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ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION
WITH LOSS EQUAL TO SQUARED ERROR PLUS
COMPLEXITY COST!

BY PETER J. KEMPTHORNE
Massachusetts Institute of Technology and Harvard University

Estimating the mean of a p-variate normal distribution is considered
when the loss is squared error plus a complexity cost. The complexity of
estimates is defined using a partition of the parameter space into sets
corresponding to models of different complexity. The model implied by the
use of an estimate determines the estimate’s complexity cost. Complete
classes of estimators are developed which consist of preliminary-test estima-
tors. As is the case when loss is just squared error, the maximum-likelihood
estimator is minimax. However, unlike the no-complexity-cost case, the
maximum-likelihood estimator is inadmissible even in the case when p = 1
or 2.

1. Introduction. For estimating the mean of a multivariate normal distri-
bution, most interest has focused on the performance of estimators under
squared-error loss. Stein (1956) proved the inadmissibility of the maximum-
likelihood estimator for this loss and the study of estimators which domi-
nate the maximum-likelihood estimator has been extensive. See for example,
Strawderman (1971), Efron and Morris (1976), Berger (1976, 1980, 1982a, 1982b)
and George (1986). Many of the proposed estimators are also inadmissible and
the characterization of admissible dominating estimators is addressed in
Kempthorne (1986). An important result is that any discontinuous estimator is
inadmissible. Preliminary-test estimators are of this form. See, for example,
Sclove, Morris and Radhakrishnan (1972).

We address the estimation of a multivariate normal mean when the loss is
equal to squared error plus a cost depending on the complexity of estimates. In
this case, preliminary-test estimators which use maximum-likelihood estimates
can be admissible. Meeden and Arnold (1979) prove the inadmissibility of a
single such preliminary-test estimator in a one-dimensional problem. Stone
(1982) extends their result to the case of two dimensions. In three or more
dimensions, these “maximum-likelihood” preliminary test estimators can be
inadmissible. See, for example. Bock (1980) and Ghosh and Dey (1984). These
papers characterize dominating procedures in special cases but the admissibility
of dominating estimators is not proven.

We characterize complete classes of estimators for this problem which
necessarily include all admissible estimators. Any admissible estimator can be
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1390 P.J. KEMPTHORNE

interpreted as a preliminary-test estimator. The stigma of discontinuous estima-
tors vanishes when the loss incorporates complexity costs. Interestingly, only one
preliminary-test estimator in the complete class uses maximum-likelihood esti-
mates. Consequently, only one maximum-likelihood preliminary-test estimator
could be admissible for a given loss.

For a common specification of the complexity costs, we also consider the
performance of the maximum-likelihood estimator (which uses no preliminary
test). We show that it is minimax, but it is inadmissible no matter what the
dimension of the mean.

2. Decision-theoretic preliminaries. Let X be a p-variate normal ran-
dom variable with unknown mean § € R? and known p X p covariance matrix
2. Consider estimating 6 given X in a decision-theoretic framework with loss
equal to squared error plus a cost depending on the complexity of an estimate.
For t € R?, an estimate of 6, this loss is defined to be

L(¢,0) =it - 0]* + C(2),

where |- ||? is the norm induced by an inner product (-, -), specified by a
positive-definite matrix M, such that for u, v € R?, (u, v) = u"Mv; C(t) is the
cost for using estimate ¢.

To define the complexity-cost function C(-), let {S,, £ =1,2,..., K } be a
collection of closed convex subsets of ® = R?, which is closed under intersections
and contains ©. For ¢t € R”, set C(t) = C, 1f t€S,and t ¢S forall S; ¢ S,
that is, the cost associated with using an estimate from S,. So that the Costs
assess complexity, assume that C; > 0 for all j and C; < C, for all j, k such that
S; C S,.

For any estimator 8 of 6 given X, let 8(-|x) denote the distribution of
estimates of 6 given X = x. When (- |x) is degenerate for every x € R?, let 8(x)
denote the estimate of the nonrandomized estimator. Assume that for all
x € R®, §(-|x) is a probability measure on the Borel sets of R? (the compactifi-
cation of R?) and for any fixed Borel set A C R?, §(A|x) is Lebesgue measur-
able in x. Let D denote the collection of all such estimators.

