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RANK TESTS WITH INTERVAL-CENSORED DATA

BY MicHAEL G. AKRITAS

Pennsylvania State University

An interval censoring model is carefully defined and the range of its
applicability is illustrated. A class of rank tests for the two- and k-sample
problems is proposed. The statistic is based on the exact ranks of the
observed responses and resembles the rank statistic in the usual uncensored
case. This statistic is shown to be asymptotically equivalent to the efficient
scores test statistic under an assumed parametric model. An alternative rank
statistic, based on the estimated ranks of the unobserved variables of interest
and applicable under a more general interval censoring model, is also pro-
posed.

1. Introduction. Unlike the random censoring model, relatively little atten-
tion is paid to the statistical analysis of interval-censored data. Such data arise
quite naturally in medical follow-up studies or in industrial life-testing and thus
more work on testing procedures with such data is warranted.

Peto (1973), Turnbull (1976) and Chang and Yang (1987) deal with the
problem of estimating the underlying survival distribution; Mantel (1967) gives a
very simple rank test for arbitrarily censored data; Schemper (1983) extended
Mantel’s test to & samples; Schemper (1984) extended Friedman’s test to data
defined by intervals; Kariya (1981) considers properties of the maximum likeli-
hood estimator and Abel (1986) considers testing against order alternatives for
such data. It should be mentioned that the above rank tests do not possess any
special optimality properties.

In this paper we consider a more restricted model than is usually assumed and
deal with the problem of constructing efficient rank tests for the two-sample
problem. The restricted model essentially requires equally spaced inspection
intervals. It is remarked that this restriction is necessary in order to show the
full Pitman efficiency of the proposed class of rank tests. A different class of rank
tests that does not require this restriction is also proposed in Remark 2.5. The
discussion in Section 2.3 shows that even the restricted model has a wide range
of applicability.

The method for constructing an efficient rank test statistic is based on an
appropriate choice of the score function so that the rank statistic, when ex-
pressed as a functional, resembles the efficient scores test statistic. The asymp-
totic efficiency of the rank test is then established by proving the asymptotic
equivalence of the two statistics. The proof makes essential use of certain linear
bounds in the sense of Shorack (1972).
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In Section 2 we give a careful description of the interval censorship model and
we propose a class of rank statistics; the candidate optimal score function for a
given parametric model is derived. The statistic employs the exact ranks of the
observed responses. An alternative rank statistic which uses the estimated ranks
of the unobserved variables of interest is also proposed in Remark 2.5 but
proving its efficiency would require a number of theoretical results which are
presently unavailable. In Section 3 we state the assumptions, two preliminary
results and present a number of examples. The two-sample case is considered in
detail in Section 4.

2. The model and the rank statistic.

2.1. The model. Suppose that in some medical or industrial set up, inspec-
tion occurs at times kA, k > 1, where A is some positive constant, and that the
time a subject enters the study is recorded exactly. Assume without loss of
generality that A = 1. The data will consist of independent and identically
distributed (iid) pairs of random variables (4;, X;), i = 1,..., n, where A de-
notes the time mod (1) of entry to study (so 0 < A <1 a.s.) and X is the time
from entry until the response is observed. The true response time will be denoted
by Y; Figure 1 helps clarify the relationship between the variables A, X and Y
(see also Remark 2.2).

REMARK 2.1. In the interval censoring model considered by other authors
[cf. Kariya (1981)] the inspection intervals can be different for each subject and
do not have to be of the same length. However, the tests we will consider use the
ranks of the observable X’s and in order to achieve asymptotic efficiency for
such tests we found it necessary to consider the more special model. If the
inspection intervals are not the same, efficient tests based on the ranks of X
cannot be constructed; Remark 2.5 discusses the possibility of constructing
different rank tests in this case.

A 1-A ces
—— + + 1
—Y- —_—
L —— -X--
Fic. 1.
. Assume that
(2.1) P(A <a,Y<y)=G(a)F(y;n),

where 7 is some unknown Euclidean parameter, F(-;n) is a distribution
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function of known form and G(-) is, in general, an unknown distribution
function on [0, 1]. Noting that X = [A + Y] + 1 — A, where [-] denotes integer
part, relation (2.1), and some straightforward calculations imply

(22) P(X<x)=H(x)= jO‘F([x +a—1]+1 - a; ) dG(a).

