## ON $\mu$ -RESOLVABLE AND AFFINE $\mu$ -RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

## BY SANPEI KAGEYAMA

## Hiroshima University

The concept of resolvability and affine resolvability was generalized to  $\mu$ -resolvability and affine  $\mu$ -resolvability by Shrikhande and Raghavarao (1964). In this paper, a representation of parameters of an affine  $\mu$ -resolvable BIB design is given and necessary conditions for the existence of this design are derived. Some methods of constructing (affine)  $\mu$ -resolvable BIB designs are given and some inequalities for these designs are obtained. Finally, some information on the block structure of  $\mu$ -resolvable BIB designs is provided.

0. Introduction and summary. In a Balanced Incomplete Block (BIB) design with parameters v, b, r, k and  $\lambda$ , we have the following relations:

(0.1) 
$$vr = bk$$
,  $\lambda(v-1) = r(k-1)$ ,  $b \ge v$ .

The concept of resolvability and affine resolvability, introduced by Bose [2], was generalized to  $\mu$ -resolvability and affine  $\mu$ -resolvability by Shrikhande and Raghavarao [11]. They gave necessary and sufficient conditions for a  $\mu$ -resolvable BIB design to be affine  $\mu$ -resolvable, a necessary condition for the existence of an affine  $\mu$ -resolvable BIB design, and further in [10] gave a certain method of constructing these designs.

In this paper, a different approach is used. The parameters of an affine  $\mu$ -resolvable BIB design expressed in terms of only three integral variables are given, and necessary conditions for the existence of an affine  $\mu$ -resolvable BIB design are derived. Some methods of constructing (affine)  $\mu$ -resolvable BIB designs are stated and further (affine)  $\mu$ -resolvability of a BIB design based on a finite geometry over a Galois field is investigated. Some inequalities (including a generalization of Bose's one) for BIB designs with special parameters are given. Finally, we provide some information on the block structure of  $\mu$ -resolvable BIB designs of a certain type.

1. Parameters and nonexistence of affine  $\mu$ -resolvable BIB designs. A BIB design is called  $\mu$ -resolvable if the blocks can be separated into t sets of m blocks each such that each set contains every treatment exactly  $\mu$  times. For a  $\mu$ -resolvable BIB design, we necessarily have

$$(1.1) b = mt, r = \mu t, v\mu = mk, b\mu = mr.$$

A  $\mu$ -resolvable BIB design is called affine  $\mu$ -resolvable if any pair of blocks belonging to the same set contain  $q_1$  treatments in common, whereas any pair of

Received July 12, 1971; revised June 13, 1972; Now at Osaka University.

blocks belonging to different sets contain  $q_2$  treatments in common. An (affine) 1-resolvable design may be simply called (affine) resolvable.

THEOREM A (cf. [11]). The necessary and sufficient condition for a  $\mu$ -resolvable BIB design to be affine  $\mu$ -resolvable is

$$(1.2) b - v = t - 1.$$

From (0.1), (1.1) and the definition of affine  $\mu$ -resolvability, we have  $q_1 = (\mu - 1)k/(m-1)$  and  $q_2 = \mu k/m = k^2/v$ . Moreover, since from (1.1) and (1.2)  $q_1 = (\mu - 1)k/(m-1) = k + \lambda - r$  can be obviously shown, we have

THEOREM 1.1. A necessary condition for the existence of an affine  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$ , where b-v=t-1, is that  $k^2/v=\mu k/m$  is an integer.

This is essentially an alternative derivation of Theorem 3 of Shrikhande and Raghavarao [11]. We use Theorems A and 1.1 to obtain a representation of parameters of an affine  $\mu$ -resolvable BIB design. The result is given in Theorem 1.2.

THEOREM 1.2. The parameters v, b, r, k and  $\lambda$  of an affine  $\mu$ -resolvable BIB design can be essentially expressed in terms of only three integral variables  $\mu$  ( $\geq 1$ ), m ( $\geq 2$ ) and j ( $\geq (1 - \mu)/m_1$ ) as follows:

$$v = \frac{m}{\mu} \{ m_1(m-1)j + m\mu \}, \qquad b = \frac{m}{\mu} \{ mm_1j + (m+1)\mu \},$$

$$1.3) \qquad r = mm_1j + (m+1)\mu, \qquad k = m_1(m-1)j + m\mu,$$

(1.3) 
$$r = mm_1j + (m+1)\mu$$
,  $k = m_1(m-1)j + m\mu$ ,  $\lambda = m_1\mu j + \mu^2 + \mu(\mu-1)/(m-1)$ ,

where  $j \ge 0$  when  $(\mu, m) = 1$ , and  $m_1$  is an integer satisfying  $(\mu, m) = g$ ;  $\mu = \mu_1 g$ ,  $m = m_1 g$  and  $(\mu_1, m_1) = 1$ .

