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Asymptotic properties of estimators for the confirmatory factor analysis
model are discussed. The model is identified by restrictions on the elements of
the factor loading matrix; the number of restrictions may exceed that
required for identification. It is shown that a particular centering of the
maximum likelihood estimator derived under assumed normality of observa-
tions yields an asymptotic normal distribution that is common to a wide class
of distributions of the factor vectors and error vectors. In particular, the
asymptotic covariance matrix of the factor loading estimator derived under
the normal assumption is shown to be valid for the factor vectors containing
a fixed part and a random part with any distribution having finite second
moments and for the error vectors consisting of independent components
with any distributions having finite second moments. Thus the asymptotic
standard errors of the factor loading estimators computed by standard
computer packages are valid for virtually any type of nonnormal factor
analysis. The results are extended to certain structural equation models.

1. Introduction. Factor analysis is widely used in the behaviorial and social
sciences, in part because of the availability of computer packages (such as
LISREL) that provide estimates and their asymptotic standard errors under the
assumption that the observations are normally distributed. A consequence of the
results in this paper is that such asymptotic standard errors are valid for a much
wider class of distributions. This asymptotic theory holds for linear functional
and structural relationships, as well, if the error covariance matrix is diagonal.
We shall show that it also holds for more general structural models such as the
LISREL model.

The factor analysis model for the observable p-component random column
vector x, can be written as

(1.1) x,=p+Af,+u,, a=1,...,N,

where p is a p-component vector of parameters, A is a p X k& matrix of factor
loadings, f, i§ a k-component unobservable factor vector, which may contain
fixed and /or random components and u , is a p-component unobservable random
error vector. It is assumed that all f’s and u,’s are uncorrelated and that
fu,=0 and Sun, =¥, where ¥ = diag(y,,,...,¥,,} is a p X p diagonal
matrix with diagonal elements y,;, i = 1,..., p. The linear functional relation
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model is defined by

(1.2) x,=z,+u,, a=1,...,N,
(1.3) Bz, = B,,
where z, is a fixed p-component vector, « = 1,..., N, Bis r X p and B, is an

r-component vector. The linear structural relation model is (1.2) and (1.3) with
z, random. If r = p — k&, (1.1) is equivalent to (1.2) and (1.3) by settingz, = p +
Af, and requiring BA = 0 and Bp = B,.

In (1.1) A can be replaced by AC and f, by C~'f, to obtain an observationally
equivalent model. To reduce this indeterminancy, the investigator may impose
some restrictions on the parameters. If all £ components of f, are random and if
the f,’s have a common covariance matrix @, then the covariance matrix of x, is

(1.4) S = ADA’ + V.

A traditional identification condition is that ® = I, and A’¥~'A is diagonal.
However, alternative restrictions can be placed on the elements of A, ® and
¥ = (Y115 Y20, - - -» ¥pp)- In exploratory (unrestricted) factor analysis the restric-
tions are imposed only to remove the indeterminancy; then A®A’ is an unre-
stricted positive semidefinite matrix-of rank k. In confirmatory (restricted)
factor analysis the investigator uses prior knowledge about the variables to
formulate a hypothesis imposing restrictions on the parameters, such as certain
factor loadings being 0. The model may be restricted in the sense that the
number of restrictions may exceed that required for identification [Joreskog
(1969)]. A particular specification that yields identification is

(1.5) A= (ﬁ‘)

In the linear functional /structural relationships there is the indeterminancy
of multiplying (1.3) on the left by an arbitrary nonsingular r X r matrix. This
indeterminancy can be eliminated, for example, by specifying

(1.6) B = (I,,B,).

If (1.5), (1.6) and BA = 0 hold, then B, = —A, and inference in the linear
functional /structural relationship is identical to that in the factor analysis
model. More details can be found in Anderson (1984).