For any estimator §, the probability measures 8(:|x), for x € R?, can be
reexpressed in a form which incorporates two steps: First, a model S, of © is
chosen depending on the data; second, the parameter is estimated subject to the
constraint that it lie in S,. Define the partition {S{, £ =1,2,..., K } of RP in
terms of the S; as follows. For each £, let

Si=8, - U S;.
J*k: S8,
It is easily verified that U,S{ = R? and S§; N S/ = @ for j # k. Each set in the
partition consists of points which have the same complexity cost when consid-

ered as estimates of 6.
For an estimator §, let

&s(klx) = 8(Sj|x), k=1,2,...,K and x € R?,
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that is, the probability given x that the estimator § assigns to that part of S,
which does not lie in a proper subset S;. Define the measure §,(-|x) as follows:
For any Borel A C RP,

8(A N S¢lx)/8(S{1x), if g5(klx) > 0,

8, (Alx) =
{AR) {arbitrary, if g5(k|x) = 0.

The probability measure given x of the estimator § can now be expressed as
K
8(-1x) = X &x(klx)8,(-|x),
k=1

The distribution gy(:|x) on the indices of the sets {S}, £ =1,2,..., K}
partitioning R? can be interpreted as the critical function of a multiple-alterna-
tive hypothesis test used by estimator § to decide which model to use before
estimating the parameter. After deciding on the model, say %, 8 is estimated
with an estimate whose distribution given x is specified by 8,(-|x), a probability
measure over Sy, the range of @ corresponding to model 2 and no proper
submodel. The estimator & can thus be interpreted as a preliminary-test estima-
tor.

The performance of an estimator § is completely characterized by its risk
function

R(3,8) = E,L(3,6)

= fx[fT2 L(t,0)8(dt|x)]P(x|9)d’C,

where p(-|0) is the density of X given #. An estimator is admissible if no other
estimator has risk function which is everywhere as small as that of § and smaller
for some values of 6.

In the next section we address the characterization of complete classes of
estimators. Theorem 3.3 applies the theory of Wald (1950) and Le Cam (1955):
If Dy denotes the class of Bayes procedures, then under appropriate assumptions
Dy, the closure of Dy, is an essentially complete class. This closure is in the
topology of regular convergence, which is defined as follows: A sequence {4,,
n=1,2...} converges regularly to & if for every Lebesgue-measurable function
f satisfying [p»|f(x)| dx < oo and every bounded continuous real-valued function
u on RP, which is zero outside a compact set, then

lim fR ) fmf(x)u(t)s,,(dtnx)dx = fR ) fﬁpf(x)u(t)S(dtIx)dx-

3. Complete class results. Our first result is that a (strictly) complete class
consists of all estimators §, whose probability measures given x are discrete on
the values (at x) of K nonrandomized estimators of 6: {¢, = t(x), k=
1,2,..., K}, where each estimator ¢, is such that £,(x') € S, for all x’ € R?.
Theorem 3.2 characterizes the form of the Bayes procedures for this problem.
Lindley (1968) proved a special case of this result in a purely Bayesian treatment
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of the variable-selection problem in regression. Theorem 3.3 characterizes an
essentially complete class of procedures which includes all procedures which are
a limit of a sequence of Bayes rules whose risks are not everywhere infinite. This
is the collection of generalized Bayes procedures which is a subclass of the
complete class in Theorem 3.1. A version of Stein’s (1955) necessary condition for
admissibility given by Farrell (1968) is used to prove that the class in Theorem
3.3 is, in fact, strictly complete. Theorem 3.5 demonstrates that the class of
generalized Bayes procedures coincides with the class of limits of Bayes proce-
dures in the case of one dimension.

THEOREM 3.1. A complete class of estimators consists of all § whose
probability measures

K
8(-lx) = X &y(klx)8,(-1x),  x €RP,
k=1
are such that §, is nonrandomized on {x: g4(k|x) > 0)}, k =1,2,..., K.

