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HETEROSCEDASTICITY-ROBUSTNESS OF JACKKNIFE
VARIANCE ESTIMATORS IN LINEAR MODELS!

BY JUN SHAO AND C. F. J. Wu?
University of Wisconsin-Madison

The asymptotic unbiasedness and consistency of three types of jackknife
variance estimators in the presence of error variance heteroscedasticity in
linear models are studied. The results are given in terms of the number of
observations deleted and measures of imbalance of the model. The con-
sistency of a class of Wu'’s weighted jackknife variance estimators for nonlin-
ear parameters is also studied. A necessary and sufficient condition is given
for the asymptotic unbiasedness and consistency of the unweighted delete-1
jackknife variance estimator and Hinkley’s weighted delete-1 jackknife vari-
ance estimator. This condition is more stringent than those required for Wu’s
weighted jackknife. Comparison of the three delete-1 jackknife variance
estimators in terms of their biases also favors the latter method.

1. Introduction. The jackknife method was proposed for bias reduction of a
point estimator [Quenouille (1956)] and for variance estimation [Tukey (1958)].
Its theoretical justification has largely been the consistency of point and vari-
ance estimators and the asymptotic normality of the associated ¢-statistic. If
alternative methods are available and possess the preceding properties, the
jackknife does not have any apparent superiority in theoretical performance.
When the standard (i.e., linearization) method for variance estimation is only
available under restrictive conditions such as normality, resampling methods
such as the jackknife and bootstrap are often available. They are not logically
based on the same restrictive conditions. Their small sample performance is,
therefore, less susceptible to violations of these assumptions. The distribution-
robustness of the jackknife was recognized by Tukey and subsequent workers.
Another robustness aspect of the jackknife was later pointed out by Hinkley
(1977). In the context of regression models, he proposed a weighted delete-1
jackknife variance estimator vy (1.3) and showed its desirable asymptotic perfor-
mance even when the errors are heteroscedastic. Wu (1986) proposed a class of
weighted jackknife variance estimators v, (1.4), allowing the deletion of an
arbitrary number of observations denoted by d. In the case of the delete-1
jackknife, Wu'’s weighting scheme is different from Hinkley’s. For homoscedastic
eITors, v,4) is unbiased, while vy is not. Like vy, the delete-1 version of v,
denoted by v, was also shown to be heteroscedasticity-robust [Wu (1986)].

The main purposes of this paper are (i) to study rigorously this robustness
aspect of v, for general d, (ii) to find necessary and sufficient conditions for
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the heteroscedasticity-robustness of vy and the unweighted jackknife variance
estimator v, (1.2) and (iii) to compare the biases of v,, vy and v,,.

We assume the linear model y; = x/8 + e;, i=1,...,n, where x, isa k X 1
deterministic vector, B is the & X 1 vector of parameters and e; are 1ndependent
with mean zero and variances o?. We assume the o2 are umformly bounded.

Writing y = (y1,..., %,), X = [xl, ,x,] and e = (el, .,e,), the model can
be expressed as
(1.1) y=XB+e, Var(e)=diag(o?).

When o7 are different (constant), the errors are called heteroscedastic (homo-
scedastic). The reader should be aware that e;, 02, x;, etc. may vary with n. A
subscript n could be appended for clarity, but will usually be dropped for
simplicity.

Let M = X'X = ¥lx,x! be the moment matrix of (1.1). Assuming that M is
invertible, the least squares estimator (LSE) of B for (1.1) and its variances are,
respectively,

B=M"'X'y and Varf=M"1'Y olxx/ M.
1

A straightforward extension of the i.i.d. jackknife to regression was studied by
Miller (1974),

(1.2) v,=n"Yn- 1)2(:@(» = B))(Biy - B(»),’

where ,B( ;) is the LSE of B after deleting the ith pair (x,, y;) and ,B( ) is the
average of the ,B . Hinkley (1977) pointed out several shortcomings of v;. Based
on the concept of weighted pseudovalues, he proposed a weighted jackknife
variance estimator

(1.3) og=n(n—k)" 2(1 w,)'(Bey — B)(Biy - B),

where w; = x/M~'x;,. Wu (1986) argued that vy could be further improved by
choosing a different weighting scheme and/or allowing a larger number of
observations to be deleted. His method is described as follows.