A general way to parameterize exploratory and confirmatory models is to
assume that restrictions are placed only on the factor loading matrix A and that
each element of A can be expressed as a linear function of a g X 1 parameter
vector, say, N. Let vec A denote the pk X 1 vector listing 2 columns of A
starting from the first. Then

1.7) vecA = a + AN\,

where a is apk X 1 known vector, and A is a pk X ¢ known matrix of rank q.
The parameterization (1.7) covers many commonly used confirmatory factor
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analysis models. For example, the model identified by specified 0’s and 1’s in A
satisfies (1.7), where a and A consist of 0’s and 1’s in specified positions. The
structure (1.7) also includes cases where some factor loadings are assumed to be
equal. Parameterization (1.7) with no restriction on the covariance matrix of f,
and the error variances y;;’s provides a unified approach to the model where the
factor vector f, may contain fixed and random components. Furthermore, as we
shall show, under this parameterization the asymptotic distribution of the
estimated factor loadings is common to a very wide class of distributions of the
factor vector £, and of the error vector u,. We shall also show how our results
based on the linear restriction (1.7) can be extended to the model where vec A is
a nonlinear function of \.

Under the assumption that (f/,u’)’ is normally distributed, the maximum
likelihood estimators of the factor loading parameter N, the factor covariance
matrix ® and the error variances y;;, as well as their asymptotic standard errors,
are computed by standard computer packages. We shall investigate the applica-
bility of the asymptotic inferences based on such estimates when the f, and u,,
are not normally distributed and f, possibly contains nonstochastic components.
It will be shown that the asymptotic inferences on the factor loading parameter
N\ in (1.7) based on the normal assumption are valid also for the model with
virtually any types of f, and u, provided the p components of u, are indepen-
dent (not just uncorrelated). We shall also indicate that our results apply not
only to factor analysis but also to some more complicated structural equation
models.

Statistical inference in factor analysis based on maximum likelihood was
developed by Lawley (1940, 1941, 1943, 1953, 1967, 1976), Rao (1955), Anderson
and Rubin (1956), Joreskog (1967, 1969) and Jennrich and Thayer (1973). For
detailed discussion of factor analysis, see, for example, Lawley and Maxwell
(1971) and Anderson (1984). Properties of the normal maximum likelihood
estimators under weaker assumptions were discussed by Anderson and Rubin
(1956) and Amemiya, Fuller and Pantula (1987). The latter showed that for
exploratory factor analysis the asymptotic distribution of the estimated factor
loadings and error variances is common to a wide class of £, if u, is normally
distributed. We shall extend their result to confirmatory factor analysis with the
general parameterization (1.7) and to nonnormally distributed u,. For the linear
functional /structural relation model, the estimated relationship parameter B, in
(1.6) has been shown to have a common asymptotic distribution in a wide class of
z, if the error u, is normally distributed. See, for example, Gleser (1983),
Anderson (1984), Amemiya and Fuller (1984) and Chan and Mak (1985). We
consider the functional /structural relation model with diagonal error covariance
matrix. In terms of factor analysis, the result for B, in the functional /structural
relation model is equivalent to the result on A, in (1.5). Thus, our results here
for A, give the results for B, in the restricted functional /structural model with
linearly restricted B, and with nonnormally distributed error u,.

For the factor analysis model Anderson and Rubin (1956) stated a very
general theorem (Theorem 12.3) on the asymptotic distribution of the estimators
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obtained by maximizing the normal likelihood, which implied the validity of the
asymptotic distribution for factor and error vectors with quite general distribu-
tions. However, they did not present a proof of the theorem or draw its
consequences. In Section 2 we shall derive slightly more general results and
obtain a modified version of Theorem 12.3 of Anderson and Rubin as a conse-
quence. In Section 3 we shall derive several corollaries that justify the applicabil-
ity of the usual large sample inference under very weak assumptions and shall
discuss practical implications and extensions to some structural equation models
that are more general than the factor analysis model.