Proor. Since each S, is convex and {C,} is nondecreasing, this follows in the
usual way from Jensen’s inequality; see, for example, the proof of the
Rao-Blackwell theorem in Berger [(1985), page 41]. O

The procedures in this complete class are almost nonrandomized. For the
one-dimensional case, the class of nonrandomized procedures is complete; see
Theorem 4.1 in Section 4. The argument is particular to the one-dimensional
case, however, and the truth of the proposition in the multidimensional case
remains an open question.

The complete class of Theorem 3.1 suggests that estimating 6 proceeds in two
stages. First, a possibly random preliminary test is applied to choose a model 0,
among the K alternatives. Second, the best nonrandom estimator ¢, for model
0, is used to estimate 6. This structure of admissible estimators will have an
alternative interpretation for the complete class based upon the closure of the
class of Bayes estimators; see the discussion following Theorem 3.4.

The Bayes procedures for this decision problem are addressed in Lindley
(1968) for the special case of variable selection in regression. Their general
characterization is provided by

THEOREM 3.2. An estimator 8" is Bayes with respect to the prior
distribution = on O if, given x € RP, the corresponding probability measure
87(+ |x) = 2,85-(k|x)85(- |x) satisfies

(i) 8;(x) = Pym (x) when gs(k|x) > 0 and
(ii) g5-(k|x) > O only if k minimizes ||Pym (x) — m(x)||2 + C,,

where P, is the projection of RP onto the subset S,, orthogonal with respect to
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the inner product (-, -) and

Jr»0p(x|0)7(d0)
Jrop(210)7(d0) °
the mean of the posterior distribution of 6 given x.

m,(x) =

We omit the proof since the argument is straightforward and parallels that
given by Lindley (1968).

Let Dy denote the class of proper Bayes procedures for this decision problem,
with Dy denoting its closure in the topology induced by regular convergence. Let
D, be the subclass of procedures in Dy whose risks are not everywhere infinite.
The essentially complete class D, is characterized in

THEOREM 3.3. If 8 € D,, then there exists a measure F on © such that
JreD(x|0)F(d8) < o for all x and the measure 8(-|x) = Li_,85(k|x)8;(-|x)
satisfies conditions (i) and (ii) of Theorem 3.2 with = replaced by F.

PrROOF. When the complexity-cost function is constant, the minimizing % in
condition (ii) is that for which S, = R? and 6 always uses the nonrandomized
estimate mp(x). The one-dimensional case was proven by Sacks (1963) and
Brown (1971) proved the extension to p > 1 dimensions. We will use this result
to prove the theorem when the complexity-cost function is not constant.

For a procedure 8° € D,, let {§"}<_, denote a sequence of Bayes procedures
which converges regularly to 8° and let {F"}?., and {mg.}7_, denote the
corresponding sequences of (proper) prior distributions and posterior mean
functions.

First, we note that there exists a subsequence of {mg.}5_, which converges
almost everywhere to a finite-valued function m(x). To show this, let 2" = £"(x)
denote the index of the subset selected by the Bayes procedure 8" given x and
observe that its loss satisfies

(3.1) L(Pympn(x),0) = || Pynmpn(x)l1 — 11012

> |lmga(x)||12 — C —||0)|?,

where C = max,C, (< o). The first inequality follows by ignoring the nonnega-
tive complexity costs and the second by comparing the objective function of (ii)
for 2" and the k for which S, = RP. The proposition is easily shown by
assuming the contrary and using (3.1) to deduce the contradiction that the risks
of the 8" diverge for any 4.

By replacing sequences with subsequences, we may assume, without loss of
generality, that the sequence of Bayes procedures {8,}_, converges regularly to
8% and the corresponding sequence of posterior mean functions {mg-}5_, con-
verges almost everywhere to a finite-valued function m(-). Since the projections
P,, k=1,2,..., K, are continuous bounded functions on R?, P,mg.(x) —
P,m(x) almost everywhere. Hence, the sequence of conditional distributions
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defining the Bayes procedures {8;(-|x)}>., converges weakly to §,(-|x) almost
everywhere which is degenerate at P,m(- ), for each k. Conditions (i) and (ii) of
the theorem easily follow then with m(-) in place of mg(-).

