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AN EMPIRICAL BAYES APPROACH TO
MULTIPLE LINEAR REGRESSION:

By SERGE L. WIND

A. T. & T., Management Sciences Division
New York

We consider estimation (subject to quadratic loss) of the vector of
coefficients of a multiple linear regression model in which the error vector
is assumed to have 0 mean and covariance matrix ¢27 but is not assumed to
take on a specific parametric form, e.g., Normal. The vector of coefficients
is taken to be randomly distributed according to some unknown prior. Re-
stricted minimax solutions are exhibited relative to equivalence classes on
the space of all prior probability distributions which group distributions
with the same specified moments. In the context of the classic Empirical
Bayes formulation, we determine restricted asymptotically optimal estima-
tors—i.e., decision functions whose Bayes risks converge to the risk of the
restricted minimax decision at each component stage.

1. Introduction and summary. Estimators are exhibited for the parameters in
the multiple linear regression model, which, in addition to using data from the
present set of observations, incorporate data obtained in previous (independent)
experiments. These estimators have lower Bayes risk than the usual least squares
estimators.

The coefficient parameters are assumed to be random variables, distributed
according to an unknown prior distribution. The regression problem is assumed
to occur repeatedly and independently, with the same prior throughout—the
Empirical Bayes formulation of Robbins [10]. The classic Robbins Empirical
Bayes approach has been applied to the general linear model with Normally
distributed error variables, e.g., see Martz and Krutchkoff [8], where consistent
estimators for the (single stage) Bayes rule are proposed as Empirical Bayes pro-
cedures. In this paper, no specific parametric form is assumed, and the problem
is formulated in the generalized Empirical Bayes approach first considered by
Robbins in Section 5 of [10] as an application to estimation of a binomial parame-
ter, and then expanded upon by Cogburn [3]. In this formulation, a restricted
minimax decision, defined on an equivalence class, or subset of the set of priors,
which groups distributions with the same specified moments, is the decision func-
tion whose Bayes risk is less than or equal to the infimum (over all decisions)
of the supremum (over an equivalence class) of the Bayes risk function. We
determine restricted asymptotically optimal estimators, i.e., decision functions
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whose Bayes risks approach the risk of the restricted minimax decision at each
component stage.

Satisfying the criterion of restricted asymptotic optimality are components of
“Stein-James estimators.” These estimators are generalizations and modifica-
tions of the one proposed by James and Stein [5] for estimating the mean of a
multivariate Normal distribution, and they have been considered as Empirical
Bayes procedures by Kantor [6] and Efron and Morris [4] for Normal distri-
butions, and by Cogburn [3] for the case where no parametric distribution is
specified. For the latter instance, properties of Stein-James estimators are given
by Cogburn [2] and Wind [14].

Definitions of terms and a formalization of this approach in a statistical frame-
work, based on concepts defined in [3], are presented in Section 2.

The regression model is analyzed in Section 3. It is assumed that Y = X8 + ¢,
where X is a matrix of known constants, 8 is a vector of unknown parameters,
and ¢ is a random vector with mean 0 and covariance ¢?/. For quadratic loss,
restricted minimax solutions are exhibited for classes of prior distributions on 3
(Theorem 3.1) and for joint priors on (8, ¢*) (Theorem 3.2). For equivalence
relations on the priors specifying (i) their means and variances or (ii) second
moments, restricted asymptotically optimal decision functions are found in
Theorem 3.3 if each independent component regression problem has the same
diagonal X’X matrix and common unknown variance ¢*.

In Section 4, based on the work of Bhattacharya [1] and Sclove [11], a
correspondence is developed between the problems of estimating regression
coefficients and estimating location parameters. Restricted asymptotically opti-
mal estimators of g relative to equivalences which group priors by their mean
vectors and by all components of their covariance matrices are exhibited in
Theorem 4.1.