2. Theorems. The estimators we consider are the maximum likelihood
estimators of N in (1.7), the factor covariance matrix ® and the error variances
¥ = (¥115-++> ¥pp), derived under the assumption that (£;,u’,)’ is normally
distributed with covariance matrix block diag{®, \I'} Following common practice
in factor analysis, we concentrate on information contained in the unbiased
sample covariance matrix

1 N
S = 'IV—_—iagl(xa - x)(xa - X) ’

where X = (1/N)LY_x,. If f, and u, are normally distributed, then nS ~

W,(Z, n), where n = N — 1. The covariance matrix 2 given in (1.4) is, say, 2(9),
a function of the parameter vector 8 = (\’,[vech ®], ¢’)’, where \ is given in
(1.7), vech @ is the 3k(% + 1) X 1 vector listing the elements of ® that are on or
below the diagonal starting with the first column, and ¢ = (¢y;,...,¥,,). Let
2, @, and Q, be the parameter spaces for N, vech ® and , respectively. The set
@, is in R% §, consists of vech® such that ® is nonnegative definite; and Q,
consists of ¢ with nonnegative components. The Wishart likelihood based on S
is —n/2 times

(2.1) 1(0; S) = log|=(0)| + tr[S=-1(0)]

plus terms not dependmg on 0. The Wishart maximum likelihood estimator
0 = (\',[vech®7, §’y is the value of 0 in Q@ =, X Q, X @, that minimizes
(2.1). Note that in the computation of § we allow smgular estlmates of @ (less
than & factors) and zero estimates for some v;; (Heywood cases). Later we shall
assume that the true value of 0 is in the interior of 2, that is, the true ® is
positive definite and the true {;; is positive.

The normal likelihood function based directly on the observations and con-
centrated with respect to i = X is —n/2 times (N/n)log|=(0)| + tr[SZ%(0)]
plus terms not depending on 0. In this paper we shall treat the Wishart
likelihood to avoid frequent use of the factor N/n; the estimators maximizing
the normal likelihood are obtained from the Wishart estimators by replacing S
by (n/N)S. Of course, all of the asymptotic results hold for these estimators.

The key idea in our development of asymptotic theory is that in assessing
limiting normality the estimators ® and \p are centered around quantities
depending on n. These quantities involve the unobservable sums of squares and
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cross products of f, and u,,
1 N
(2.2) ¥(n) = — 2 (u, - @)(u, - 1),

where f= (1/N)XV_f, and U= (1/N)X_u, Let y(n) be the p X 1
vector consisting of the p diagonal elements of ¥(z) , and let {,(n) be the
3p(p — 1) X 1 vector listing the elements of ¥(n) that are below the main
diagonal. Separating the diagonal part y(n) and the off-diagonal part {,(n)
facilitates our development of asymptotic theory.

Our first theorem gives the consistency of the maximum Wishart likelihood
estimator 6 under weak assumptions on ®/n), \I'(n) and I'(n), and an identifica-
tion condition. Let N\, be the true value of N\ given in (1.7).

THEOREM 1. In the model (1.1) and (1.7) assume

@) plim, . ,®(n) = @y

(ii) plimnﬂoo‘l’(n) = \l'o;

(iii) plim, _ Wy(n) = 0;

(iv) plim, _, I'(n) = 0; and

(v) for any € > O there exists an 1 > 0 such that any 0 in Q with ||0 — 0y|| > &
satisfies mod(v; — 1) >n for some i=1,2,..., p, where 8,=[N),,vech(®,),
Vg1, the v;’s are the p roots of |2(0) — vZ(8,)| = 0, and mod(»; — 1) is the
absolute value of v; — 1.

Then
plim§ = 6.

n—oc

Proor. The result follows from plim,_ S = 2(6,) and the consistency
proof of Amemiya, Fuller and Pantula (1987). O

Note that if all elements of f, are fixed, then the probability limit in
assumption (i) is the usual limit.

Let 0(n) = (N, [vech®(n)Y, ¥'(n)). Note that the first part of 8(n) is the
true value N\, of \ and is free of n. Recall that y(n) is the vector of the diagonal
elements of ¥(n), and that ®(n) and ¥(n) are defined in (2.2). The next
theorem shows that the leading term in the expansion of § — 8(n) is a linear
function of ,(n) and I'(n) defined in (2.2).
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THEOREM 2. In the model (1.1) and (1.7) let assumptions (i), (ii)) and (v)
hold. Assume

(iii-a) ¥,(n) = O,(1/ Vn);
(iv-2) T(n) = O,(1/ Vn); and
(vi) N\ is an interior point of Q,, ®, is positive definite and each element of
Y, is positive, where ®, and {, are defined in (i) and (ii), respectively. The
matrix
d vec 2(0)
a0’

8=0,
has full column rank.
Then

6= 8(n) = C.(8)4u(n) + Cltp)vec T(n) + o, =

1
= O -1,
)
where C,(8,) and Cy(8,) are nonstochastic matrices depending only on 0, =
[Ny, (vech ®,), 447 .

