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SOME REPRESENTATIONS OF THE NONPARAMETRIC
MAXIMUM LIKELIHOOD ESTIMATORS WITH
TRUNCATED DATA

BY MIN-TE CHAO' AND SHAW-HwA Lo
Academia Sinica and Harvard University

The nonpérametric maximum likelihood estimators of the distribution
functions of observations in the truncation model are represented as iid mean
processes, with a remainder term of order o(n~1/2) a.s.

1. Introduction and main results. Let (X, Y;), i=1,..., N, be iid posi-
tive random variables with X; and Y, independent for each i. In the random
truncation model, one observes (X, Y) only if X > Y. Based on these observed n
pairs of samples {(x;, ¥;,), i = 1,2,..., n}, one attempts to estimate F, G'and N,
where F and G denote the population distributions of X and Y, respectively.
This model has been considered by several authors [see, for example, Woodroofe
(1985) and Wang and Jewell (1985)]. The following nonparametric MLE S
( 1 — F), due to Lynden-Bell (1971) and formally studied by Woodroofe (1985),
is used to estimate S (= 1 — F') on the basis of the data {(x;, ;), 1 <i < n}:

8(x) = [T (1 = r(x;)/nCy(x;)), for0<x<oo,

where r(x;) = #{k < n:x, = x;} and IT* indicates product over i such that
x; < x. The function C, plays an important role in the truncation model and is
defined by C,(z) = G,(z) — F,(z7), where G, and F, are the usual empirical
distributions based on {y;} and {x,}, respectlvely

Woodroofe (1985) proved the uniform weak consistency of S as an estimate of
S over the half-line [0, c0). Wang and Jewell (1985) proved the uniform strong
consistency of S over [a, o), where a > a = inf{x > 0, F(x) > 0}. Woodroofe
also showed the weak convergence of the process n'/2(F — F) to be a Gaussian
process on D[0, b] under the condition [§° dF/G < o0. Some general, related
applications and motivation of this model can be found in Lynden-Bell (1971),
Bhattacharya (1983), Bhattacharya, Chernoff and Yang (1983), Nicoll and Segal
(1980), Segal (1975), Woodroofe (1985) and Wang and Jewell (1985). Since the
estimator S is the analogue of the product-limit estimator of Kaplan and Meier
(1958) for censored data, one expects § would have similar properties for the
truncated case. As Woodroofe (1985) pointed out, there are some differences. One
can only estimate F if the pair (F, G) belongs to certain class 5%, to be defined
later. In addition, one can always estimate F' well at the left end (near 0) in the
censored case, but it is not so in the truncated case, especially when we consider
the weak convergence of the process n'/2(F — F).
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The basic aim of this article is to further study the estimator F. We first
express the closely related hazard process —log$(z) as iid means of random
variables with remainders, which are of order O(n=%4[3/4) as. (I, = log n for
brevity), uniformly for z € [a, b] (Theorem 1), where a > a;. We then extend
the same representation to [0, b] under the condition lim,, _, ,+F(x)/G(x) = 0 at
the expense that the remainder term is only of order o(n"l/ 2). Under the
stronger condition [5° dF/G < oo [the same condition given in Woodroofe (1985)],
(F — F) is represented as iid means of random variables with remainder terms of
order o(n~'/2) a.s. uniformly on [0, 5] (Theorem 2). One can then obtain the
results of weak convergence with covariance structures as well as the results on
functional LIL. Before explaining the meaning and implication of our findings,
we state the results in two theorems. Woodroofe’s notation is followed whenever
possible. .

Define Hy(x, y) = a Y§G(y A 2) dF(2), Fu(x) = Hy(x, ©), Gu(y) =

H,(0,y), 0<y<x<oo, where a = [GdF is assumed positive. For any
distribution function K(x) on [0, 00), define ax = inf{z > 0: K(z) > 0},
bK =sup{z > 0: K(z) <1}. Let #= {(F,G): F(0) = G(0) =0, a(F,G) > 0},

={(F,G) € ¥ ag < ay, bz < by}. Woodroofe (1985) pointed out that one

can only estimate the conditional distribution F, of X given X > a; and
Y < bg. Therefore we shall assume (F, G) € H, throughout this paper.