Let S, be the collection of subsets of {1,...,n} which have size r. For
s={i,...,i,} €S, and A an n X p matrix, A, is defined to be the submatrix
of A consisting of the ijth,...,ith rows of A Denote X/X, by M,. For
simplicity, it is assumed that M, is positive definite for all s € S,. Let ,B =
M;'X!y, be the LSE of B based on (x;, %), i €s. The welghted delete-d
Jackkmfe estimator of Var B is defined to be

(1.4) V) = ((Z:If)IMI)—lglMsl(ﬁs—B)(ﬁs—ﬁ)"

where |M,| is the determinant of M, and ¥, is summation over all s € S,. An
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important special case is the delete-1 (d = 1) estimator
(1.5) i) = Z(l w; )(B(z) )(B(l) ,3) .

For large ( ) the computation of v, is cumbersome. As in the bootstrap,

Monte Carlo approximation by randomly selecting o/ distinct subsets (J < ( d))
can be used. Several theoretical results obtained here for v, can be extended to
this version [Shao (1987)].

The weighted delete-d jackknife can be used for other purposes such as
confidence intervals and bias reduction [Wu (1986)]. For confidence intervals
based on the histogram of ,B the choice of d = 1 and more generally bounded d
is not favored since it is known that, in the case of one-sample mean and
nonnormal errors, the histogram is asymptotically normal iff d and n — d both
diverge to oo [Wu (1987)]. On the other hand, for variance estimation v, and
vy are more likely to be used in practice because they are simpler to compute.

These three types of jackknife variance estimators are designed primarily for
homoscedastic errors since the original point estimator is the unweighted least
squares f. Stable performance under heteroscedastic errors of an estimator that
does not make explicit use of such information is called heteroscedasticity-robust.
Two such definitions are considered.

DEFINITION 1. Let v be an estimator of Var# and Var(e) = diag(s?2).

(i) v is AU-robust if v is asymptotically unbiased, i.e., nE(v — Var B) - 0.
(ii) v is C-robust if v is consistent, i.e., n(v — Var B) — 0 in probability.

Note that the usual variance estimator in linear model theory,
n
A A2ng— o -1 5
(1.6) 6=36°M"", 6= (n—-k) 112 r;=Y—xiB,
1

is unbiased and consistent for homoscedastic errors, but is neither AU- nor
C-robust. The bias of ¥ may be large and is generally of the order n~, the same
as that of Var 8. A variance estimator based on “bootstrapping” the re31duals r;
[Efron (1979)] is identical to ¢ and is, therefore, not robust. Wu (1986) proposed
a method for resampling residuals that gives robust variance estimators.

Our paper is organized as follows. Section 2 contains several useful technical
lemmas. Theorem 1 gives an upper bound on the bias of v, ,). As a consequence,
the AU-robustness of v, is obtained under weak conditions. In the case of
d =1, it gives a more precise result than a previous one on v,,, [Wu, (1986),
Theorem 5]. If the variances get closer to each other asymptotically, the
AU-robustness of v;,, holds under no assumptions on d or X (Theorem 2).
Section 4 contains results on the C-robustness of v;,, and its extension to
nonlinear parameters. Crucial to the proof in the nonlinear case is a useful result
(Proposition 1), which gives a bound on the maximum mean deviation of 3, from
B with s ranging over S,. Theorem 5 shows that A, — 0, A, given in (2.2), is
necessary and sufficient for the AU- and C-robustness of v; and vy. On the other
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hand, according to Theorem 2, v 4y 18 asymptotically unbiased (for nearly
homoscedastic errors) without any condition on A,. Section 6 provides a more
refined comparison of v,, vy and v, in terms of their biases. The comparison is
again more favorable for v,), i.e., up to a certain order, v, is upward biased and
vy downward biased and the orders of their biases are no smaller than that of
the bias of v,,,.

The asymptotic approach adopted here is different from the prevailing one for
linear models. It is common to assume that n~'M converges to a positive definite
matrix. This and the boundedness of {x;} imply that A, is of the order n~,
which may be too restrictive an assumption for unbalanced samples of small or
moderate size. In the study of AU-robustness, we make weak or no assumptions
on h,, which can be interpreted as an imbalance measure of the model. The
order of the bias depends monotonically on %,. The smaller 4, is, the better the
asymptotic approximation. Our comparison of the biases of v;, vy and v Jay 18
made possible with the use of another imbalance measure g, defined in (3.2). On
the other hand, the common approach previously cited implies that g, is of the
order n~! with the consequence that the biases of these three estimators cannot
be differentiated.

2. Some technical lemmas. In this section, we state and prove several
useful lemmas. Throughout the paper, we use ¢ to denote a positive generic
constant, i.e,, ¢ is a positive constant but may have different values in different
places. The trace of a matrix A is denoted by tr(A). Denote a nonnegative
(positive) definite matrix A by A >0 (A > 0); A > B means A — B > 0. Let
A, = [aﬁ}’)] be a sequence of & X & matrices with fixed k and «, a sequence of
positive numbers. We say A, = O(a,) [0o(a,), O (a,), o,(a,), respectively] iff
a{® = O0(a,) [o(a,),0,(a,), 0,(a,), respectively] for all 1 < i, j < k. For sim-
plicity, O(a,,) will be used for both numbers and matrices.