ProOF. Because § is consistent for 6, an interior point of @, and because
I(6; S) in (2.1) is differentiable with respect to 8 in a neighborhood of 6,, the
probability that § satisfies the derivative equation tends to 1 as n — co. Thus,

1 31(0; S) al[6(n);S] a%(8*;8)
"P(}I) ==~ s L0 0m,
where 0* is on the line segment joining 6(n) and 6. Because phm,,_,wﬁ(n) =

plim,, _, wé 0,, and because the second derivative of /(8; S) with respect to 8 is a
continuous function of 6 and S,

3%(0*;8) %[0, 2(8)]

(2.3)

24) Plim — e = ey o

say, where H , is positive definite by assumption (vi). Also
al[8(n); S

(25) SRS _ _p(nyvec(s - zla(n)]),

where

pn) = {2000 (5] & 210000 = B+ 00,

(2.6)

F, - {av_ezoz(l)} (21(8,) ® 37(8,)}.
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We observe that
(2.7 S — 2[0(n)] = AT(n) + I'(n)A, + ¥(n) — diag{¥(n)},

where vec A, = a + A\,. The diagonal elements of ¥(n) — diag{{(n)} are 0’s,
and the off-diagonal elements are elements of ,(n). Hence,

1
(2.8) S - 2[6(n)] = op(—ﬁ).
By (2.3)-(2.8), '
. 1
(2.9) 0 — 0(n) = Hy'Fyvec{S — =[0(n)]} + op(ﬁ)
and the result follows from (2.7). O

Theorem 2 shows that the term of O,(1/ Vn) in the expansion of 6 — 0(n)
depends only on the cross product I'(z) and the off-diagonal part ¢,(n) of ¥(n).
Thus, Vn[6 — 6(n)] has a limiting distribution if the elements of vV I'(n) and
Vny,(n) have a joint limiting distribution. The next theorem is a slight general-
ization of Theorem 12.3 of Anderson and Rubin (1956).

THEOREM 3. In the model (1.1) and (1.7) let assumptions (i), (ii), (V) and (vi)
hold. Assume

(iii-iv-b) for some G, Vn ([vec T(n)Y, ¥y(n)) =L N(0,G).
Then
‘/’7[6 - o(n)] _)L N(0’V)9

for some V. If, in addition, G depends only on ®, and {,, then V depends only
on 0, = [N, (vech®,), ¥47.

PrRoOOF. By Theorem 2, 6 — 0(n) is asymptotically a linear function of
([vecT'(n)Y, ¥4(n)). Hence, the limiting normal distribution follows. Because V
is a function of C(8,), C,(6,) and G, V is a function of 6, if G depends only on
@, and ,. O

Note that the limiting distribution in Theorem 3 was derived under a weak
set of assumptions on the f,’s and the u’s. The only conditions assumed for the
f,’s and the u’s are assumptions (i), (ii) and (iii-iv-b). For example, there is no
assumption that the u’s are independently and identically distributed or that
the f,’s and the u_’s are independent. The first part of § — 8(n) is \ — Ny, Where
N\, is the true value of \. The use of the second part of § — 6(n), namely,
vech[® — ®(n)], is discussed in the next section.

. In Theorem 12.3 of Anderson and Rubin (1956), instead of assumption
(ii-iv-b), only the limiting normality of ,(n) is assumed. However, assumption
(iii-iv-b) is necessary even if we added the assumptions that the £,’s and u’s are
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independent and that the u,’s are independently and identically distributed.
This is because the result requires the joint limiting normality of I'(n) and
Yu(n), not just the limiting normality of I'(rn) and the limiting normality of
Yu(n). The point of the last assertion in the theorem is that, although the
distributions of the f,’s and u,’s may depend on other parameters, the limiting
distribution will not depend on such parameters if the limiting distribution of

Vn ([vec T(n)Y, ¥{(n))’ does not.