Differentiating this with respect to x [note that the integrand on the right-hand
side of (2.2) is not differentiable with respect to x], we see that H, has density

(2.3) hy(x) = {F(x;9) — F(x — 1;79)}g([x] + 1 — x),

with respect to the Lebesgue measure, where g is the density of G. From (2.3) we
have that the efficient scores statistic for testing H,: n = Mo based on X,
i=1,...,n,is .
9/dn{F(X;m) — F(X; - 1; 7))
F(Xi; n) — F(Xi -1 "7)

(2.4) %

i=1 n="mno

REMARK 2.2. The random variable A and the assumption (2.1) were intro-
duced merely as a means for deriving the density expression in (2.3). In fact we
have 1 — A = X — [X] so that observing the pair (A4, X) is equivalent to
observing just X.

2.2. The rank statistic for the two-sample problem. In later sections we will
be dealing with the two-sample problem and in this setting it is customary to
consider classes of probability models F(-; n) for which the parameter 5 bears
some easily understood impact on the distribution. In this paper we will consider
testing equality of a scale parameter. Take 7 = (6, 6) and assume that, for the
two-sample case Yj,..., Y., are iid Fy(x; 6, 0) = F(xo exp(—qf)) and
Yois---s Yz,,2 are iid Fy(x; 0,0) = F(xo exp(pf)), where —o0 < < 00, ¢ > 0
and q = ny/N, p =n,/N, where N = n, + n,. Thus oe~? and oe?’ are the
true values of the scale parameter whose equality (8 = 0) is being tested. Then,
letting f denote the density of F, relation (2.4) implies that the efficient score
test statistic for testing H,: § = 0 is proportional to

a Xlif(é\Xli) - (Xli - l)f(é\Xli - 6)
F(6X};) — F(&Xli - 4)

22 X, f(6Xy;) — (X, — 1)f(6Xy; — 6)

2.5 A

(2.5) +p L F(6X,;) — F(6X,; — 6)

i=1

i=1

= qn1f<1>5(x) dH,(x) — pn2f<1>6(x) dHy(x),

where ¢ is some root n consistent estimator of ¢ obtained from both samples
under the null hypothesis, ﬁ, denotes the empirical distribution function (edf)
corresponding to X,,,..., X,,, ¢ = 1,2; note that (2.5) also defines .

) tnt’
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REMARK 2.3. Root n consistency of nuisance parameters is required in the
theory of C(a) tests [Neyman (1959)]; according to Section 2.4, the statistic in
(2.5) is a C(a) test statistic and thus § is required to be root n consistent. For
the rest of the paper we assume that such a 6 is available.

For = (0, 0) let H,(-) as defined by (2.2) be denoted by H,(-) and define the
score function

(2.6) J(u) = Jy(u) = ®;(H;Y(v)), O<u<l.

Intuitively then the rank statistic, expressed in a functional form as
NH(x) NH(x)\ .

e e[ e ) — eI 5T ),

where H is the edf corresponding to X,,i=1,...,n,t= 1,2, will be asymptot-
ically equivalent to the efficient scores statistic in (2.5); this will be established in
Section 4. Note, however, that the distribution G [which is involved in the
definition of the score function in (2.6)] is unknown. The proofs in Section 4 hold
for any distribution function G that satisfies assumptions (E2) and (E3) of
Section 3, but for the rest of the paper we will assume that G(a) = a,0 <a < 1.
In Section 2.3 below we include a discussion on this assumption.

REMARK 2.4. Unlike the score function in the usual iid case, the present
score function in (2.6) is random since it depends on §. Conditionally, however,
on the estimate 6 (recall that 6 is obtained under the null hypothesis) the usual
finite sample properties of rank statistics hold. In particular, for small sample
sizes, the cut off points of the test may be obtained from the permutation
distribution of the statistic.