PROOF. Let v, b, r, k and  $\lambda$  be the parameters of an affine  $\mu$ -resolvable BIB design. Then substituting (1.1) into (1.2), we have

(1.4) 
$$r = k + (k - \mu)/(m - 1).$$

Since r and k are integers,  $k = \mu$  must be divisible by m = 1. Hence

$$(1.5) k = (m-1)p + \mu,$$

where p is a positive integer. Substituting (1.5) into (1.4), we have

$$(1.6) r = mp + \mu.$$

Moreover from (0.1), (1.1) and (1.5) we have

(1.7) 
$$\lambda = \mu p + \mu(\mu - 1)/(m - 1).$$

The  $(\mu, m) = g$  leads to an expression  $\mu = \mu_1 g$ ,  $m = m_1 g$ ,  $(\mu_1, m_1) = 1$ . Further, from Theorem 1.1  $\mu_1 \{(m-1)p + \mu\}/m_1$  must be an integer. Hence from  $(\mu_1, m_1) = 1$ ,  $(m-1)p + \mu$  must be a multiple of  $m_1$ , i.e., there exists a positive

integer  $\alpha$  such that  $(m-1)p + \mu = \alpha m_1$  or  $p = \mu + (gp - \alpha)m_1$ . Let  $j = gp - \alpha$ , then from  $p \ge 1$  we have  $j \ge 0$  when  $(\mu, m) = 1$ . Thus using (1.1), (1.5), (1.6), (1.7) and  $p = \mu + m_1 j$  we obtain (1.3).

Bose [2] has obtained the particular case (i.e.,  $\mu = 1$ ) of Theorem 1.2. From Theorem 1.2 we have the following theorems for the nonexistence of an affine  $\mu$ -resolvable BIB design:

THEOREM 1.3. When r divides b, an affine  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$  does not exist for an integer  $\mu$  satisfying  $\mu \geq 2$ .

PROOF. From the assumption and (1.1) m is a multiple of  $\mu$ . Hence  $(\mu, m-1)=1$ . Since in (1.3)  $\lambda-m_1\mu j-\mu^2=\mu(\mu-1)/(m-1)$  is an integer,  $(\mu, m-1)=1$  implies that  $(\mu-1)/(m-1)$  is an integer. This contradicts  $\mu < m$  derived from k < v and (1.1). Note that when  $\mu=1$  this approach is essentially meaningless.

THEOREM 1.4. When r does not divide b, a necessary condition for the existence of an affine  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$  for an integer  $\mu$  satisfying  $\mu \geq 2$  is that there exists a positive integer  $p_2$  satisfying the following conditions:

(i)  $p_2 \le \mu - 1$ , (ii)  $\mu(\mu - 1)$  is divisible by  $p_2$ . In this case

$$(1.8) m = \mu(\mu - 1)/p_2 + 1,$$

$$(1.9) j = \mu_1 p_1,$$

(1.10) 
$$\lambda = m_1 \mu_1 \mu p_1 + \mu^2 + p_2,$$

where  $p_1$  is an integer, but in particular  $p_1$  is a nonnegative integer when  $(\mu, m) = 1$ , and  $\mu_1$  is an integer satisfying  $(\mu, m) = g$ ;  $\mu = \mu_1 g$ ,  $m = m_1 g$  and  $(\mu_1, m_1) = 1$ .