LEMMA 1. Let A, > 0 be a sequence of k X k matrices.

(i) The following conditions are equivalent: (a) A, = O(a,). (b) tr(A,) =
O(a,). (c) There is an N such that A, < ca,I, for all n > N, where I, is the
k X k identity matrix.

(i) The following conditions are equivalent: (a) A, = o(a,). (b) tr(A,) =
o(ay,). (c) For any e > 0, there is an N such that A, < ea,I, for alln > N.

Similar results hold if the O or o in (i) and (ii) are replaced by Op or op,
respectively.

ProoOF. We prove (i) only. The other proofs are similar.

(a) = (b) follows from the definition of A4, = O(a,,).

(b) = (c) holds because A, > 0 implies A, < tr(A,)I,.

(c) = (a). Let A, =[a{]. Since a{® > 0, (c) implies a{® = O(a,,). Then for
all 4, j,
)1/2

la{P| < (aPaP) " = O(a,). O
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The equivalence between (a) and (b) is a useful tool since it replaces a
condition on matrices by a similar condition on scalars. As an immediate
consequence of Lemma 1, we have :

LEmMmA 2. (i) If 0<A, = 0O(w,), 0 <B,=0(a,), C, is symmetric and
-B,<C,<A,, then C, = O(a,). The same result holds if O(a,,) is replaced by
O(an)’ OP(an)’ OP(an)'

(ii) For random matrices A, with A, > 0, EA, = O(a,) [or o(a,)] implies
An = OP(an) [Or OP(an)]'

LEMMA 3. Let x; and M be defined in (1.1) and

(2.1) M xxM™ ' = [m ]p,q

be a k X k matrix. Suppose that M~' = O(n""). Then for any p and q,
() Xfm, = O(n™Y),
(i) Z”(m )’ = O(h,n?),

where

(2.2) h,= maxw; and w;=x/M 'x,

and

(i) TP (mi,)* = O(n?).

ProOOF. (i) Note that Y’'m% is the (p,q)th element of the matrix

bq

LM 'xx!M™' = M'MM™' = M~ and is, therefore, of the order n~".
. n ) n .. .
(i) E(mge)" < X, ) (mG) < e max (m,)
< cn ' max(x/M~%;) < ch,n"2.
i<n

(iii) This follows from (i) and I}, (m¥,)* < I} ;. (mi )(m#). O

LEMMA 4. Let h, and w; be defined in (2.2), s € S, and d = n — r. Suppose
that dh,, < 1. Then

(23) M;'-M'<(1-dh,) 'M XXM ' <dh,(1-dh,) ‘M,
where s is the complement of s and

(2.4) M '<(1-dh,) 'M™' and xM;'x,<(1-dh,) 'w,.

Proor. Since (2.4) follows easily from (2.3), we only need to show (2.3). For
any s € §,,

tr(X;M'X;) < dh, and (I-X/M7'X;)" <(1-dn,) "L
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Therefore,
M =M =MX(I - XM'X,) T X M
<(1-dh,) "M XXM ' <dh,(1—-dh,) M. O

3. AU-robustness of v;,,. It was shown in Wu (1986) that v J(dy 18 an
unbiased estimator of VarB for homoscedastic errors and the usual variance
estimator © (1.6) is biased under violations of homoscedasticity. The AU-robust-
ness of the delete-1 jackknife v, was proved in Wu (1986), but the technique
does not handle the general case. In this and the next sections, we study the
robustness issue of v, for general d. The main result, Theorem 1, provides
more information than AU-robustness, i.e., an upper bound on the order of
magnitude of the bias of v, is given in terms of n, d and h, defined in (2.2).

As in Lemma 3, we assume for the rest of the paper

(3.1) M =0(n).

This is much weaker than n™'M converging to a positive definite matrix, a
condition assumed in Miller (1974). As remarked in Section 1, an important
feature of our approach is the incorporation of an imbalance measure such as 4,
in our results. Another imbalance measure closely related to &, is

(3'2) gn = Zwi2'
1

From Xfw? > n™%Zrw,)> = n~'%? and h, > n~'T?w, we have

(3.3) n'k<kg,<h,

That is, the orders of 4, and of g, are at least n™!. In Sections 5 and 6, the use
of h, and g, plays a key role in distinguishing between three delete-1 jackknife
variance estimators. For unbalanced models, &, and g, can be of larger order
than n~! (examples given in Section 6). Only in this situation, the biases of the
three estimators are of different orders.