REMARK 2.5. The statistic in (2.7) employs the (exact) ranks of X,;, i =
1,...,n, ¢t=1,2. One can also construct a statistic which employs the (esti-
mated) ranks of the actual response times, namely,

NF(x NF(x)\ .
@8 anfo| e | () - nafo | ),
where ¢(u) = ®,(F; '(u)) with Fy(x) = F(éx), and F is (under the null hypothe-
sis) some nonparametric estimator of F(ox) computed from both samples. The
advantage of 'this statistic over the one in (2.7) is that the score function ¢ does
not involve G and thus we can avoid the design considerations discussed in
Section 2.3. However, in order to show efficiency of the test statistic in (2.8) with
the present methodology one needs certain theoretical results about F (such as
linear bounds) which, at the moment, are not available for any nonparametric
estimator of F(ox). Tsai and Crowley (1985), Gill (1988) and Chang (1987)
present a general methodology for obtaining large sample results for generalized
maximum likelihood estimators but further work is needed [the recent preprint
by Groeneboom (1987) shows that asymptotics for nonparametric estimation
with interval censored data are definitely harder than with ordinary uncensored
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data]. If such results were available for some estimator it would also be possible
to show that asymptotic equivalence of a rank statistic similar to that in (2.8)
with the statistic that is used in the more general model described in Remark 2.1.

2.3. Discussion of the model and its assumptions. The requirement that the
inspection intervals be of equal length is a design restriction which is easier to
implement in industrial reliability studies than in medical follow-up studies; in
particular the larger the medical follow-up study the harder it will be to adhere
to this design. However, for smaller (pilot) medical studies the restriction of
equal length inspection intervals is not unreasonable.

Similarly, the assumption that the random variables A are uniform in (0, 1) is
easier to implement (as a design requirement) in an industrial study than in a
medical one. For instance consider a comparative study of the life length of two
different brands of tubes in a large company that inspects equipment at intervals
of length 1. Let n,, n, denote the number of tubes of brands 1,2, respectively,
that are used in the study. One can then generate N = n, + n, uniform in (0, 1)
random numbers and use these as the times mod (1) of entry to the study (see
Figure 1). (Clearly, in the setup just described, one can easily implement not only
uniformity but any other distributional requirement on the random variables A;
some possible reasons for using distributions other than the uniform are given in
Section 5).

Next we will present a result which shows that for a large number of
retrospective studies the assumption that the A’s constitute a sample from the
uniform in (0, 1) distribution is satisfied. In particular suppose that data are kept
on subjects as they become available and assume that the interarrival times
Z,...,Z,areiid Q. Then A, = (X ,Z;) mod (1), n > 1, forms a Markov process
and it is easy to show that if @ is absolutely continuous the n-step transition
probabilities converge to the unique stationary initial distribution which is the
uniform. [Related results are given by Diaconis and Engel (1986) in their
discussion of Good (1986).] Thus, the random sample which will be taken from
the collected data for the retrospective study will satisfy the assumption that
the A’s are iid uniform in (0, 1).

In cases where distributional requirements on the random variable A cannot
be implemented in the design and the above probabilistic argument does not
apply, the choice of G is not obvious. More elaboration on this problem is
provided in Section 5.

24. A comment on the parametric test. The efficient scores statistic of
relationship (2.5) involves an estimator of the nuisance parameter o and thus its
optimality needs to be justified. In particular we need to determine whether, in
testing H,,: 8 = 0, it is possible to “adapt” for ¢ (meaning whether we can do as
. well asymptotically as if the true value of o were known). In cases where
nuisance parameters are present Neyman (1959) introduced a statistic con-
structed by projecting the efficient score and showed that the test based on such
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a statistic is asymptotically optimal (even when the testing problem cannot be
adapted). For a modern approach to adaptive inference see Bickel (1982). A
necessary condition for adaptation is that the scores corresponding to the two
parameters are orthogonal (uncorrelated) and this can easily be shown to be the
case here. It should be mentioned that even though Neyman’s paper helps justify
the statistic in (2.5) the conditions under which his results were shown will not
concern us.

3. Assumptions and preliminary results. For ¢=1,2, let (4,,Y,),...,
(A4n,y Yip,) beiid G(-)F(-; 0, o), where G(-) is a distribution on [0,1], F,(-; 0, ¢)
a distribution on [0, ), and assume we observe (A,, X,;), i =1,...,n,, t=1,2,
where X, =[A, + Y, ]+ 1 - A,

AssuMpTIONS E.

(E1) (i) Fy(x; 0, 0) = F(xe %), Fyx; 0,0) = F(xe?%), where F is a specified
distribution function, p = n,/N, ¢ =1 —p, N = n, + n,; (ii) p remains
bounded away from 0 and 1 as N — co; (iii) F has a differentiable density
f; and (iv) the support of F is an interval in [0, o).