PROOF. From the assumption and (1.1) m is not a multiple of  $\mu$ . The  $(\mu, m) = g$  leads to an expression  $\mu = \mu_1 g$ ,  $m = m_1 g$ ,  $(\mu_1, m_1) = 1$ . Since in (1.3)  $v = m_1 k/\mu_1$  and  $b = m_1 r/\mu_1$  are integers, from  $(\mu_1, m_1) = 1$  both r and k must be the multiples of  $\mu_1$ . From  $r = mm_1 j + (m+1)\mu$ ,  $k = m_1(m-1)j + m\mu$  in (1.3) and  $(\mu_1, m_1) = 1$ , there exist both integers  $p_1^*$  and  $p_2^*$  satisfying  $mj = p_1^* \mu_1$  and  $(m-1)j = p_2^* \mu_1$ . Setting  $p_1 = p_1^* - p_2^*$  leads to (1.9). When  $(\mu, m) = 1$ , from  $j \ge 0$  and  $m > \mu \ge 2$  we have  $p_1^* \ge p_2^*$ , i.e.,  $p_1 \ge 0$ . Since in (1.3)  $\lambda$  is an integer, m-1 must divide  $\mu(\mu-1)$ , i.e., there exists a positive integer  $p_2$  satisfying  $\mu(\mu-1) = p_2(m-1)$ . This implies (ii), (1.8) and moreover (i) by  $m > \mu$ . Substituting (1.9) and  $\mu(\mu-1) = p_2(m-1)$  into  $\lambda$  of (1.3), we obtain (1.10). Thus the proof is completed. Note that when  $\mu = 1$ , this approach is essentially meaningless and further, in this case an affine resolvable BIB design does not exist from the definition of resolvability.

Note from (1.1) that when r is a prime, a  $\mu$ -resolvable BIB design with parameters v, b, r, k and  $\lambda$  does not exist for an integer  $\mu$  satisfying  $\mu \ge 2$ . It follows from Theorems 1.3 and 1.4 that an affine  $\mu$ -resolvable BIB design with parameters v, b, r, k and  $\lambda \le 4$  does not exist for an integer  $\mu$  satisfying  $\mu \ge 2$ . Further

note that  $\mu_1 = \mu$  in Theorem 1.4 provided that  $\mu$  is a prime or a prime power, because we can show  $(\mu, m) = 1$  from (1.8). For example when  $\mu = 2$ , from Theorem 1.4 we have  $\lambda = 5 + 12p_1$  ( $p_1 \ge 0$ ). Hence when  $\lambda \not\equiv 5 \pmod{12}$  affine 2-resolvable BIB designs do not exist. Thus only one affine 2-resolvable BIB design with parameters v = 9, b = 12, r = 8, k = 6 and  $\lambda = 5$ , which is constructed by a method described in the next section, exists for  $r \le 15$ .

**2.** Method of construction. From a BIB design with parameters v, b, r, k and  $\lambda$  we can construct its complementary BIB design with parameters  $v^* = v$ ,  $b^* = b$ ,  $r^* = b - r$ ,  $k^* = v - k$  and  $\lambda^* = b - 2r + \lambda$ , and vice versa. Then we have

THEOREM 2.1. The existence of an (affine)  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$  implies the existence of an (affine)  $(m-\mu)$ -resolvable BIB design with parameters  $v^*=v$ ,  $b^*=b$ ,  $r^*=(m-\mu)t$ ,  $k^*=v-k$  and  $\lambda^*=(m-2\mu)t+\lambda$  by the complementary method, and vice versa.

PROOF. It is sufficient to show (affine)  $(m-\mu)$ -resolvability of a BIB design constructed by the complementary method. Now since each treatment occurs  $\mu$  times among the m blocks in each of t sets of a  $\mu$ -resolvable BIB design with parameters v, b, r, k and  $\lambda$ , each treatment obviously occurs exactly  $m-\mu$  times in each of t sets of its complementary BIB design with parameters  $v^*=v$ ,  $b^*=b$ ,  $r^*=b-r=(m-\mu)t$ ,  $k^*=v-k$  and  $\lambda^*=(m-2\mu)t+\lambda$ . This implies  $(m-\mu)$ -resolvability. Moreover, when the original design is affine  $\mu$ -resolvable, we have  $v^*+t-1=v+t-1=b=b^*$ ,  $q_1^*=(m-\mu-1)(v-k)/(m-1)=v-2k+(\mu-1)k/(m-1)$ , and  $q_2^*=(m-\mu)(v-k)/m=v-2k+\mu k/m$ . Hence affine  $(m-\mu)$ -resolvability is shown from Theorems A and 1.1.