To complete the proof of the theorem, we must show that there exists a prior
measure F such that

(3.2) jR p(x10)F(df) <o and mp(-) =m(:) ae.

The sequence of estimators {mg-(-)}, which are Bayes with respect to the
prior probability measures in the sequence {F"} for loss equal to squared error
only, converge regularly to the estimator m(-). Note that the squared-error risk
of m(-) has the following bound in terms of the risk of §°

fxllm(x) - 0)°>p(x|0) dx < R(8°,0) + C.

Since the risk of 8° is not everywhere infinite, so is the squared-error risk of
m(-). Because the conditions of the theorem with no complexity costs are
satisfied, (3.2) follows; see the arguments in the proofs of Theorems 2.2.1 and
3.1.1 in Brown (1971). O

The essential completeness of D, can be strengthened to show that D,
contains all admissible procedures. Consider

THEOREM 3.4. The class D, is complete.

ProOF. We use Farrell’s (1968) formulation of Stein’s (1955) necessary and
sufficient condition for admissibility; see also Berger [(1985), pages 546-547].
Because D, is essentially complete, a procedure §° is admissible if and only if it
is admissible relative to D,. It is easily verified that the set of risk functions of
procedures in D, is a sequentially weakly subcompact convex set of continuous
real-valued functions on ©, a o-compact locally compact metric space. So, a
procedure 8° is admissible if and only if there exists a sequence {F"} of
(generalized) prior distributions such that

(a) each F”™ has finite mass concentratmg in a compact set 0, C @ with
0,10,

(b) there is a compact set C € © such that F*(C) =1 for all n and

(c) lim,_, [foR(8° 0)F"(dO) — [¢R(8™, 0)F"(df)] = 0 where 8" is the
Bayes procedure with respect to F™.

Suppose §° is an admissible procedure and let {F"} and {§"} be as given in
(2)~(c). That §° € D, will follow if we show that {§"} converges regularly to §°.
In (c), we can interchange the order of integration over ® and x because the
risks of 8" and 8° are continuous, finite and each F” has finite mass con-
centrated on a compact set. After the first integration over ©, we have that (c) is
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equivalent to

tim [{ [ ito = mpa()I? + Clt0)] 8°dtofe)
(3.3) X

= [ [0t = mpn()1? + ©(8,)]0%(dtyn) |p7(x) e =,

where p™(x) = [op(x|0)F"(d0) is the (generalized) marginal density of X.

Since 8" is Bayes, it concentrates on those estimates ¢, = P,.mg.(x) which
minimize ||t — mp-(x)||2 + C(¢) almost everywhere. So the part of (3.3) in braces
can be reexpressed as

[ [to = man ()1 + C(20)

— || Pypmpn(x) — mpn(x))|2 = Cpn] 8%(dtolx),

which is nonnegative.

By (a) and (b) for any compact set A C x of positive Lebesgue measure, there
exists an ¢ = ¢(A) > 0 such that p™(x) > ¢ for all n and x € A. Thus (3.3),
equivalently (c), holds only if (3.4) converges to zero almost everywhere, i.e.,

Tim [18°(x) = mpn(x)]1” + C(8°(x))

(3.4)

(3.5)
_”Pkann(x) - an(x)”2 - Ckn] = O, a.e.,

where §°(x) denotes the possibly random estimate of § given x for §°.

By an argument analogous to that used in the proof of Theorem 3.3, it must
be the case that the sequence {mg-} converges a.e. to a finite-valued function
m(+). Otherwise, the risk of the Bayes procedures would diverge and, thus, so
would the limit in (c). It follows then that 8°(-|x) concentrates almost every-
where on those estimates ¢t = P,m(x), where k = k(x) is chosen to minimize

| Pem(x) — m(x)||> + Cy.
As argued in the proof of Theorem 3.3, this is the regular limit of {6"}. O

The complete class D, is a subclass of the almost nonrandom preliminary-test
estimators in Theorem 3.1. The two-stage operation of estimators given earlier
can now be revised to: First, the most ‘accurate estimator my(x) is determined,
incorporating any prior beliefs into the specification of F and, second, when
X = x is observed, the most accurate approximation P,mg(x) to mpg(x) is
chosen which balances the costs of complexity and squared-error inaccuracy. So,
separate analyses for the K models are combined into one.