(E2) Let J,(u) = ®,(H; '(u)),0 < u < 1, where H, is defined in connection with
(2.6). Then the derivative J;(-) exists on (0,1), is continuous, and we have
that for o in any compact set C,

| ()] < K{u(l —u)} ", |J/(w) < K{u@ —u)} ",

for all u € (0,1) and some K, ¢ positive constants possibly depending on C.
(E3) For any o, and &* > 0 there exists a neighborhood of o, such that, for any
o, in that neighborhood the ratios

[H, ()] /H,(x) and [1 - Hy(x)]"" /[t - Hy(x)]
remain bounded uniformly in x.

REMARK 3.1. Assumption (E1)(iv) was included in order to avoid difficulties
in the definition of ®,. Indeed if the support of F is split in two sets by an
interval of length greater than 1, @, is not well defined.

LEmMMA 3.1. Let Y,, n > 1, be a sequence of random variables and assume
that for each ¢ > 0 we can find a sequence of measurable sets B, , n=>1, such
that P(B, ,) > 1 — ¢ for alln > N(¢). Then if I, B, .Y, = 0 in probability for each
¢ > 0, where I, denotes the indicator function of the set B, it follows that Y,—0
in probability.

PROOF. The proof is straightforward; it also follows from Theorem 4.2 of
Billingsley (1968). O
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LEMMA 32. Letp,, n > 1, and p be functions on the real line such that

1. p,(x) = p(x) for all x € (— o0, 0) and
2. p,, n =1, and p are uniformly of bounded variation.

It then follows that [g(x)dp,(x)— [g(x)du(x) for all g continuous and
bounded.

PROOF. The proof is similar to the proof of the Helly-Bray lemma (cf. Loéve
1963, page 180). O

We close this section by presenting the distribution function H, and the score
function ¢, in a number of scale models for G(a) = a, 0 < a < 1; for all these
examples assumptions (E2) and (E3) have been verified.

ExXAMPLE 1 (Exponential distribution). Here F(ox)=1—e " %,6> 0, x > 0
and

H(x)={x-0"(1-e*)}I0<x<1)+ {1—-0"e’ - De " }I(x > 1),
J(H,(x)) = —x+e’(e°—1)"".

REMARK 3.2. In the usual uncensored case the family of Lehmann alterna-
tives F(ox) = 1 — (1 — Fy(x))° leads to the same score function for any continu-
ous distribution function F,. This is not true in the present interval censoring
model and thus a rank test using the score function of Example 1 will be optimal
only if the exponential distribution holds.

ExXAMPLE 2 (Half-logistic distribution). Let F(ox)=2/(1 + e~%*) — 1,
o> 0, x > 0. Here

—ox

l+e
H,(x) = 2o‘llog———2———

—0x

l1+e
-1
I0<x<1)+ {1 + 20 log1 n e_o(x_l)}l(x > 1),

*(ox) = (x = Vf(ox — o)

Jo(Ho(x)) = F(ox) — F(ox — o)

EXAMPLE 3 [One-parameter lognormal (p = 0) distribution]. Let F(ox) =
®(log ox), ¢ > 0, x > 0, where ® is the N(0, 1) distribution function. Here

H(x) = [‘®(logoy)dyI0<x<1) + [ ®(logay) dyI(x> 1),

_, $(log ox) — ¢(log(ox — o))

J(H,(x)) =0 ®(log ox) — ®(log(ox — o))’

where ¢ is the density of ®.
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EXAMPLE 4 [One-parameter Weilbull ( p = 2) or Rayleigh distribution]. Let
F(ox) =1 — exp(—(0x)?), ¢ > 0, x > 0. Then

H(x) = {x - @(@( ‘/2%) - 0.5)}1(0 <x<1)

o= el o e
) = MR,

Clearly the function J,(u) will have a closed form expression if H; ! has a
closed form expression. Of the above examples only the half-logistic distribution
results in a closed form expression for the score function. The implementation of
the score functions for the exponential, lognormal and Weibull would require the
use of a computer; the score function for the exponential distribution is the
simplest of the three.

REMARK 3.3. Implementation of any one of the above score functions re-
quires a V7 -consistent estimate of o under the null hypothesis. However, under
this hypothesis the combined sample comes from F(ox) and one may apply, for
instance, the maximum likelihood method. Estimating o this way means the test
is not generally a rank test. One can still get exactly size a by using the H,
permutation distribution (under which é stays fixed).