3. Corollaries and implications. We shall show that Theorem 3 in Section
2 has important practical implications. The limiting distribution of Vr [ — 8(n)]
is common to very wide classes of f, and u,, and the standard asymptotic
inference procedures for the factor loading parameter \ based on the normality
of (f/,u’) are valid for virtually any type of fixed or nonnormal f, and of
nonnormal u,. To this end, we first present a special case of Theorem 3, where
the factor vector f, satisfies a very weak assumption and the error vector
satisfies a relatively strong assumption of normality. The normality of u , will be
dropped in the subsequent results. '

COROLLARY 1. In the model (1.1) and (1.7) let assumptions (v) and (vi) hold.

Assume
(i-a) lim,_, ®(n) = ®,, a.s.;
(vii) the £,’s are independent of the u’s;
(viii) the u’s are independently and identically distributed; and
(ix) u, ~ N(0,diag{y,}), where diag{y,} is the diagonal matrix with the p

elements of \, on the diagonal.
Then

(3.1) Vn[6-8(n)] -, N(O,V,),
for some V,,, where V,, depends only on 8, = [N, (vech®,)’, 441

Proor. To apply Theorem 3, we note that assumptions (i-a) and (viii) imply
assumptions (i) and (ii), respectively. Thus, the proof will be complete when we
show that under assumptions (i-a), (vii), (viii) and (ix), the assumption (iii-iv-b)
in Theorem 3 holds with G depending only on 8,. We outline the proof of this
assertion. See Anderson and Amemiya (1985) for the detailed proof.

First, wé condition on a fixed sequence {f,} satisfying lim,_ ®(n) = ®,.
Then, conditionally,

(32) .~ Vn([vecT(n)]’, ¥4(n))’ =, N(0,Gy),

where G, is a function of ®, and 4, only. See, for example, Lemma 1 of
Amemiya and Fuller (1984) and Corollary 2.6.1 of Anderson (1971). The f,’s and
the u,’s are independent by assumption (vii), and G, depends on the given
sequence {f,} only through ®,. Thus, it follows from assumption (i-a) and the
argument used in the proofs of Theorem 2.2 of Gleser (1983) and Theorem 2.R of
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Amemiya, Fuller and Pantula (1987) that (3.2) holds unconditionally. Hence,
assumption (iii-iv-b) in Theorem 3 holds, and the result follows. O

The class of factor vectors f, satisfying the assumptions of Corollary 1 is large.
If every component of f, is fixed, then assumption (vii) is trivially true, and the
almost sure limit in assumption (i-a) reduces to the usual limit. Assumption (i-a)
is satisfied for random £, if the f,’s are independently and identically distributed
with covariance matrix ®,. Corollary 1 shows that the covariance matrix V, of
the limiting normal distribution of Vn[6 = 6(n)] is common to the large class of
f_. A special case is the normal model where the (f;, u’,)’s are independently and
identically distributed according to a normal distribution with covariance matrix
block diag{®,, diag(y,)}. Thus, the normal case limiting covariance matrix V, is
valid for a class of f, much wider than the normal.

In Corollary 1 the error vectors u,’s are assumed tb be normally distributed.
We now show that the normality assumption on u, can be weakened without
altering the covariance matrix V, of the limiting normal distribution of
Vn[6 — 6(n)]. The next two corollaries show that the normal case limiting
covariance matrix V|, is valid for a large class of f, and a large class of u,.
Practical implications are discussed after the corollaries.

COROLLARY 2. In the model (1.1) and (1.7) let assumptions (i-a), (v), (vi),
(vii) and (viii) hold. Assume

(ix-a) fori>jandk >,
E{uiaujaukaula} = ‘!’?i"’?j» i=k>j=1,
=0, otherwise,
where u,, is the ith component of u,, and {}; is the ith component of ;.
Then (3.1) holds for V, defined in Corollary 1.