As a curiosity, we include a result concerning the converse of Theorem 3.3 for
the case of one dimension.

THEOREM 3.5. For © = R!, suppose that F is a measure on © such that
fop(x|0)F(d8) < o for all x and that 8y is the generalized Bayes procedure
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with respect to the prior measure F, satisfying conditions (i) and (ii) of Theorem
3.2. Then, 6 is a limit of a sequence of Bayes procedures.

To prove this result we will need

LEMMA 3.1. Let F be any measure on R* satisfying the condition of Theorem
3.5 and let my(-) denote the mean of the ( formal) posterior distribution with
respect to F. For any my € R', let H = {x: mg(x) = m,}. Then H is either R!
(if and only if F is concentrated on m,) or at most one point [if and only if
F((= 0, my)) > 0 and F((m,, «0)) > 0].

Proor. If F is not concentrated on a single point, then my(x) is strictly
increasing because of the strict monotone-likelihood-ratio property of p(x|6).
See, e.g., Karlin (1956) or Karlin and Rubin (1956). O

ProOF OF THEOREM 3.5. The nontrivial case is when F does not concentrate
on one point. For n=1,2,..., define F* to be the normalized measure F
restricted to the interval [—n, n]. It then follows that mp.(-) converges almost
everywhere to mpy(-). This implies that g (:|x) = gp(:|x) and 8p(-|x) —
85(-|x) except possibly on the set {x: my(x) € E}, where

E = {m: there exists k, k' such that ||[Pym — m||? + C, = | Pym — m||® + C}} .

However, E is a finite set since ® = R' and, hence by Lemma 3.1, so is
{x: mp(x) € E}. O

The extension of Theorem 3.5 to the multidimensional case has been elusive.
But this does not affect the utility of the theory for identifying inadmissible
procedures. Theorems 3.3 and 3.4 provide us with a necessary condition for
admissibility. The converse of Theorem 8.3 would not provide a sufficient
condition for admissibility, but rather a sufficient condition for lying in the
closure of the class of Bayes procedures. In fact, there are procedures satisfying
the conditions of Theorem 3.3 which are inadmissible.

In the next section, we apply Theorem 3.5 to prove that in the one-dimen-
sional case, the class of monotone nonrandomized generalized Bayes procedures
is complete. In such problems, nonmonotone Bayes procedures can be shown to
be inadmissible. Hence, the complete class D, is not minimal complete.

4. Related results. The general conclusion of Theorem 3.1 remains true if
the loss function is the sum of two components: a function convex in ¢ for each
and a function which is discrete, depending only on the subsets S, in which the
estimate ¢ and the parameter § lie. Cohen (1965) addresses a problem of this
form: Estimation of the parameter of a general exponential distribution under
loss equal to squared error plus a cost for misspecification; i.e., if the true
parameter is zero but a nonzero estimate is used, a cost is imposed, whereas if the
true parameter had been nonzero, no cost would be incurred. He proves results
similar to Theorem 3.1 and to Theorem 4.1 for the one-dimensional case.
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Meeden and Arnold (1979) treat the special one-dimensional case of our
problem with K =2, S, = R, S, = {0} and cost function C(-): C(¢) = C (> 0)
if ¢+ 0 and C(0) = 0. They suggest that the class of monotone estimators is
essentially complete and claim that minor modifications of thedry presented in
Karlin and Rubin (1956) yield a proof. We present a simple proof of the
completeness of the monotone nonrandomized procedures in the general one-
dimensional problem.

THEOREM 4.1. For the one-dimensional problem, the class of monotone
nonrandomized generalized Bayes estimators is complete.