For z > 0, let

£(x, y,2) = a7 g(x, ¥, 2) - I(x < 2)/G(x)S(x)],
where

g(x, y,2) = /:I(y < s < x) dF(s)/g(s)S(s)".

For z > a > 0, write £,(x, ¥, 2) = é(x, ¥, 2) — &(x, ¥, a). The first theorem deals
with the representation of the empirical cumulative hazard function —log S(2).

THEOREM 1. If F is continuous and a > ag, b < by, then
[—log 8(z) + log S(z)] — [-log $(a) + log S(a)]
=-ntY §a(x;5 3is 2) + Ry o(2),

i=1

where sup,  , . 3| R, (2)| = O(n~%%1%*) a.s. Furthermore, if ag < ay, then (i)
reduces to

(@)

(ii) —log8(z) +logS(z) = —n"' ¥ &(x,, 3, 2) + R(2),
i=1
where sup, _, . |R,(2)| = O(n~%*13/*) a.s., and one can also write

@) B(2) = Fz) = (8(2)/n) E 650 202) + Raf2)

where sup, _, _,|R,(2)| = O(n=3413/*) a.s.
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The next theorem deals with the case ¢y = a5 = 0.

THEOREM 2. Assume F is continuous and im _, ,+F(x)/G(x) = 0. Then
(i) —log8(2) +logS(z) = —n"* Y &(x;, 3, 2) + Ri(2),
i=1
where sup, _ , < 5| R'(2)| = o(n"'/?) a.s. Furthermore, if [° dF/G < o, then

(i) B(z) - F(z) = (8(2)/n) ¥, (21, % 2) + Ro(2),

i=1
where sup, _ , . ;|R (2)] = o(n"'/?) a.s.

Write £,,(2) = £,(%;, ¥;, 2) and £(2) = é(x, v, z).‘It can be shown that

T(2,, 2,) = Cov(£(2,), £(22)) = [

0

2\ A2g

(GS?)"'dF.
The following corollaries are easily obtained from Theorem 2.

COROLLARY 1. Under the condition that [ dF/G < oo, the process
nt/ 2(F — F) converges weakly to a zero mean Gaussian process with covariance
structure S(z,)S(z,)T'(z,, z,) on D[0, b].

COROLLARY 2. Under the condition that [° dF/G < «, the process
n'/%(F — F) obeys the functional LIL on [0, b].

Note that ag < ay implies [§° dF/G < oo. Therefore the weak convergence
of n'/%(F — F) [and hence of n'/%(—logS + log S)] holds automatically in the
case of Theorem 1.

For further applications, we can use these representations to obtain asymp-
totic properties of density estimators and hazard rate estimators. To estimate a
and N, Woodroofe (1985) came up with estimators a = [ GdF and N = n/a.
Under further conditions, one can extend the representations given previously to
[0, o) and obtain asymptotic properties of & and N. These problems will not be
studied here, see Chao (1987).

2. Proofs. In this section we assume (F, G) € 5, F, G continuous and a, b
are two fixed values such that a; < a < b < by. The following arguments
extend, with some additional effort, to the case when F is continuous (and hence
F,) and G is arbitrary; however, in order to keep the proofs simple, it is assumed
here that both F and G (and hence G, and C) are continuous. We shall omit the
dual problem of estimating G. Define A(z) = [§dF,/C, =X, _,[nCy(x)]™"
The counterpart of C, is C, defined by C(2) = G4(2) — Fu(27) = a7 'G(2)S(z7).
The proofs of both theorems depend on the following basic decomposition and
the technical estimates of the error terms. For any z > a, with a little algebraic
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manipulation, write
[-10g8(z) + logS(2)] — [—log S(a) + log S(a)]
- - [(c./er) . + [(/C) dF,
o +[ec-10dE -k« [e-cy/ec]dr,
+ {[—logg(z) - f\n(z)] - [—logg(a) - f\,,(a)]}
= —n 'Y ¢(x;, 3, 2) + 111 (a,2) + IV,(a,2) + V,(a,z), say.
i=1
The following proposition provides estimates of the remainders.