Thus we can construct many  $\mu$ -resolvable or affine  $\mu$ -resolvable BIB designs by using known solutions of resolvable or affine resolvable BIB designs from Theorem 2.1. For example an affine resolvable BIB design with parameters v = 9, b = 12, r = 4, k = 3 and  $\lambda = 1$  having a solution [6], i.e., PC(4)[(1, 6, 7), (2, 3, 5),  $(0, 4, \infty)$ ] mod 8, gives an affine 2-resolvable BIB design with parameters v = 9, b = 12, r = 8, k = 6 and  $\lambda = 5$  having a solution, i.e., PC(4)[(0,  $(2, 3, 4, 5, \infty), (0, 1, 4, 6, 7, \infty), (1, 2, 3, 5, 6, 7) \mod 8$ , where PC(4) means a partial cycle of order 4, i.e., only 0, 1, 2, 3 are to be added to the initial blocks when developed mod 8. It follows from the preceding section that this design is an affine  $\mu$ -resolvable BIB design with the least set of parameters for  $\mu \geq 2$ . Similarly, from an affine resolvable BIB design with parameters v = 16, b = 20, r=5, k=4 and  $\lambda=1$  ([6], [7]), we can construct an affine 3-resolvable BIB design with parameters v = 16, b = 20, r = 15, k = 12 and  $\lambda = 11$ . Noting that an affine  $\mu$ -resolvable BIB design with  $r \leq 15$  does not exist provided  $\mu \geq 4$ , it is clear that existent affine  $\mu\text{-resolvable BIB}$  designs with  $\mu \geqq 2$  and  $r \leqq 15$ are only two designs described above.

In the rest of this paper unless otherwise specified, both a design and its incidence matrix may be denoted by the same symbol. By using the idea of Rao [8], we clearly obtain

Theorem 2.2. Let  $N_1$  be a BIB design with parameters  $v_1$ ,  $b_1$ ,  $r_1$ ,  $k_1$ ,  $\lambda_1$ , and  $N_1' = (\mathbf{n}_1', \mathbf{n}_2', \cdots, \mathbf{n}_{v_1}')$ , where  $\mathbf{n}_i \mathbf{n}_j' = r_1$  (i = j) or  $\lambda_1$   $(i \neq j)$ ,  $N_1'$  is the transpose of a matrix  $N_1$ . Let  $N_2$  be a  $\mu_2$ -resolvable BIB design with parameters  $v_2$ ,  $b_2 = m_2 t_2$ ,  $r_2 = \mu_2 t_2$ ,  $k_2 = v_1$ ,  $\lambda_2$ . Substitute  $v_1$  distinct row vectors  $\mathbf{n}_i$   $(1 \times b_1)$  in place of  $v_1$  distinct units and  $\mathbf{0}$   $(1 \times b_1)$  in place of  $v_2 - v_1$  distinct 0 (zero) in every block of  $N_2$ . Then the resulting matrix is an  $\alpha$ -resolvable BIB design with parameters  $v = v_2$ ,  $b = b_1 b_2$ ,  $r = r_1 r_2$ ,  $k = k_1$ ,  $\lambda = \lambda_1 \lambda_2$ ,  $m = m_2 b_1$ ,  $t = t_2$  and  $\alpha = r_1 \mu_2$ .

For example a BIB design with parameters  $v_1 = b_1 = 4$ ,  $r_1 = k_1 = 3$ ,  $\lambda_1 = 2$  and a resolvable BIB design with parameters  $v_2 = 8$ ,  $b_2 = 14$ ,  $r_2 = 7$ ,  $k_2 = 4$ ,  $\lambda_2 = 3$  lead to a 3-resolvable BIB design with parameters v = 8, b = 56, r = 21, k = 3, k = 6 by Theorem 2.2.

THEOREM 2.3. If  $N_1$  is a  $\mu$ -resolvable BIB design with parameters  $v_1$ ,  $b_1 = mt$ ,  $r_1 = \mu t$ ,  $k_1$ ,  $\lambda_1$  satisfying  $b_1 = 4(r_1 - \lambda_1)$ , and  $N_2$  is a BIB design with parameters  $v_2$ ,  $b_2$ ,  $r_2$ ,  $k_2$ ,  $\lambda_2$  satisfying  $b_2 = 4(r_2 - \lambda_2)$ , then  $N = N_1 \otimes N_2 + N_1^* \otimes N_2^*$  is an  $\alpha$ -resolvable BIB design with parameters  $v = v_1 v_2$ ,  $b = b_1 b_2$ ,  $r = r_1 r_2 + (b_1 - r_1)(b_2 - r_2)$ ,  $k = k_1 k_2 + (v_1 - k_1)(v_2 - k_2)$ ,  $\lambda = r - b/4$ ,  $\alpha = \mu r_2 + (m - \mu)(b_2 - r_2)$ , where  $N_i^*$  is the complement of a BIB design  $N_i$  (i = 1, 2) and  $A \otimes B = ||a_{ij}B||$  denotes the Kronecker product of matrices  $A = ||a_{ij}||$  and B.