2. Definitions and statistical framework. For the statistical decision problem
with which we are concerned, the sample space, parameter space, decision space
and their o-fields are given respectively by (25, "), (0, r), and (&, D). The
family of distributions {F,(+): ¢ ¢ O} satisfies F.(B) r-measurable for each B¢
%". The loss function L is = X D measurable. R(., d) denotes the risk function
of the randomized (behavioral) decision function . A is the space of all such
decision procedures. L*(8, 0, x) = §, L(0, ¢)d(x, dc). II denotes the set of all
(prior) probability distributions on = and R*(x, ) = (o R(¢, 0)x(d0) is the Bayes
risk function.

DEeFINITION 2.1. The Bayes envelope function r* defined on II is r*(x) =
inf; ., R*(x, 0).

DEFINITION 2.2. 0, is Bayes re r if R*(x, 0,) = r*(x).

DEeFINITION 2.3. Let T be contained in the class of all subsets of II. A deci-
sion function 9, is restricted minimax relative to T if

R*(x', 8;) < inf, sup,., R*(x, 0) , Va'eT.
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If a priori we know that = ¢ T, it is reasonable, in a minimax sense, to use a
restricted minimax decision, if it exists. Thus, if we describe partial information
about the prior distribution = by introducing an equivalence relation ~ on II,
we assume we know r up to ~. We will denote the equivalence class generated
by 7 by

~(r)={a"ell: x’'~x}.
DEFINITION 2.4. The envelope risk function r_*, relative to ~, is
r.*(m) = inf; sup_, R*(«’, 9) ,

and is the best (in a minimax sense) we can do given that we know 7 up to ~.
Let us now describe the Empirical Bayes problem. Given (0, 7), (-2, %),
and (¥, D), measurable spaces, and loss function L as above. Let (4,, x,),
(02 x,), - - - be a sequence of pairs of random variables, each pair independent
of the others, with the 6, having a common a priori distribution = ¢ II, and the
distribution of x; given 6, = 6 denoted by F,(-). So, at the nth stage or com-
ponent experiment, we can say that a real vector 8 = (@, - - -, 6,) is selected
by choosing the components independently, each with the same distribution =
and then x™ = (x,, - - -, x,) has probability distribution F,u(+) with
Fym(x™) = Fy(x)) - Fox)« « -+ - Fen(x”) .
The parameter space is ™ and the experiment space (:2°™, .2 ), where the
superscript denotes the n-fold Cartesian product. Let decision function 4, be a
transition probability mapping such that d,(x™, .) is a probability measure on
the space (&, D) for each x™ ¢ 2°™, and 9,(, ¢) is % -measurable in x™
for each ce Dji.e., 0,: Z™ — &, whose form is functionally dependent on
x™. The overall expected loss of the nth stage estimator 4, is

R,*(w, 0,) = Son(dl,) - - - Son(dl,)§ . L,*(0,, 0,, x™) - Fyim(dx™),
where .
L*@,,0,, x*) = 1§, L,, ), (x™, dc) .
DerINITION 2.5. Given a sequence of decision functions {9,}, n = 1,2, ...
for the Empirical Bayes problem, if
Rn*(n.’ 5n) - lnfﬁn Rn*(n.’ 51»)
for all z ¢ II, then {9,} is called asymptotically optimal. As noted in (3.6) of [3],
inf; R,*(z,d,) = inf; R*(x, d) = r*(x) .
Suppose we select the equivalence relation that identifies those distributions of
IT having the same specified set of moments, a characteristic of = which should
be easily estimable from our x» sample. We hope the Bayes risks of our esti-
mators do as well asymptotically as if the equivalence class were known before-
hand and at each stage we used the corresponding restricted minimax decision.
Thus this criterion, described in [3], becomes

(2.1) R,*(z, 8,) — r.*(n) V.
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DEFINITION 2.6. A sequence of estimators {9,} satisfying (2.1) is called re-
stricted asymptotically optimal.

3. Linear regression. The multiple linear regression model consists of data

7' = (Y, X),
where y; = f'x; + ¢, (j=1,2, ..., N), xX; = (X1, - -+, X;,), With
3.1) Ee;, =0 and Ee;e, = 0%, ,
where 4;, is the Kronecker delta. Or,

(3.2) Y=X8+e,
where
Y isan N x 1 random observed vector,
¢ isan N x 1 random (error) vector with moments (3.1),
X isan N X p matrix of fixed quantities, and
B isap x 1 vector of unknown coefficients.