Throughout the paper, d,, which may depend on n, is used to denote the
number of observations deleted in the jackknife procedure.

THEOREM 1. Assume that
(3.4) supd, h, < 1.
n
Then
Evy 4 = Varf + O(n"'d,h,),
which implies the AU-robustness of v, under d,h, — 0.
REMARKs. (i) The condition d, 4, — 0 imposes a reciprocal relation between

d, and h,. The more unbalanced the model is (i.e., slower rate of convergence of
h, — 0), the smaller d, has to be.
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(ii) In view of (3.3), an important implication of condition (3.4) is
(3.5) d,<h;'<k'n,

i.e., d, is smaller than a fraction of n. If too many observations are deleted, the
robustness of the estimator will be lost. For example, in the extreme case of
d, = n — k, the corresponding [delete-(n — k)] jackknife variance estimator is
identical to © (1.6) [Wu (1986)] and is, therefore, not robust.

ProOF OF THEOREM 1. For simplicity, we drop the subscript » in d,. For
anys€S,, r=n-—d,
B,— B=M;'Xy,— M'X"y
= (M = M) Xy, + M (X, — X'y).

The two terms in (3.6) are uncorrelated since X’y — Xy, depends only on 3, the
complement of s. Then

Var(B, — B) = (M;* - MY)X/D,X,(M;* - M™') + M 'X;D,X; M,

(3.6)

where D, = Var(e,). Hence, Ev; 4 = S; — S, + S;, where
et
! d-1)\d-1 ’
-1
s = (%7 F) 0 DM - DM UXDXM,

S, = (” - ’“)_ler‘ YIM|(M; ' — M) XD, X (M;' — M),

d-1
Note that
on (ETED s

=[1-(d+k=2)/n] %' <1+ cdn .

The last inequality follows from (3.5) since it implies that (d + k& — 2)/n is
bounded away from 1. Hence,

S, = (1+ O(n~'d))Varp = Varp + O(n"d)
by (3.1). From (3.1) and the identity (n p k)|M| = ¥,|M,| [Wu (1986), Lemma 1],

-1
u(,) < o 37 %) 10 0 - )M XXM

< en”(% 78] b S0 - ) S

i€es

< cdhnn‘l(';: f)_l[(Z) - (" p k)] — 0(n"'dn,),
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since

n—k\ (n| _ n—k)] Si k(. -k
(d_l) [(d) ( 2 [=d E+1)[nk(r—k+1)7% - 1]
<en Y r—-k+1)=0(01).
The last inequality follows from (3.5). From X/D, X, < cM, < cM,

-1
S, < c(’(; ~ f) |M| 7P Y IM| (M7 - MMM - MY,

Using (2.3), (1 — dh,)™"' = O(1) [under (3.4)], and tr(AB) < tr(AC) for A > 0
and B > C,

n—k

t2(S,) < cdhn( n-k

-1
| I b (M XX M),
Then by (3.1) and (3.7),

tr(S;) < cn‘ldhn(z: Ile)_l Z( ‘ wi)

s ‘iIE§
- cn—ldh,,(;‘l‘ k)_l(g - l)fw,. = 0(n"'dh,).
-1 -1/

From Lemma 1, S, = O(n"'dh,) and S; = O(n"'dh,) and the result follows. O

Theorem 1 can be extended to a more general resampling procedure called the
variable jackknife [Wu (1986)], i.e., the number of deleted observations may vary
for fixed n. Details are in Shao and Wu (1985). Another extension of Theorem 1
to the estimation of variance of a nonlinear function of 8 can be found in Shao
(1986).

We end this section with the following theorem, which provides another way
of looking at the robustness issue. In Theorem 1, we impose restrictions on the
matrix X in order to obtain asymptotic results. In the next theorem, we impose
instead restrictions on the error structure so that the o2 are nearly equal for
large n. Recall that the errors e, in the model (1.1) may vary with n. No
restriction on d or A, is made.

THEOREM 2. Assume that max; _ 02 — min;_,0% = o(1). Then

1

nE(vJ(d) - Varﬁ) - 0.

PROOF. Recall that Var = M~ '£762x,x/M~". It is easy to see that
(maxo?, Jnb 1 (minoZ )nda=1 > 0

i<n i<n
and
(maxoﬁ,)nM‘1 —nVarB - 0.

i<n
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Noting that v, is unbiased when o}, = o for all i and n, we have
(mino2 )M~ < nEo, < (maxo? JnM .
i1sn is<n
Hence,
nEvy 4 — n(maxcrﬁl)M‘1 >0 and nE(uvyq - VarB) - o. o
i<n

In the special case of constant variances (02, = 02), this is simply the unbi-
asedness of v, 4.