Since it is proved by Shrikhande [9] and Sillitto [12] that  $N=N_1\otimes N_2+N_1^*\otimes N_2^*$  is a BIB design with the above parameters,  $\alpha$ -resolvability is easily shown.

From the definition of an affine  $\mu$ -resolvable BIB design, it follows that the existence of an affine  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$  implies the existence of a BIB design with parameters v'=m, b'=v, r'=k,  $k'=\mu$  and  $\lambda'=k+\lambda-r$ .

It is interesting to note that if r is a multiple of an integer  $\alpha$ , then grouping of  $\alpha$  complete sets each of blocks in a resolvable BIB design leads to an  $\alpha$ -resolvable BIB design with the same set of parameters. Moreover, from two  $\mu_i$ -resolvable BIB designs (i=1,2) with common parameters v, k and  $t_1=t_2$ , a ( $\mu_1+\mu_2$ )-resolvable BIB design can be constructed. Finally, by using Bose's first Module Theorem [1] it follows that the BIB designs with parameters v, b, r, k and  $\lambda$  in some series of Bose ([1], [3]) and of Sprott ([13], [14]) are k-resolvable.

3. d-flats in PG (t, q) and EG (t, q). A finite projective t-dimensional geometry over a Galois field GF (q), where q is a prime or a prime power, is denoted by PG (t, q) and the corresponding Euclidean geometry by EG (t, q). It is known that the BIB designs with parameters  $v = \phi(t, 0, q)$ ,  $b = \phi(t, d, q)$ ,  $r = \phi(t - 1, d - 1, q)$ ,  $k = \phi(d, 0, q)$ ,  $\lambda = \phi(t - 2, d - 2, q)$  and  $v = q^t$ ,  $b = q^{t-d}\phi(t - 1, d - 1, q)$ ,  $r = \phi(t - 1, d - 1, q)$ ,  $k = q^d$ , k = q

of d-flats in PG(t, q) [1]. Designs so obtained are denoted by PG(t, q): d and EG(t, q): d, respectively.

It is not difficult to verify that when (t+1, d+1) = 1, a BIB design PG (t, q): d is k-resolvable, where  $k = \phi(d, 0, q)$ , and that there does not exist an affine resolvable BIB design PG (t, q): d.

Since Rao [6] consequentially showed that a BIB design EG(t, q): d is resolvable, it follows from Theorem A and its direct calculation that a necessary and sufficient condition for a resolvable BIB design EG(t, q): d to be affine resolvable is d = t - 1. Further, since the parameters of a BIB design EG(t, q): d satisfy the condition of Theorem 1.3, it follows that an affine  $\mu$ -resolvable BIB design EG(t, q): d does not exist for  $\mu \ge 2$ . The construction of an affine resolvable BIB design EG(t, q): t - 1 is given by Rao [6], [7].

It should be noted that a BIB design, which is constructed by Theorem 2.1 from a resolvable BIB design EG (t, q): d, is  $(q^{t-d} - 1)$ -resolvable, and that in particular a BIB design, which is constructed from an affine resolvable BIB design EG (t, q): t - 1, is affine (q - 1)-resolvable. Finally, as a complement we point out an apparent error of Rao with respect to EG design. As stated in this section, an EG (t, q): d is a resolvable BIB design. Nevertheless, Rao [7] carelessly listed an EG (3.3): 1 as a non-resolvable BIB design. A non-cyclical resolvable geometrical solution of this BIB design EG (3, 3): 1 with parameters v = 27, b = 117, r = 13, k = 3 and k = 1, however, is easily given by a method of constructing parallel pencils in EG (3, 3) and omitted here.

4. Some inequalities among the parameters. We consider inequalities for BIB designs with parameters b = mt and  $r = \mu t$ .