We will always assume that X is of full rank (rank X = p < N). Let V = X'X.
Then the LSE is § = V-1X"Y.

Normality is not assumed in (3.1); a partially non-parametric approach is taken
by specifying only the first two moments of the error variable.

The problem considered is point estimation of 8. A general loss function,
under which methods of this paper apply, is

(3.3) oHB — bYA(B —b),
with A a known p X p positive definite matrix. However, the loss function
(3-4) o7 — b)Y V(B — b)

will be used frequently, since it can be considered “natural” in the following
sense. Suppose we have another set of data Z*, independent of Z, but with the
same distribution; i.e., y,* = f'x,* 4+ ¢,, k = 1, - . ., N with moments (3.1). We
are given X* and wish to predict Y*, by taking an estimator 4 of 8 which is a
function only of Z. Then the mean squared error of prediction, conditional on
b, appropriately transformed so that the loss of a perfect estimate is zero, can
be shown, using the same proof as given by Stein [12] for the Normal linear
regression model with random predictors, to be precisely (3.4).

Groups of prior distributions on the p-vector § are identified by specifying a
set of moments of the prior. Assuming variance ¢* is known, the moments con-
sidered that determine an equivalence class are the p means and the p(p + 1)/2
elements of the covariance matrix. Each class must be identified by at least p
moments—the second moments of the marginals—and can be identified by as
many as (p* + 3p)/2 moments, including the means and covariances.

Let 4 = (g, - -+, 1)’ and let Z* be a p X p symmetric matrix with components
of;. For the ith regression coefficient, if only the second moment is specified in
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a given equivalence class, set ¢} = EB? and g, = 0; if the variance and mean
are specified, set ¢ = Var(B;) and g, = EB,. For j =+ i, let ¢}; = Cov(8,;, §;) if
the covariance and the means of f§; and §; are specified in the class; let ¢}; =
Ep; B; if that moment is part of the equivalence and both the means of ; and
B, are not part of the equivalence specification; let ¢ = 0 if a covariance is not
specified in the class.

Restricted minimax decisions for the (single stage) regression model are given
below in Theorems 3.1 (for priors on ) and 3.2 (for joint priors on (5, ¢%)).
First, two useful lemmas are stated.

LemMA 3.1. The Bayes estimator o of § for generalized quadratic loss (3.3) and
for specified parametric distributions on ¢ and B is & = E(B8| B), the mean of the pos-
terior distribution of B given B, and

R¥(z, 9) = 0= 112, 1.2, di; E[Cov(B;, B;| B)] ,

where d;; are the components of A and where the expectation is taken with respect to
the marginal density of B. (See, e.g., [7] pages 18-20.)

Lemma 3.2. If 6 is Bayes with respect to some n* ~ © and R*(zx’, 0) is constant
for ~ (x), then 0 is restricted minimax relative to ~ ().

THEOREM 3.1. With loss (3.4), for the regression model (3.2) with ¢* known,
relative to a given equivalence class of the priors on B, the restricted minimax esti-
mator is

(3.5) b= (5 + V) AE) e + V),
and r¥(z) = Y; X3, Vi; m;;, where m; are the components of M = (¢*(Z*)~* + V)7L

Proor. Consider the parametric subfamilies of Normal distributions of ¢ and
8. The posterior distribution of 8 given LSE j is Normal with mean (3.5),
which is the Bayes estimator, and covariance oM ([9] page 337). Since its risk
is constant for the equivalence class, b is restricted minimax for the Normal
subfamily and thus for all distributions with first two moments specified.

If 6% is a random variable, an equivalence class of the joint priors on (', ¢%)
must be identified by at least p + 1 moments (the second moments on 8 and
Eg¢?) and by at most (p* + 3p + 2)/2.