4. C-robustness of v;,). The C-robustness of v, will be proved in
Theorem 3 for any d, with d,k, — 0. It is useful for constructing approximate
confidence intervals for B. The result is extended in Theorem 4 to the estimation
of variance of a nonlinear function of B.

THEOREM 3. Assume that

(4.1) d,h,—>0 as n— o,

(4.2) maxEe! < c< o foralln.
sn

Then

Oyay — Varf = op(n1).

Proor. Let
V.= M~ Y(X/le, — X'e),
U,=(M' - M) X/e,,
n—k) lano1
e =n(2F) ),
V= ("W). U= (1)),

where ( ), denotes a matrix with rows indexed by s € S,. Then
noy =UU+ VV+ UV + VU.

Since EU'U = nS; = o(1) by Theorem 1 and (4.1), U'U = 0p(1) holds according
to Lemma 2(ii). By the Cauchy-Schwarz inequality, the result follows if

(4.3) V'V — nVarB = 0x(1).
Let § be the complement of s. Then X'e — X/e, = X/e; and
-1
vV = n(’é - ’f) M| Y MM X e el X M.
Define

-1
Fo=n(" k) SM (Ko XM,
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Since |M,| < |M|, F, — V'V > 0 and its expectation is nS,, where S, was defined
in the proof of Theorem 1 and tr(S,) was shown to be O(d,h,n~'). Therefore,
from (4.1) and Lemma 2(ii),
(4.4) E,— V'V =0y(1).
Decompose

Fn-n(fl:’f) T T (e M =G, + H,

i, jES

where

n_k ’ -1 _ - - ’ -
G,,=n( ) EM LY (e XX )M =q,M™' Y eexx/M!

d-1 i#j€§ i<j
-1
with g, = 243:;)(;:’;) , G, =0 when d, =1 and
-1 n
Hy=n(2 k) TM T (el M = p, M7 BetraM
s i€s 1
-1
with p, = n(z: })(;: f) . Then (4.3) follows from (4.4), G, = 0p(1) and H, —

nVarf = op(1).

For d, > 2, from (2.1), the (p, g)th element of G, is g, (X" Je €; m” ,)- Since
Cov(ee;, eie,) =0 if i #1 or j+#r, its variance is ¢Z[L?. o0 (m” 2]1-0
by Lemma 3 and n~ q,, — 0. Since EG, =0, this implies G, = oP(l) Since
n 'p, > 1 EH — nVa.rB = (pn - n)Var,B — 0. The (p, ¢)th element of H, is
P(X7_se; m o) Its variance p, [Z:’ Vi e2)(m”q)2] converges to zero by (4 2)
and Lemma 3 Thus, H, — nVarf = 0,(1) and (4.3) holds. O

Let 6 = g(B) be a nonlinear function of 8 from R* to R™ with first order
derivatives. We now consider the problem of estimating the variance of the
estimator § = g(B). The jackknife variance estimator v @ 0 (1.4) can be
extended as follows [Wu (1986)]:

-1
w(®) = (22 %)) Zimei(a, - )9, - 9y,
where 93 = g( ,@s). We want to establish the C-robustness of v J( d)(é), ie.,

(4.5) vxa(8) — ve(B)VarB(ve(B)) = ox(n?),

where Vg(B) is the m X k matrix whose jth row is the gradient of the jth
component of g at 8 and vg(8)Var B(vg(B)) is the asymptotic variance of .

To prove (4.5), we first prove a useful result that gives an upper bound on the
mean of the maximum Euclidean distance between ,B and B, with s ranging over
S,. It shows that ,B B are close to zero uniformly over all s € S, if d,h, — 0.
A special case was given in Miller (1974) for d,, = 1.

PROPOSITION 1. Letr = n — d,. Suppose that (3.4) holds. Then
(46) E(max||g, - BI1?) = O(d,h,),
s€S,
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where || || is the Euclidean norm. In addition, if d,h, —> 0, then for any § > 0,
(4.7) lim P(|I3 - Bl <8, |8, — Bll < & foralls € S,) = 1.

Proor. For simplicity, we drop the subscript 7 in d - The main step is in
decomposing B — B, into the sum of d successive differences and finding a tight
upper bound for each difference. Let 5 be the complement of s € S,, denoted b

§ = (Ji--ws Ju}s and ;= {ji,..., j} Us, i=1,...,d, B, =B, and B, = f.
Noting that s; ='s,_; U {J;} and using an updating formula [Miller (1974)], we
have

d
48)  B-B=X(B-B.)=X(1-xM %) M,
Yy, — %},

i=1 i=1
where r; =y, ! le is the jith residual from fitting the subset model Ys, =

X, B +e,,. Let p; = d — i be the number of elements outside s;. Using (2.4),
49) (1-xM%;)  <[1-(1-ph,)'n,] " <@ -dn,),
where the last inequality follows from (d — 1)/(d —1i)>1> dh,. Then

d
1B, = BI* <d X118, _, = B,|I?