4. The main results. In this section we will show that the test based on the

rank statistic of relationship (2.7) has efficiency 1 with respect to the efficient
scores test of relationship (2.5). Let now

Ly = pY%qny* [&(x) d(H(x) - H(x))
~pq"/*ny? [®(x) d(Hy(x) - H(x)),
(4.1)

S = P qn? /J( 2| a(a) - )

NH(x)

—pq1/2nv2jJ( ) d(Hy(x) - H(x)),

where &(- ) =®;(-)and H(-) = H,(- )w1th g, the true underlylng value of o, be
appropriately centered and scaled versions of the statistics in relations (2.5) and
(2.7), respectively [Ly equals N~/% times the statistic in (2.5), and similarly
for Sy 1.
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THEOREM 4.1. Let Assumptions (E) hold. Then, under 6 = 0,
in probability, as N - oo.

Proor. Consider an ¢ > 0. According to Lemma 3.1 we will show that there
exists a sequence of sets By , so that P(By ,) > 1 — ¢ and

IBN',l(SN —Ly)—0

in probability. Let B, 2. be the set on which the linear bounds of Shorack
(1972) for H, H and 1 — H,1 — Ht, t = 1,2, hold with probability greater than
1—-¢/2and let ¢ be as in Assumption (E2) corresponding to some neighborhood
C, of o, and set q(u) = [u(l — u)]*®7%, 0 < u < 1, for some & < & Finally, let
C, be a neighborhood of ¢, corresponding to &*, & <¢&* <, according to
Assumption (E3) and set By, = Bf , » N [6 € C], where C = C, N C,. Clearly
P(By, ) > 1 — g, for all N > N(¢,). In this notation we will show

NH(x)
N+1) I_H)}_)PO'

(4.2) I, {n}ﬂ[@(x)d (H, - H) - ny2 [J

That the difference of the other two terms also converges in probability to 0 can
be shown similarly. The relationship in (4.2) equals

[ NH(x) -H
N+1 (H)
R [ NH(x H, - H, -
= I, [@(ac)—J( NHf f)][«:( il dq(H)]

so that (4.2) will follow from

IBN_,,"'}/2[[6(-’C) -

[ NH(x)\|H(x) - H(x
@y 1, f[oe - o 32| (q()H(x))( ) dg() -
and
. NH(x
(4.4) Iy, n}/zf[(b(x)— Nil)} (H) >p0.

Since sup{|nY/?[ H,(x) — H(x)]/q(H(x))|; 0 < x < oo} remains bounded in prob-
ability, (4.3) follows from

IBN-q/

which is true by the dominated convergence theorem which applies almost

NH(x)
N+1

b(x) - (

||dq(H)|—> 0,
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surely; indeed

-

b(x) - J( Nﬁ(x))

N+1

for all x almost surely, and, by Assumptions (E2), (E3) and the linear bounds of
Shorack (1972) we have
] IBN‘ K

b() - Jf Nﬁ("))
< [K[Hyx) (1 - Hy(x))] 7

N+1
+K[A(x)(1 - H(x))] "1,

A

J

et

» €1

< [|<i>($c)| +

< K[H(x)(1 - H(x))] "™

and
JUHQ = )7 dg(H)| < .

Next we show (4.4). Integrate by parts to get

2 A H niﬂ(ﬁl B H)
f[@ -Jl %3 1)]q(H) d——————q(H)
- o - o et - s

nY?(H,_— H) . . NH
'f q(H) d{"(H)[Q_J N+1)]}‘

It is easy to show that the first term on the right-hand side above converges to 0
in probability; applying a Skorohod construction with a switch to a new
probability space the second term is

B(H(x))
f q(H(x))
BY _(x) — B°(H(x))
(45) A Ry ey
BY (x) — B(H(x)) ,/ NH
_f q(H(x)) N+1 )Q(H)’

where we set BY(x) = n}/ %(H(x) — H(x)) and B° denotes the corresponding
Brownian bridge on [0,1]. Each of the summands in (4.5) (multiplied by I, BN,.,)

d[éq(H)—JA N1 Q(H)]

doq(H)
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will be shown to converge in probability to 0 provided the functions

./ NH
IBN'qJ( NT1 )q(H), N>1,

and ®q(H) are uniformly of bounded variation on [0, c0) (use Lemma 3.2
for the first term and straightforward arguments for the other two terms).
The convergence in probability to 0 will also hold in the original probability
space and thus the proof of the theorem will be complete. Let a =ay =

sup{x: Nﬁ(x)/(N +1)<1/2} and, on By ., consider the variation of the

function J(NH /(N + 1))q(H) in the intervals [0, a), [a, ). For [0, @) we have

£ ot - e o(at )