Theorem 4.1. For a  $\mu$ -resolvable BIB design with parameters v, b=mt,  $r=\mu t$ , k and  $\lambda$ , then

$$(4.1) b \ge v + t - 1.$$

PROOF. Let N be the incidence matrix of a  $\mu$ -resolvable BIB design. In each of t sets of m blocks (or columns) each in N, where a set of the m columns is such that each treatment occurs exactly  $\mu$  times, adding the 1st, 2nd,  $\cdots$ , (m-1)th columns to the mth column of a set, we obtain a column consisting of  $\mu$  only. As there are such t sets evidently  $v = \text{Rank } N \leq b - (t-1)$ . Therefore we have  $b \geq v + t - 1$ .

Theorem 4.1 shows that the concept of  $\mu$ -resolvability cannot be introduced in a symmetrical BIB design. The particular case  $b \ge v + r - 1$  of the above theorem when  $\mu = 1$  was derived by Bose [2]. Since  $b \ge v + r - 1$  holds for any BIB design with the assumption that v is a multiple of k [4], if m is a multiple of  $\mu$ , then (4.1) can be improved to  $b \ge v + r - 1$ . As another improvement of (4.1), we have

THEOREM 4.2. For a BIB design with parameters  $v, b = mt, r = \mu t, k$  and  $\lambda$ , then

(4.2) (i) 
$$b \ge \frac{v-1}{u} + r$$
.

If, in addition,  $v \leq r$ , then

(4.3) 
$$(ii) b \ge \frac{2(v-1)}{\mu} + r.$$

PROOF. (i) Multiplying (0.1) by  $\mu$ , from (1.1) we have  $\mu(r-\lambda)=(\mu r-m\lambda)k$ . Since  $r-\lambda>0$  and hence  $\mu(r-\lambda)$  is a positive integer, we have  $\mu r-m\lambda\geq 1$ . Now from (0.1) and  $\mu(r-\lambda)=(\mu r-m\lambda)k$ , we get  $b=v\{(\mu r-m\lambda)k+\mu\lambda\}/\mu k$  or

(4.4) 
$$b = \frac{1}{\mu} (v - 1)(\mu r - m\lambda) + r.$$

Hence from  $\mu r - m\lambda \ge 1$  and (4.4) we obtain (4.2). (ii) Since  $\mu r - m\lambda \ge 1$ , assume on the contrary that  $\mu r - m\lambda = 1$ . Then from (4.4)  $v - 1 + \mu r = b\mu = mr$ , i.e.,  $m - \mu = (v - 1)/r$ . Since  $m - \mu$  is an integer, (v - 1)/r is an integer, which is a contradiction since  $v \le r$ . Hence we have  $\mu r - m\lambda \ge 2$ . Thus from  $\mu r - m\lambda \ge 2$  and (4.4) we obtain (4.3).

Since  $2(v-1)/\mu + r > (v-1)/\mu + r \ge v + t - 1$  for  $v \le r$ , if (4.1) is compared with (4.2) and (4.3), then (4.3) is more stringent than (4.1) provided  $v \le r$ . As an example which attains the bound of (4.3), we have a 2-resolvable BIB design with parameters v=6, b=15, r=10, k=4 and  $\lambda=6$  which is not affine 2-resolvable. The particular case  $b \ge 2v + r - 2$  of (4.3) when  $\mu=1$  was derived without a condition  $v \le r$  by Kageyama [4]. Finally, one should be referred to Kageyama [5] as a further improvement of inequalities in this section.

5. Block structure of a certain type. We give a certain aspect of the block structure of a special class of  $\mu$ -resolvable BIB designs (derived in Theorem 2.3).

THEOREM 5.1. If an  $\alpha$ -resolvable BIB design N is the Kronecker product  $N=N_1\otimes N_2+N_1^*\otimes N_2^*$  of an affine  $\mu$ -resolvable BIB design  $N_1$  with parameters  $v_1$ ,  $b_1=mt$ ,  $r_1=\mu t$ ,  $k_1$ ,  $\lambda_1$ ,  $q_1=k_1+\lambda_1-r_1$ ,  $q_2=k_1^2/v_1$  and a symmetrical BIB design  $N_2$  with parameters  $v_2=b_2$ ,  $r_2=k_2$ ,  $\lambda_2$ , and  $b_4=4(r_4-\lambda_4)$ , i=1,2, then with respect to any block B in N, the other blocks fall into five groups such that the group (1) contains  $b_2-1$  blocks each having  $\lambda_2 k_1+(b_2-2r_2+\lambda_2)(v_1-k_1)$  treatments in common with B, the group (2) contains m-1 blocks each having  $k_2 q_1+(v_2-k_2)(v_1+q_1-2k_1)$  treatments in common with B, the group (3) contains  $(m-1)(b_2-1)$  blocks each having  $\lambda_2 q_1+2(k_2-\lambda_2)(k_1-q_1)+(b_2-2r_2+\lambda_2)(v_1+q_1-2k_1)$  treatments in common with B, the group (4) contains m(t-1) blocks each having  $k_2 q_2+(v_2-k_2)(v_1+q_2-2k_1)$  treatments in common with B, and the group (5) contains  $m(t-1)(b_2-1)$  blocks each having  $\lambda_2 q_2+2(k_2-\lambda_2)(k_1-q_2)+(b_2-2r_2+\lambda_2)(v_1+q_2-2k_1)$  treatments in common with B.

