency is achieved are proportional to
b1�ω0� = f11�ω0�−1f12�ω0�f22�ω0�−1/2v�ω0�, and
b2�ω0� = f22�ω0�−1/2v�ω0�� Thus, for any nonzero
complex vectors b1 and b2, ρ

2
12�ω�b1�b2� ≤ λ�ω�,

with equality when b1 is proportional to b1�ω� and
b2 is proportional to b2�ω�. The material in Sec-
tion 6 focuses on the case where b1 and b2 are
restricted to be real-valued, and in some cases, they
are further restricted to be equal.
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