—2' ’\fffl) a(H(x)

N+1
(4.6) [where z lies between N/(N + 1)H(x;_,) and N/(N + 1)H(x;)]
<z 5 ) (a2 - o)

+ N+ 1 Z|(ﬁ(xz) - ﬁ(xi—l))j,(z)q(H(xi—l)”

<z [ B o S aGae) - o)

+K Y |(H(x;) - H(x;_,))
% [NH(xi—l) (1 _ NH(xi—l) )] ‘ Q(H(xi—l))|’

N+1 N+1

where in the last equahty both bounds are true on By . by Assumption (E2) and
the fact that the x’s are in [0, @) and z > NH(x;_ 1)/(N + 1). Thus by the
linear bounds of Shorack (1972), the above is

< KY[H(x)(1 - H(x))] """ |q(H(x,)) — q(H(x:-1))]
+KZl(ﬁ(x,) — H(x;_)))[H(x,-)(1 - H(x;_,))] _O'5+E¢I(H(xi—1))|~

Thus the total variation of J(NH/(N + 1))g(H) in [0, a) (for w € By,.) is
bounded by

(47) K fo “[HQ - H)]**** dg(H) + K fo “[H(1 - H)]"****q(H) dH.
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Working snmlarly, but expanding J(NH(x )/(N + 1)) [instead of J( NH(x, v/
(N + 1))] in (4.6) we obtain that the total variation of J(NH /(N + 1))q(H)
in [a, o0) is bounded by

(4.8) Kf°°[H(1 — H)]™****dg(H) + Kf°°[H(1 ~ H)]****q(H) dA.

From (4.7) and (4.8) it is easily seen that the total variation of I J(NH /
(N + 1))g(H) in [0, c0) will be bounded uniformly in N almost surely pr0v1ded
the integral [[H(1 — H)]""**q(H)dH = [[H(1 — H)]~'**~° dH is finite; but
this is easily seen to be true. Finally, that ®q(H) is uniformly of bounded
variation can be seen easily. O

THEOREM 4.2. Under Assumptions (E), the rank test based on the statistic
Sy has Pitman efficiency 1 with respect to the test based on the statistic L. “

Proor. It follows by an easy contiguity argument. O

REMARK 4.1. The orthogonality result of Section 2.3 and some standard
conditions together with Theorem 4.2 imply that the rank statistic Sy has
Pitman efficiency 1.

REMARK 4.2. To carry out the test using the statistic in (2.7) we need to
know its asymptotic variance (see also Remark 2.4 when the sample sizes are
small). Suppose for the moment that the (random) score function J in (2.7) is
replaced by a (nonrandom) score function J. Then the usual theory of rank
statistics applies. In particular if we set ¢ = (q,...,q, —p,..., —p) then relation
(3), page 159 of Hajek and Sidak (1967), holds so that Theorem a, page 163 of the
same reference, implies that the asymptotlc variance is nn, /N[ (J(u) — J)? du
We claim that the asymptotic variance for the statistic in (2.7) may be approxi-
mated by n,n,/N/y( J(u) — )2 du. Conditions under which this holds, together
with efficiency calculations will be presented elsewhere.

REMARK 4.3. Results similar to the two-sample case can easily be extended
to k-samples and regression.

5. Discussion. The problem of constructing efficient rank tests for the

two-sample scale problem under an interval censoring model has been consid-
ered. The approach adopted resulted in a rank statistic whose score function
involves an estimate of the common scale ¢ under the null hypothesis, as well as
a specification of the entry time distribution G. Thus, in contrast to the usual iid
case one needs both a target distribution F for the (unobserved) variable of
interest and a target distribution G before the test statistic can be specified; the
distribution function F is also used in the derivation of a yn -consistent estima-
tor of o.
" The effects of using the wrong G need to be investigated. In particular it
should be examined if there are any advantages in using the rank statistic (2.7)
instead of the scores statistic (2.5) when both target distributions F, G differ
from the true ones.



1502 M. G. AKRITAS

The technique of the present paper can be safely applied when G is known or
specified from the design (see Section 2.5). Improvements, however, might still be
possible. In particular, a judicious choice of G (which in some way should be
related to F') may result in simpler score functions as well as improved efficiency.
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