PROOF. Under the assumption, the blocks of a BIB design N are separated into t sets of  $mb_2$  blocks each such that each set contains every treatment exactly  $\mu r_2 + (m - \mu)(b_2 - r_2)$  times. Since in each set of an affine  $\mu$ -resolvable BIB design  $N_1$ , any two blocks contain (1.1), (1.0), (0.1) and (0.0) exactly  $q_1$ ,  $k_1 - q_1$ ,

 $k_1-q_1$  and  $v_1+q_1-2k_1$  times respectively,  $(N_2,N_2)$ ,  $(N_2,N_2^*)$ ,  $(N_2^*,N_2)$  and  $(N_2^*,N_2^*)$  in each set of N occur exactly  $q_1,\ k_1-q_1,\ k_1-q_1$  and  $v_1+q_1-2k_1$  times, respectively. Since any two blocks belonging to different sets of  $N_1$  contain (1.1), (1.0), (0.1) and (0.0) exactly  $q_2,\ k_1-q_2,\ k_1-q_2$  and  $v_1+q_2-2k_1$  times respectively,  $(N_2,N_2)$ ,  $(N_2,N_2^*)$ ,  $(N_2^*,N_2)$  and  $(N_2^*,N_2^*)$  in a different set of N occur exactly  $q_2,\ k_1-q_2,\ k_1-q_2$  and  $v_1+q_2-2k_1$  times, respectively. On the other hand, from symmetry of  $N_2$ , the scalar product of any two columns of  $(N_2,N_2)$  (or  $(N_2^*,N_2^*)$ ) is  $k_2$  and  $k_2$  (or  $k_2$  and  $k_3$  and  $k_4$  and  $k_4$  arbitrarily in such a set and consider the block structure between  $k_1$  and the remaining blocks, i.e., consider  $k_1$  with respect to any block  $k_1$  in  $k_2$  in  $k_3$  the required results are obtained.

For example an affine resolvable BIB design with parameters  $v_1 = 9$ ,  $b_1 = 12$ ,  $r_1 = 4$ ,  $k_1 = 3$ ,  $\lambda_1 = 1$ ,  $q_2 = 1$  and a symmetrical BIB design with parameters  $v_2 = b_2 = 4$ ,  $r_2 = k_2 = 3$ ,  $\lambda_2 = 2$  lead to a 5-resolvable BIB design with parameters v = 36, b = 48, r = 20, k = 15,  $\lambda = 8$  by Theorem 2.3. This example would also illustrate Theorem 5.1. Similarly, we have the following