PROPOSITION 1. For a and b given previously, one can write

(i) sup |III(a, 2)| = O(n=3/413*) a.s.,
a<z<b
(ii) sup |IV,(a,2) =0(n7Y,) a.s.,
a<z<b
(iii) sup |V, (a,2) =0(n"1,) a.s.
a<z<b

The proof of this proposition is given in the Appendix.

PROOF OF THEOREM 1. Parts (i) and (ii) of the theorem follow immediately
from Proposition 1 and (1). Part (iii) of the theorem follows from (ii) and a
two-term Taylor expansion of log S — log S. O

PROOF OF THEOREM 2. To prove Theorem 2, we need to take a proper
a = a, - 0 in (1). For any fixed § > 0, let a, = F3;Y(n"%21;%). It can be shown
that —log S(a,) — A(e,) = o(n~'/%) as. Write C*(¢) = max{C,(?), n~1}. Since
C,(x;) = n~! we see that in (1) we can replace C, by C* at will if integration is
with respect to F,. On the other hand, C,(¢) = 0 for £ < y,, = the smallest-order
statistics of the y’s. Using these observations, it can be shown that

' limsup|IIL, (0, ,) + IV,(0, &,) + V,(0,a,)| = o(n™*?) as.

Letting z = a,, and a = 0 in (1), we have
n 'Y &(x;, ¥, a,) =0(n7V?) as.
i=1
and (1) reduces to
—logS(z) +logS(z) = —n~' X &(x;, 3y 2) + I ,(a,, 2)
2 i=1
+ IV (a,, 2) + Vy(a,,2) +o(n"V?) as.
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Part (i) follows if the orders of II, IV and V can be controlled properly. Part

(ii) follows by a two-term Taylor expansion. It remains to estimate the orders of
III, IV and V. We summarize these estimates in

PROPOSITION 2. Assuming lim, _, ,-F(x)/G(x) = 0, one can write

(i) sup |II,(a,,z2) =o0(n"'?) a.s,
a,<z<b
(ii) sup IV, (a,,z2)| =o(n"¥?%) a.s,
a,<z<b
(iii) sup |V, (a,,z2)] =0(n %) a.s.
a,<z<b

The proof of this proposition is also given in the Appendix.

PROOF OF COROLLARY 1. It suffices to show that the process n'/2(F,(t) —
F(¢)) is tight in D[0, b]. From Theorem 2 and some easy calculations, it can be
shown that for all s, ¢ € [0, b],

Var(S(s)é(s) - S(¢)&(2)) < |W(s) - W(2)],

for a continuous nondecreasing function W, e.g., W(t) = const.( [{ dF/GS? +
F(t)). It follows that forany 0 < ¢, < t<t, < b,

@ (@R - SOEV RSO - S@)Ee))

< 3{W(t,) - W(1,))’,
where £(t) = n7'L%, &(x;, ¥, t). The tightness of the process follows from page

i=1
128 of Billingsley (1968). One can also deduce the same result by first proving
that the hazard process n'/?(—log S(2) + log S(z)) converges weakly (using
Proposition 2 and the similar argument given previously) to a zero mean
Gaussian process with covariance structure I' on D[0, b] under the condition
[dF/G < 0. The desired result can be obtained via Taylor expansion and the

continuous mapping principle. O

PRroOF OF COROLLARY 2. To see this, one can either use a theorem of Dudley
and Philipp (1983) or Proposition 2.1 of Philipp (1977). In the latter approach,
one needs finite-dimensional LIL’s for {n'/2£(t;)/ll%/%}%., and this is not hard to
establish in the present case. In addition, one needs a bound for the fluctuations
of the process n'/%§(t)/ll}/? and this is provided by (3). O

While this manuscript was under preparation, we came to know about the
preprint by Wang, Jewell and Tsai (1986), a work giving the covariance structure
of the process n'/%(t), where £,(¢) = n™'X", £(x;, ¥, t); however, we think
the overlap, if any, is not substantial.
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APPENDIX
LemMA Al [Lo and Singh (1986)]. Let 7,7y, 1,,-..,7, be iid random vari-
ables with mean 0,|n| < ¢ and Var(n) = ¢2. Then for any positive z and d
satisfying cz < d and nzo? < d?, P(|X?_, 1, = 3d) < 2e7 2