THEOREM 3.2. For the regression model (3.2), subject to loss (b — B)' V(b — B),
and with p = Ed® as part of the specification of the equivalence class of the priors on
(B, %), the restricted minimax estimator is

(3-6) b* = (o(Z*) + V) e(Z*) e + V),
and
rX(m) = Xi Xk, where L= (o(Z¥) + V).
Proor. If ¢ is Normally distributed and the prior on (f’, ¢~%) is a Normal-
gamma ([9] pages 343-345) with parameters (g, ¢, po(£*)~*, v) with v, ¢ such that
p = vt/(v — 2) and rank (£*)~! = p,, the marginal posterior distribution of 8 given
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8 is a multivariate Student distribution ([9] pages 256-259) with mean 6* (3.6),
which is constant risk Bayes, and covariance Lyv*t*/(v* — 2), where

v =v+p +N—p,,
p, = rank (L71),
= (o(v — 2) + p/ () e + Y'Y — VLB ¥ .

But E(v*r*/(v* — 2)) = vt/(v — 2) = p, with the expectation taken with respect
to 5.

Consider (3.2) with orthogonal design—i.e., ¥ = X’X is diagonal—and those
equivalence classes which identify prior distributions on 8 having the same
specified finite means and variances or the same second moments of 8 (but with
no specification of covariance terms). A typical equivalence relation in this
subgroup considered is (4,, - - -, 4,), where 2, is equal either to (z;, ¥'?) or y, for
i=1, ..., p,and where 4, = EB,, ¥';> = Var(8;), and , = EB2. The corollary
below follows as a special case of Theorem 3.1 with diagonal Z* and V.

CoROLLARY 3.1. Given the regression model (3.2) with orthogonal design, b =

(bys + -+, b,) is restricted minimax relative to (4,, - - -, 1,), subject to loss (3.4), where
II['.2‘B‘. + oWiip, .
3.7 b, = 1 T 7 - M if 2, = (y;, ¥?
( ) - * o.z,vii + II['iz f K (/’ez )
_ b if 2, =7
i 7; f K Ti

fori=1,...,p, and R¥(x, b) = Z¢(¢p; + ™)1, where

¢, =V} if A= (¥
=T if 4=y

PropPerTY 3.1. For estimating §;, with marginal prior z;, and letting b,; denote
the restricted minimax solution (3.7) for 2; = (#;, ¥;?), and b,, denote (3.7) for
A; = 7;, then

vz ;
R* ﬂ-,bi = L2 < T _ = R*(n,, bi s
( 2 1) -llriz + P 7: + e (7[ 2)

with equality only if x; = 0. Both risks are less than one, the risk of LSE Bi.

Thus far, the treatment has been Bayesian. However, suppose the parameters
of the prior are unknown, but we have available data from previous regression
experiments—the “g-stage Empirical Bayes regression problem”: Given a
sequence of independent regression problems with data Z,, Z,, ..., Z, and,
respectively, regression coefficients ), ), - - -, B,), Where Z; = {(%7) (%) - - -
(4¥i)} is the data of the ith stage, where x, = (x;,, - -+, x,,)’ and 8, = (By» - - -
ABM)’ and

(3-8) Vg = Ll Bijxi + ey = Bl X + &g
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where

Yu; Is the kth observation (k =1, ..., N) of the jth component

stage (j =1, ---, q);
Bi; is the ith parameter (i = 1, - - -, p) of the jth stage;

x,; is the independent variable corresponding to the kth observation
and ith regression coefficient;

¢,; has moments (3.1) and ¢, ¢,; are independent for j = i, for all
k and c.

Each experiment has the same independent variables, the same number of
observations N, and common variance a*. (B, Z), (B> Z,), - - - is a sequence
of pairs of sets of random variables, each pair independent of the others. S,
B> + -+ is a sequence of independent realizations of random variables, each

distributed according to the same (unknown) prior distribution.
Set

1 a
3.9 0’ = ———————— T N (i — 2P BriXa)
(3.9) P = g Dt T 0 — B B
(3.10) Bl = (1- U=V Vg )+ &,
22 (Bi — Bi)
311 D,, Biq —(1— q&wji +,é,~q,
G40 Go=(-15)
with
(3.12) Bi=q" Ti by

where §,; is the jth stage LSE of §,;, and Z+ = max(0, Z).