ProOF. Under the assumptions the covariance matrix of ([vec I'(n)Y, 4(n))
is the same as that for the case with normally distributed u,. Thus, (3.2) in the
proof of Corollary 1 holds with the same G, and the result follows. O

Corollary 2 shows that the normal case limiting covariance matrix V is valid
for a wide range of f,’s and u’s if the off-diagonal part {,(n) of ¥(n) has a
limiting normal distribution with covariance matrix identical to that of the case
of normal u,’s. Such an assumption on the u,’s is not considered to be very
restrictive because by the factor analysis model structure the p components of
u, are uncorrelated. There is no restriction on the pure fourth-order moments,
Eu}, not even that they exist. The next corollary shows that if the p compo-
nents of u , are independent, not just uncorrelated, then the normal case limiting
covariance matrix V, is valid whatever the distributions of the u,,’s are. This
somewhat surprising result has important practical implications that will be

discussed after the corollary.
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COROLLARY 3. In the model (1.1) and (1.7) let assumptions (i-a), (v), (vi),
(vil) and (viii) hold. Assume

(ix-b) the u,,, i = 1,2,..., p are independent.
Then (3.1) holds for the V, defined in Corollary 1.

PROOF. Assumption (ix-b) 1mph% assumption (ix-a), and the result follows
from Corollary 2. O

Thus, if we assume the independence of u;,, not just zero correlations, in the
model (1.1), then the limiting distribution of vz [8§ — 8(n)] is common for almost
all distributions of f, and u , satisfying the model and associated second moment
assumptions. Combining the results of Corollaries 2 and 3, the limiting normality
and the limiting covariance matrix V, for the normal (f;, u’,)’ case are valid for a
very large class of (f/,u’),if u,,, i = 1,2,..., p, are independent, or if the mixed
fourth-order moments correspond to independence. The components of the f,’s
can be either fixed or random as long as assumptions on the limit of the second
moments (i-a) and on the independence from the u’s (vii) are satisfied. The error
term u,’s can be any independently and identically distributed random vector
with independent components having finite second moments. One interpretation
of the factor analysis model is that all the interdependence among the p
components of the observations x, is explained by the factor f,. From this point
of view, the independence of the error components u;, is a part of the model
assumption, and the assumptions of Corollary 3 are satisfied by any confirma-
tory factor analysis model with negligible distributional restrictions on f,
and u,

Standard computer packages for confirmatory factor analysis, such as
LISREL, compute 0 and print out asymptotic standard errors of the elements of
6 obtained under the assumption of normal f, and normal u,. Recall that the
first part of Va [0 — 8(n)] is Va (N — No) and that V, is the llmltmg covariance
matrix for the normal case. Corollaries 2 and 3 show that for a large class of
(£2,u’) the covariance matrix of the limiting distribution of vVn (X — \,) is the
same as that for the normal (f/,u’,) case. If we can assume that the measure-
ment errors of the p variables are independent, then the standard computer
packages can be used to make inferences on the loadings for virtually any type of
nonnormal data.

One example of nonnormal factor analysis for which standard normal case
inferences are valid is the case with heavy-tailed observations. Let the factor
vector f, be either fixed or random, satisfying the second moment condition (i-a).
Let u;,, i =1,2,..., p, be independent of each other and independent of f,.
Assume that for i =1,2,..., p, (3/¢,,)"?u,, has the Student’s ¢ distribution
with 3 degrees of freedom. Then &{u;,} =0, Var{u,,} = ¢;; and &u?)} and
“&{u?} do not exist, but the assumptions of Corollary 3 are satisfied and the
asymptotic analysis based on the normality is valid. In this case the distribution
of the observation x, is markedly different from normal and does not possess



ASYMPTOTIC NORMAL DISTRIBUTION IN FACTOR ANALYSIS 769

finite pure third and fourth moments. Another example of a nonnormal case with
practical importance is a discrete factor analysis model. In many applications a
standard computer package developed for the normal case is used to analyze
discrete variables that may not be well approximated by normal distributions.
Assume that each component of f, takes a few integer values, that u,,, i =
1,2,..., p, are independent and that each u,, takes values —1, 0 and 1. For such
a discrete factor analysis model, the assumptions of Corollary 3 hold and the
inferences on the factor loadings using a standard computer package are valid
asymptotically.