Theorem 5.2. If an  $\alpha$ -resolvable BIB design N is the Kronecker product N= $N_1 \otimes N_2 + N_1^* \otimes N_2^*$  of two affine  $\mu_i$ -resolvable BIB designs  $N_i$  with parameters  $v_i, b_i = m_i t_i, r_i = \mu_i t_i, k_i, \lambda_i, q_{i1} = k_i + \lambda_i - r_i, q_{i2} = k_i^2 / v_i \text{ and } b_i = 4(r_i - \lambda_i),$ i=1,2, then with respect to any block B in N, the other blocks fall into eight groups such that the group (1) contains  $m_2 - 1$  blocks each having  $q_{21}k_1 + q_{21}^*(v_1 - k_1)$  treatments, the group (2) contains  $m_2(t_2-1)$  blocks each having  $q_{22}k_1+q_{22}^*(v_1-k_1)$  treatments, the group (3) contains  $m_1 - 1$  blocks each having  $k_2 q_{11} + (v_2 - k_2)(v_1 + q_{11} - 2k_1)$ treatments, the group (4) contains  $(m_1-1)(m_2-1)$  blocks each having  $q_{21}q_{11}+$  $2(k_2-q_{\scriptscriptstyle 21})(k_1-q_{\scriptscriptstyle 11})+q_{\scriptscriptstyle 21}^*(v_1+q_{\scriptscriptstyle 11}-2k_{\scriptscriptstyle 1})$  treatments, the group (5) contains  $m_2(m_1-1)(t_2-1)$  blocks each having  $q_{22}q_{11}+2(k_2-q_{22})(k_1-q_{11})+q_{22}^*(v_1+q_{11}-v_2)$  $2k_1$ ) treatments, the group (6) contains  $m_1(t_1-1)$  blocks each having  $k_2q_{12}+(v_2-1)$  $k_2$ ) $(v_1+q_{12}-2k_1)$  treatments, the group (7) contains  $m_1(m_2-1)(t_1-1)$  blocks each having  $q_{21}q_{12} + 2(k_2 - q_{21})(k_1 - q_{12}) + q_{21}^*(v_1 + q_{12} - 2k_1)$  treatments, and the group (8) contains  $m_1 m_2 (t_1-1) (t_2-1)$  blocks each having  $q_{22} q_{12} + 2 (k_2-q_{22}) (k_1-q_{12}) +$  $q_{22}^*(v_1+q_{12}-2k_1)$  treatments, in common with B, where  $q_{21}^*=v_2+\lambda_2-k_2-r_2$ and  $q_{22}^* = (v_2 - k_2)^2 / v_2$ .

Note that if the complementary designs are not considered, i.e., we consider  $N = N_1 \otimes N_2$  only, then Theorems 5.1 and 5.2 contain Corollaries 3.2.1 and 3.2.2 of Vartak [15] for  $\mu = \mu_1 = \mu_2 = 1$ , respectively as a special case.

Acknowledgment. The author wishes to thank the referees for their valuable comments.

## REFERENCES

[1] Bose, R. C. (1939). On the construction of balanced incomplete block designs. Ann. Eugenics 9 353-399.

- [2] Bose, R. C. (1942). A note on the resolvability of Balanced Incomplete Block Designs. Sankhyā 6 105-110.
- [3] Bose, R. C. (1942). On some new series of balanced incomplete block designs. *Bull. Calcutta Math. Soc.* 34 17-31.
- [4] KAGEYAMA, S. (1971). An improved inequality for balanced incomplete block designs. *Ann. Math. Statist.* 42 1448-1449.
- [5] KAGEYAMA, S. (1973). On the inequality for BIBDs with special parameters. Ann. Statist. 1 204-207.
- [6] RAO, C. R. (1946). Difference sets and combinatorial arrangements derivable from finite geometries. *Proc. Nat. Inst. Sci. India* 12 123-135.
- [7] RAO, C. R. (1961). A study of BIB designs with replication 11 to 15. Sankhyā 23 117-127.
- [8] RAO, M. B. (1966). Group divisible family of PBIB designs. J. Indian Statist. Assoc. 4 14-28.
- [9] Shrikhande, S. S. (1962). On a two-parameter family of balanced incomplete block designs. Sankhyā 24 33-40.
- [10] Shrikhande, S. S. and Raghavarao, D. (1963). A method of construction of incomplete block designs. Sankhyā 25 399-402.
- [11] SHRIKHANDE, S. S. and RAGHAVARAO, D. (1964). Affine α-resolvable incomplete block designs. Contributions to Statistics, Volume presented to Professor P. C. Mahalanobis on his 70th birthday; Pergamon Press, Oxford and Statistical Publishing Society, Calcutta.
- [12] SILLITTO, G. P. (1957). An extension property of a class of balanced incomplete block designs. *Biometrika* 44 278-279.
- [13] SPROTT, D. A. (1954). A note on balanced incomplete block designs. Canad. J. Math. 6 341-346.
- [14] SPROTT, D. A. (1956). Some series of balanced incomplete block designs. Sankhyā 17 185-192.
- [15] VARTAK, M. N. (1960). Relations among the blocks of the Kronecker product of designs. Ann. Math. Statist. 31 772-778.

DEPARTMENT OF MATHEMATICAL SCIENCES
OSAKA UNIVERSITY
TOYONAKA, OSAKA
JAPAN