-~
—

RS

<d) (1- dhn)_27}~l2xjf'M;2le [using (4.8) and (4.9)]
=1

2

<cdn™' ) rPx;M;'x; [using(2.3),(3.1) and (3.4)]

12 jl sl jl
1

d
i=

d
<cdn"'h,} r? [using (2.4) and (3.4)].
i-1

Note that r;, = €, — Lpes XM, 'x e,. Thus,

'PEST,
2 2
2 2 -1 2 -1 2
I < 2ej + 2( Yy x; M xpep) <2e; +2n Yy (xj'_Mst xp) e,.
pEs; PEs;
Hence, for any s € S,

d d d .
o T A T
i= i=

i=1 pe€s,

n n
< c(z:e,2 +nY Y wiwpeg).
1

i€5 p=1

The last inequality follows from (2.4) and (3.4). Thus,

max|B, - B < cdhn( nt el + dhnZwie?)
SES, 1 1
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and (4.6) results since E(n~'Y7e?) and E(X'w,e?) are bounded (which follows
from the boundedness of o?).

(4.7) is an immediate consequence of (4.6), d,h, — 0 and ,é B—0 in
probability. O

THEOREM 4. If (4.1) and (4.2) hold and v g is continuous in a neighborhood
of B, then (4.5) holds.

Proor. Express v J(d)(ﬁ) as
(52%) wa Zowi(e) (A - A [6G(A - A,

where G({,) is an m X k matrix whose jth row is the gradient of the jth
component of g at {{, which is a point on the line segment between B,

and B. Let V, = Vg(ﬁ)(ﬂ B), U, = [G(,) — vaBB, — B), ¢, =

[n(ZZ’f) M|~ M, |] ,V=1(cV/), and U = (¢,U/),. Then

nya(8) = V'V + UU + UV + VU.

Since V'V = nvg(B)o,qa(VaB), V'V = nvg(B)VarB(vg(B)) = op(1) fol-
lows from Theorem 3 and the continuity of vg at 8. From the Cauchy-Schwarz
inequality, it suffices to show

(4.10) UU = op(1).

For any & > 0, there is a § > 0 such that |[vg(x) — vg(y)|| < ¢ for ||x — B| +
ly = Bl < 8. Let

={IlB-BI<8/3,11B,— Bl <8/3foralls€S,)}.
Then

2
IAi

w(Le00) =%~ ) = (6 () - va(A(A - B)

< entr(vyy),
where I, is the indicator function of A. Hence, for any given ¢,
P(tr(UT) > ¢) <1 - P(A3) + P(ntr(v,q) > e/e?).
From (4.7), |
0 < limsupP(tr(UT) > ¢,) < limsupIP(n tr(vyq)) > eo/e2),

n—oo n— oo

which can be made arbitrarily small from Theorem 3 and by choosing ¢ small.
This proves (4.10). O

5. Robustness of other jackknife variance estimators. We now consider
the robustness of the unweighted jackknife variance estimator v, (1.2) and
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Hinkley’s weighted jackknife variance estimator vy (1.3). They can be rewritten
as

(5.1) o,=n"Yn-1)M'Y(1-w) *rPxxM ' -R,
1

where

1 1

R=n"%n- 1)M"[Zn‘.(1 - wi)—lrixi][i(l - wi)—lrixi]/M_l
and

vg=n(n—k) "M 'Y rixx/M
1

The following theorem proves that &, — 0 is necessary and sufficient for v,
and vy to be AU- and C-robust. The condltlon is rather weak since it is known to
be necessary and sufficient for the asymptotic normality of the LSE B in the case
of homoscedastic errors [Huber (1981)]. On the other hand, it is sufficient but not
necessary for v, to be robust in view of Theorem 2, which does not require any
condition on A,,.

THEOREM 5. Under

(5.2) suph, <1
and
(5.3) M = 0(n),

the following statements are equivalent:

(a) h,— 0.

(b) v, is AU-robust.

(c) v, is C-robust [under (4.2)].
(d) vy is AU-robust.

(e) vy is C-robust [under (4.2)].

REMARK. The proof of the theorem shows that (a) is necessary for the
weaker property that v, and v, are asymptotically unbiased and consistent
under Var(e;) = o2

For the proof of Theorem 5, we need the following results.