15

THEOREM 3.3. Given the q-stage Empirical Bayes regression problem with
orthogonal design, with the error variables ¢ drawn from a family of uniformly square
integrable distributions with bounded fourth moments, the sequence of restricted
asymptotically optimal decision functions relative to (4, ---,2,) for estimating
B+ Bpg i {brgs -2 by}, g =1, - - - where 2, = (1, W) or 1, and

Biq = B;, if 4 :‘(/“‘i’ ¥? and q=3
D, if 4,=7;, and ¢ =3
b i g=1.2

with B;, defined in (3.10) and D, in (3.11).

(3.13)

Proor. Follows from a general result given as Corollary 2.3 in [14], where
Stein-James estimators of this form are considered. (See also [13].)

ProOPERTY 3.2. The form of the Stein-James estimators (3.10) and (3.11) is
suggested by substituting in (3.7) for the now unknown parameters p;, 2, 7,,
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and ¢*, estimators g, = [3 (3.12), ¥z, 7, and 62 (3.9) respectively, with
U= [Zia (ﬁu — By — (g — DaW g — 1),
7 =205 B — q6°v*]*[q .
THEOREM 3.4. Under the conditions of Theorem 3.3, if the variance of ¢ varies
with each component problem and a joint prior on (f', 6°) is assumed, then relative
to (B — b)Y V(B — b), (3.13) is restricted asymptotically optimal with G* (3.9) re-

placed by

_ 1 A
3.14 =~ SV Ny — T2 Buixa)
( ) q(N P 2) i J(yw k= 18 X, )

Proor. Follows from Corollary 2.4 of [14].

PrOPERTY 3.3. The results of the above two Theorems hold if in (3.8) the
restrictions that the number of observations N and the independent observations
X remain the same for each experiment are relaxed subject to the condition that
X' X remains constant for each component problem. Then, in place of (3.9), we

estimate ¢* by

ay 1 Vi 3

¢t = S (N, —p) +2 I T g — 281 Big %)
where x,;; denotes the kth observation (k = 1, .-, N;) of the ith parameter
(i=1,---,p)at the jth stage (j =1, - --, g), and N; is the number of obser-

vations at stage j.

ProperTY 3.4. The form of the estimator B;, (3.10) suggests that we are
making a preliminary test of the hypothesis H,: §;; = B, forallj=1,...,4.

We accept H, if 3, (8:; — [3 )? < (¢ — 1)é**, and then estimate §,; by [3 If we
accept H,, we are really pooling independent consistent estimators B -+, B .

and using §;.

4. Restricted asymptotically optimal solutions. In this section, a correspondence
between estimating regression coefficients in the g-stage Empirical Bayes formu-
lation and estimating mean vectors also in a g-stage Empirical Bayes setup is
established. This correspondence is employed in Theorem 4.1 to present re-
stricted asymptotically optimal decision functions for the regression problem.

Given, as specified in (3.8), a sequence of ¢ independent regression problems
with data Z,, ..., Z,, we are interested in estimating the p X ¢ matrix 8. For
convenience in handling the data, (3.8) is rewritten in the following form:
Observe a sample of N observations Y;, ---, Y, on the dependent variables,
where the g-dimensional vector Y, = (yu, - - +» V) is distributed with mean
B'x, and nonsingular covariance matrix X = ¢*/. Set the ¢ X N matrix Y =
(Yy, -+ -, Yy) and the p X N matrix X’ = (x,, - - -, xy). Then, conditional on g,
EY = B'X’. The loss function is

(4.1) L(B,b) = tra=*(b — ByA(b — ),
the g-variate analog to (3.3), with tr denoting the trace.
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The least squares estimate of B is ‘Z} =V, with U= I x, Y,/ , V=
X'X =¥ x,x,/. Estimate ¢* by (3.9), or identically, set

(4.2) 8 = (g(N — p) + 2)*tr S,

with
S=T—-UV-'U=T-— VB, T=YlY,Y/ .

The transformations on the regression problem given below were suggested
by the mappings in [1] and [11] which assumed a Normal process, but the im-
position here of a prior distribution necessitated some modifications.

There exists a nonsingular p x p matrix C such that

(4.3) ccC=Vv and CDC=A.