Proor. Let ¢(f) be the moment generating function of 5. Since e* <
1 + x + 2x2 for |x| < 1, it follows that ¢(¢) < 1 + 2t%? if |tn| < 1. We have

P( }n: 7,2 3d | < e ¥[¢(2)]"

i=1
< e—3dt+2nt202

<e?

since z = dt. Similarly, we can show that P(X" , %, < —3d) < e”? and the
lemma follows easily by combining these two inequalities. O

LEmMMA A2. If lim,_, (+F(x)/G(x) = 0, then
sup |[C,(x) — C(x)]/CV*(x)| = O(n~VHY?) a.s.,
a,<2<b
where a, = F,Y(n"%2%) for some & > 0.

ProoF. Since lim, _, o-F(x)/G(x) = 0, it is easy to see that C(x) for x > a,,
is bounded below by O(n~=%/%1;%/2) as. Since C, is a difference of two empirical
distributions, we can use Theorem 5.1.5 of Csérg6 and Révész (1981) or Theorem
2 of Foldes (1981) to obtain the desired bound. O

LEMMA A3. Assuming lim, _, (+F(x)/G(x) =0 and 0 < & < 1/2, then

sup |III (a,,x) = O(n‘3/4+2"13/4),
a,<z<b

where F,(a,) =n"%

PrOOF. A readily adaptable proof is available in the literature, with only
minor changes to accommodate our choice of a,. See Lemma 2 of Lo and Singh
(1986). O

LEMMA A4. Assume lim,_ +F(x)/G(x)=0 and 6> 2 and let vy, =
n_3/2l;8’ F*(an) = Ynnel, F*(bn) = ‘Ynnez' If 0< & < €9 <1and € — 381/4 =
3/8, then

sup |II,(a,,x) =o(n" %) a.s.
a,<x<b,

PrOOF. Write {(2) = (C, — C)C,C) (). Since
L (a,, 2) < [N dF(2) + ["5(2)dFa(2),
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and since the two integrals can be estimated with identical methods, we only
evaluate the first term. By Lemma A2,
sup |[C,(x) - C(x)]/C*(x)| = O(n™'/2/?) as.

a,<x<b,

and F(b,) = F.(b,)1 + o(1)) a.s. Hence
[’(2)IdF, = O(n~21°G~(a,)v,n%) as.

uniformly on x € [a,, b,]. It is easy to show G~*?*(a,) = O(y, 3/*n~3/*) and
the final term found is O(n~1/211/2-8/4) = o(n~'/2). The proof of this lemma is
complete. O

LEMMA A5. Under the conditions of Lemma A4 but with e, — e, < 1/2, then
sup |IV,(a,,x) =o(n"'?) a.s.

a,<x<b,

The proof of this lemma is similar to that of Lemma A4, only simpler. We
omit it.

ProoF oF PROPOSITION 1. Part (i) is a special case of Lemma A3 with § = 0.
Parts (ii) and (iii) follow from a similar, easier argument. See Proposition 2(ii)
and (iii). O

PROOF OF PROPOSITION 2. (i) Define ¢, = 0, ¢, = 3¢;,_,/4 + 3/8. It can be
shown that the interval [a,, 8,], where B8, = F5(n~?%), is covered by a finite
number of intervals of the form specified in Lemma A4. Applying Lemma A4
repeatedly to these intervals, we have

sup |l (a,,x) =o0(n"'2) as.
a,<x<pB,
The upper bound for III (B,, x) for x in [B,, b] can be obtained by setting
8 = 1/9 in Lemma A3.

(i) Define ¢; = (j — 1)/4. For i = 1-4, applying Lemma A5 with ¢ and e,

replaced by ¢; and ¢, ,, we obtain

sup |[IV(a,,x) =o(n"'2) as.,
a,<x<B,
where 8, = F,(n"'/21%). The bound for IV,(8,, x) over [B,, b] can be easily
shown to be o(n~'/2). Part (ii) follows.

(iii) Define Q(a, x) = [Z[nCZ2(¢)] ! dF,(t) and note that for a > a,, Q(a, x)
has essentially the same form as IV, (a, x). Hence the estimates of its orders can
be carried out in exactly the same way as in part (ii). Part (iii) follows because
V,(a,, x) is bounded in order by @(a,, x) for all x. O
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