LEMMA 5. Let R be given in (5.1). If (5.2) holds, then ER = O(n™?2).

A proof of this lemma is given in Shao and Wu (1985). The next result
establishes relationships among v, (1.2), vy (1.3) and v, (1.5).
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PROPOSITION 2. Under (5.2), we have (i) v; — v;;, = W, + Op(n™?) and
E(v; — v;4)) = EW, + O(n™?) with W, > 0.

() vy — vy =W+ 0,(n"%) and E(v,y — vy) = EW, + _O(n_z) with
W, > 0.

(iii) tr(EW,) < cn™'g, < ckn™'h,, i = 1,2, where h, and g, are defined in
(2.2) and (3.2).

(iv) tr(EW,) > en™'g,, i = 1,2, if in addition (5.3) holds and Var(e) = oL

ProoF. (i) The delete-1 jackknife estimator (1.5) can be rewritten as

[ 200 2 2

n
Oy =M Y (1~ w;) rixxMT,
1
Write v; — v;,, = W, — G — R, where R is given in (5.1),

n
- -2 Jaf—
Wy =M1y (1 —-w) rPxxM ' — v,
1
n
(5.4) =M Tl - w) rixaMT 20,
1

n
G=n"M"1'Y(1-w) *r2xx/M1>0.
1

By Lemma 5, ER = O(n™?) and, therefore, R = O,(n"?) since R > 0. We
complete the proof by showing EG = O(n~2), which also implies G = Op(n‘2).
From Lemma 2.1 of Shao (1986), Er? < ¢ for all i. Hence, EG < cn”'M™! =
O(n™2).

(ii) It is easy to show that v;,, — vy = W, — k(n — k)" 'v,,,, where

Wy =n(n—k)" "M Lw(l - w) 'rAxxM'20.
1

The result follows since Ev,;,, = O(n~"') and v,,, > 0.
(iii) From (3.3) and Er? < c,
tr(EW,) <ctr| M~ ' Y waxx! M| <cn 'Y w?=cn"'g, <ckn'h,.
1 1
(iv) Under (5.3) and Var(e) = oI,
n

L
tr(EW,) > 2} wx!M 2%x; > cn™' Y w?. ]
1

i
1

Proor orF THEOREM 5. We prove that (a), (b) and (c) are equivalent. The
proof of the equivalence of (a), (d) and (e) is similar.

From Theorems 1 and 3 and Proposition 2, (a) implies (b) and (c). To show
that (b) implies (a), it suffices to show that, in the special case Var(e) = ¢?I,

(5.5) nE(v, — Varf) - 0
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implies (a). By Proposition 2(i) and Ev,,, = Var B under Var(e) = oI, (5.5)
holds iff nEW, — 0, where W, is defined in (5.4). From Proposition 2(iv),
ntr(EW)) = cg, = ch?,. Therefore, nEW, — 0 iff (a) holds. This proves (b)
implies (a). '

It remains to show that (c¢) implies (a). Consider again the special case
Var(e) = 02] and assume (4.2) holds. Let U = M~1X"(1 — w;) %r2x,x!M~! and
u,, and V, . be the (p, g)th elements of U and Var B, respectively. From 5.1)
and Lemma 5, we have v, = U + O,(n"?). Hence, (c) implies

(5.6) n(U - VarB) = o,(1).

The assumption (5.2) implies that {(1 — w;)"'} are uniformly bounded. There-
fore, 0 < U < cv,,. Thus, n’E(u},) and n®V2 are uniformly bounded from
Theorem 3.2 of Shao (1986). Hence, {n|u,, — V,,I: n =1,2,...} are uniformly
integrable. From this and (5.6),

nEW, = n(EU - Ev,,,) = nE(U — VarB) = o(1),
which implies (5.5). Therefore, (c) implies (a). O

In view of Proposition 2, the three delete-1 jackknife variance estimators are
indistinguishable up to the order O(n~?) if g, is of the order O(n~!). However,
the comparison is more favorable for v, in general since Theorem 5 shows that
when lim, , A, # 0, v; and v, are not asymptotically unbiased or consistent
(even for homoscedastic errors), whereas v, is asymptotically unbiased for
nearly homoscedastic errors (Theorem 2).

6. Comparison of the biases of v;, vy and v,,. The AU-robustness
property for an estimator of Var 8 is desirable for the bias reduction of g(8),
where g is a smooth nonlinear function of B, since the latter is closely connected
with the existence of an asymptotically unbiased variance estimator of Varpf
[Wu (1986), Section 9 and Shao (1986), Sections 4 and 5]. Unlike v, v; and vy
are neither AU- nor C-robust if lim,, _, .4, # 0. Further analysis in this section
shows that v, and vy are upward and downward biased, respectively, up to the
order n~'g,. This supports the empirical results of Wu (1986). Also, the order of
the bias of v, is always no larger than that of the bias of v, or vy.