Let W® = C’-'X’, and the rows of W™ are orthogonal. Following Sclove [11],
select the (N — p) X N matrix W® such that W' = (W%, W®")isan N x N
orthogonal matrix. Set Z* = YW’. Then Z* = (Z", Z®) = Y(WY', W@,
where Z® is of dimension ¢ X p and Z® is ¢ X (N — p). Let Z, = (Z,;, ---,
Z,) be a g-vector for iA= 1, ..., N. Then Z* =(Z,, --+, Z,, Z, 1, - -+, Zy).
It is easy to verify that 8 = C-'Z%’, EZ" = (EB)'C’,

S=2zZwzw =y 7,7/,

and EZ® = 0, with Eg the mean of 8. Settheq X pmatrix§ = (6,, ---,0,) =
B'C' = E(ZV|B). Then, fori=1, ..., p, Z, = B/(C’), has mean 6, and covari-
ance X = ¢*/, conditional on 8, where (C’), denotes the ith column of C’. For
i=p+1,..-, N, Z has mean 0 and covariance X. Conditional on B, Z,, Z;
are mutually orthogonal and Z® and Z® lie in orthogonal spaces.

Let P be a p X p orthogonal matrix which rotates the axis of the distribution
such that for each row of the transformed variable

(4.4) )

the elements are pairwise uncorrelated. Recall Z* = Cov(p).

Thus P(¢’I 4+ CZ*C')P’ is the diagonal covariance matrix for the data of each
component experiment. (P is the matrix such that the elements of P(Z""),, for
each i =1, ..., ¢, are uncorrelated unconditionally where (Z); is the ith
column of Z"'.) Let K = (K,, -- -, K,), each K, a g-vector. K;, K; (j + i) are
unconditionally uncorrelated and the components of each K; are mutually
independent.

Under transformations (4.3) and (4.4), K = ﬁ’C*' = YW®'P' with C* = PC
and C*'C* = V. Let § be an estimator of § = 8'C’ and let 7 be an estimator of

A

n = B'C*¥; define the corresponding estimator b of 8as b = C*-1'.
ProOPERTY 4.1. For estimating 7, loss (4.1) is

(4.5) Ly(n, 9) = 07 2. di(h; — ) (9 — ) = Ll(ﬂ’ b) .

We can now see how the problem of estimating 8 with loss (4.1) is related to
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the problem of estimating mean 7 subject to (4.5) with data K, with uncorrelated
column vectors K, - - -, K,, with components of each K; independent, and data
S, which lies in a space orthogonal to K. For an estimator ¢(K,, - - -, K, S) of
7, define the corresponding estimator for B,

(4.6) U(B, ) = C/(B(C*)s s B(CY), 5) -
With respect to losses (4.1) and (4.5), let
R(B, W) = EL(8, ¥) and Ry(n, ) = ELy(%, ¢) -
PROPERTY 4.2. Ry(n, ¢) = R,(B, V) .

It follows that (4.6) preserves dominance relations among estimators, and the
theorem below can be verified.

THEOREM 4.1. Given the g-stage Empirical Bayes regression problem (3.8) with
the error variables ¢ drawn from a family of uniformly square integrable distributions
with bounded fourth moments, the restricted asymptotically optimal estimator at stage
g, relative to a given equivalence class of priors of B specified by its first two moments
and loss (3.4), is

C*-l(aql(qu)’ Tt 5«11)(qu))/ ’
with K = ‘é’C*’, and fori=1, .-, p,
0,:(Kp) = 0,(K,) if ¢q=3 and p,+0
= 0;%(K.) if g=z3 and p;=0

:K«; ’f q<3’
oK. = 1_(_‘1—_1ﬂ>+1<._12. g,,
) = (1= ) K=K+ K
0:*(Ky) = <1 - Zqi;ﬂ)" Ky »

Ki = q_l 3’=1 K'i ’

J
0; = 2k Clatta s
with p, as specified prior to Theorem 3.1 and G given by (4.2).

PrOPERTY 4.3. If the component problems do not have common variance g2,
let X be a diagonal matrix with elements g --+,0,} For a joint prior on
(8, 0%, replace * in Theorem 4.1 with (3.14), and the results obtain subject to
loss (b — BYA(6 — B).
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