In our general parameterization for the confirmatory and exploratory factor
analyses, we assumed the linear form of the factor loading vecA = a + A\.
Such a linear parameterization of A covers practically any type of confirmatory
factor analysis with restrictions on the factor loadings. However, some structural
equation models that are more complicated than the factor analysis model
assume that the loading matrix A has a nonlinear structure. Assume now the
general possibly nonlinear structure A = A(\), where A(M\) is twice continuously
differentiable in a neighborhood of \,. Then it can be shown by a straightfor-
ward extension that all of our theorems and corollaries hold with

d vecA(N) :
A=——— , a=vecA(N,) — AN,
aN’ N
For example, the LISREL model (structural equation model) which is used
widely in the social sciences assumes that observations (y/,z%), a = 1,2,..., N,

satisfy the following:
measurement model fory: y, = A, + ¢,
measurement model forz: z,= A, + 3,

structural equation model: n, = Bq, + I¥,,

where 7, and {, are unobservable true values, ¢, and 8, are measurement errors;
we assume the structural equation has no error. See, for example, Jéreskog and
Sorbom (1981) and Everitt (1984). This LISREL model can be written as

(3.3) x, = (y.,z,) = A{, + (e, 8.),

where

A(I-B)T
A

A=

.

z

Let ® and ¥ be the covariance matrices of §, and (e.,d.), respectively.
Computer packages for structural equation models, such as LISREL, compute
the estimators of B, T', A, A,, ® and ¥ and their standard errors under the
assumption of normally distributed (y/,z/) if enough restrictions are placed on
the parameters to assure the identification. If the components of the measure-
ment error (e/,8.) are assumed to be uncorrelated, then the LISREL model
(3.3) is the factor analysis model (1.1) with nonlinearly structured A. Our
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corollaries apply to such a case. Thus, if the components of the error (¢/, 8,) are
assumed to be independent, if the covariance matrix @ of {, is unrestricted and
if identification (or confirmatory) restrictions are placed on B, I', A, and A,
then the limiting distribution of the estimator of the elements of B, I', A , and
A, is common for the factor vector §,, fixed or random satisfying the assumption
(i-a) and for the error (e,,8.) having any distribution with finite second
moments. Hence, asymptotic inferences on the structural parameters B and T
and the measurement parameters A, and A, using the standard structural
equation computer packages such as LISREL are valid for virtually any type of
nonnormal LISREL models with independent measurement errors and no error
in the structural equation.

It should be noted that some components of the factor vector §, can be
nonlinear functions of other components or of other latent variables since the
identification conditions applied only to A do not restrict the moments of §,. For
example, the components can be polynomials in a latent variable.

Discussing the applications of Corollaries 2 and 3, we have concentrated on
the factor loading parameter \, because the first part of § — 8(n)is \ — No- The
remaining parts of § — 8(n) correspond to & — ®(n) and \ﬁ — y(n), where ®(n)
and (n) are defined in (2.2). The limiting distribution of v (§ — 6(n)) does not
require that the fourth-order moments of the f,’s and u,’s be finite, but the
limiting distribution of vn (6 — 0,) does require the existence of fourth-order
moments, where 8, = [Ny, (vech®,), ys1. Thus, the limiting distribution of
Vn [(vech(<i> - ®,)),(¥ — §§)] obtained under normality will not hold for non-
normal distributions of the f s and u,’s except under restrictive conditions.
However, there are practical applications of our results for the second part of
0 — 6(n), namely, ® — ®(n). If the components of the factor vector f, are
treated as fixed, then there is no covariance matrix ® to be estimated, and we
may be interested in making inferences on the unobservable sum of squares and
cross products matrix ®(n) of the factor vectors £,’s for the N = n + 1 particu-
lar individuals in the sample. For such a fixed factor case, Corollaries 2 and 3
show that asymptotic inferences on ®(n) assuming the normality of u , are valid
also for a large class of nonnormal u, satisfying assumption (ix-a) or (ix-b).

As indicated in the Introduction, the linear functional /structural relationship
when B = (I,B,) is equivalent to the factor analysis model when A = (A}, I)
with B, = —A,. The matrix B, = —A; may have other linear restrictions. In
this equivalence the maximum likelihood estimator under normality of B, is the
negative of the estimator of A,. Hence, the theorems and corollaries apply to the
linear functional /structural relationship in this case. As seen in the preceding
discussion, the results generalize to the case where B, is a nonlinear function of
an underlying parameter vector.
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