Let B;, By and B, be the biases of v;, vy and v, respectively.

THEOREM 6. Assume that (5.2) and (5.3) hold.
(i) Suppose that min; _,02 > a > 0. Then
B,=U,+0(n"?) withU, > 0 and tr(U,) = c;n"'g,,

where c, is a positive constant and 8,18 deﬁned in (3.2).
(ii) Suppose that 2min; _ 07 — max; > 68 > 0 for all n. Then

By=-U,+ O(n~ 2) with U, > 0 and tr(U,) > cyn”'g,,

where ¢, is a positive constant.

zsn m—
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(iii) The elements of B ) are bounded in absolute value by c;n™'g, for a
positive constant c,.

PRrOOF. (i) Let V= E[M~'Sf(1 — w;)~*r?xx/M~"]. Then from Lemma 5,

(6.1) Ev; =V + 0(n72).
Since Er? = (1 — w)%?, + X7, wke?, we have

V-Varf=M"1 Z[(l — w;) ’Er? - oﬁl]xix{M‘1
1

n n
- -1 2 2. -1
=M Z ZwijojnxixiM
i=1j#i

n
>aM ' Y w(l — w)xx/ M > 0.
1
From (5.2) and (5.3),
n
tr(V - Varg) > ¢y wx/M 2%, > e;n”'g,,.
1

Hence, (i) follows from (6.1) with U, = V — Varj.
(i) From vy = M7'Eir2x, /M~ + k(n — k) "M~ 'Err2xx /M~

(6.2) Evy =W+ 0(n™?)
by the proof of Proposition 2, where W = M~'L7Er2xx/M . From rowk=uw

%)

2 2 _ 2 _yn .2 2 ; 2 _ 2
Oin — B = 2w05 — T} wiel > wi(2 min; _ 07, — max; _,07,) > 8w,

by the assumption on o2. Then
n n
Var — W=M"Y (o2 - Er?)xx/M~' 2 6M~' Y wx /M~ > 0
1 1

and tr(Var B-w)> c,n” g, by (5.3). Hence, (ii) follows from (6.2) with U,=
Var — W.

(ili) Since By, = M™'EX(1 — w,)"'rxx/M "', where 7, = L wi(e? — ol),
we have —A, < B;, < A, with A, = M~¥r1 — w;) " Yrjax /M~ > 0. Since
o/, are uniformly bounded, |7| < cw, and

n n
tr(A,) <ctr| M7' Ywax/M | <cn ! Yw? = csnlg,,
1 1

which together with Lemma 2(i) implies the result. O

The theorem shows that the bias of v 1y always converges to zero at a rate no
slower than that of v, and v,. Example 1 considers an extreme case in which n
tinies the biases of v; and v, do not converge to zero whereas v, is unbiased.
The theorem also implies that Ev,, < Varg < Ev ;7 up to the order n~'g,, which
may be larger than n~2 if g, is of a larger order than n~L. An illustration is
given in Example 2.
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EXAMPLE 1. Letk 2, neven, xy;_, ,=(n/?37772,0), x,, ,=(0, n*/2377/2y,

0221—1,n o} and 021 n 022, J=1,...,n/2. Then
n/2
M= (0% 5)1- o),
Jj=1

M~'=0(n"")and h,=3"'(Z7/337/) ! - Z. Hence by Theorem 5, v, and vy
are neither asymptotlcally unblased nor consistent even if 62 = ¢2. On the other
hand, since x5;_; ,M~'xy;, , =0 for any j, k, v,,, is unbiased according to
Theorem 5 of Wu (1986).

Miller (1974) proved that n™'M converging to a positive definite matrix
implies 4, — 0. This is not applicable here since he assumes that x;, i = 1,2,...,
is a sequence, while x; ., i = 1,..., n, in Example 1 vary with n.

ExaMpLE 2. Let £ =2 and x,, = (1, a;,)’, where a,, equals 752 for odd n
and 1 + n%'? for even n, and am equals 1 for odd n and —1 for even n,
i =2,...,n. A straightforward calculation shows that n™'M - I, w, = ¢, in/&ns
where £ =n[n* 4+ (n-1)]-n%® and {,,=n%¢+(n-1)— 2a nd/2
amn and max;_,{;,, =n%%+ (n-1) - 2158 4 pll/s, Hence h, max,<nwi
is of the order n~'/%, which is substantlally larger than n~ Also rr $Z is of
the order n!'/3, Hence, &, = Ltw? is of the order n~'/3, which is larger than
n~L
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