Proor. If § is admissible, then 8 satisfies conditions (i) and (ii) of Theorem
3.2 for some prior measure F. If F is concentrated on more than one pomt then
conditions (i) and (ii) uniquely determine & almost everywhere and § is non-
randomized as in Theorem 3.5. Hence, the only case that need be considered is
where F concentrates on one point, say 6,, and

H-= {k: (Pyfy — 6,)° + C, = min[(B6, - 6,)* + q]}
J

contains at least two points.
There is then no loss of generality in assuming H = {1,2,..., j}; P, =0,
i=1,...,j,and 8, <6, < --- <6, Define §" as the monotone procedure
’ _ ’ _ 1, ifx < K’,
8({f,}lx) =18 ({%}Ix) - {0, ifx > K’,
where K’ is determined so that
Ex, [Es(-|X)(t|X)] = Exy, [ES’(v|X)( tIX)]-

Assume that § is not of this form. Then Ej.(¢|x) — E4(¢|x) crosses zero once, at
x=K’. So

e'(8) —e(8) = EX|0[E8(~|X)(tIX)] - EX|0[E8’(»|X)(t|X)]

is less than zero for § < 6, and is greater than zero for § > 6, as a consequence of
the strict monotone-likelihood-ratio property of the normal distribution.
Now,forl1 <i<k <},

L(6,6,) — L(6,6,)=(0—6,+6,— 6?~)2 +C; - [(0 —0,+ 6, — ok)2 + Ck]
= (60— 6,)(6, - 6)),
since (8, — 6,)® + C; = (6, — 8,)* + C,. Hence,
R(8,0) — R(8,0) =2(6 — 6,)[e’(6) — e(8)] =0,
with strict inequality whenever § # &’ and 6 # 6,. It follows that the monotone

procedures {6’} dominate every other Bayes procedure relative to the given F. O

A common specification has the complexity of an estimate ¢ € R? depend
only on which components of ¢ are nonzero. If ¢ is the estimate of a regression
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parameter, then the nonzero components correspond to the subset of the p
possible explanatory variables in the regression model which are selected for
inclusion in the fitted model. See, for example, Kempthorne [(1982), Chapter 4].

An interesting consequence of Theorem 3.4 is that if there is a “null model,”
that is, a 2* with S,. = {0} and C,. = 0, then §,(X) = X, the maximum-likeli-
hood estimator, is inadmissible no matter what the dimension of §. The only
estimator in D, which ever uses the estimate 8,(x) = x is 8, = 8, where F is
Lebesgue measure on R”. But &, does not use the estimate ¢ =x when
|x||?< C,, because the estimate ¢ = 0 (with zero complexity cost) has smaller
posterior risk. So §; is not in the complete class D,. This is contrary to the case
of zero complexity cost when the maximum-likelihood estimator is always in the
complete class D, and, for the cases of one and two dimensions, it is admissible.
Despite its inadmissibility, however, the maximum-likelihood estimator is
minimax. Consider

THEOREM 4.2. Suppose that {S,, k=1,2,..., K} with S, = R? and for
each k > 1, S, lies in a subspace of dimension less than p. The estimator
0o(X) = X is minimax.

PRrooF. It is easy to verify that &, has constant risk equal to trace(SM) + C,,
where Z is the covariance matrix of X, M is the defining matrix of the norm || - ||
and C, is the cost for complexity of an estimate ¢ with full complexity. The
minimaxity of §, follows if we show that the risk of 8 is the limit of Bayes risks
of a sequence of Bayes procedures. See, for example, Theorem 2 of Ferguson
[(1967), page 90] or Proposition 10.4.2 of Bickel and Doksum [(1977), page 426].

Consider the sequence of prior distributions {F", n =1,2,... }, where F™ is
the p-variate normal distribution with mean 0, covariance matrix n3 and
density f "(8). Let f "(8|x) denote the density of the posterior distribution given
x, which is normal with mean y,x and covariance matrix Y,2, where vy, =
n/(n + 1). The marginal distribution P” of X is normal with mean 0 and
covariance matrix (n + 1)=. Denote its density by p™(x).

The Bayes risk of §”, the Bayes procedure for F”, is

r(8", Fr) = f@R(sn, 0)F"(do).

Interchanging the order of integration, the Bayes risk can be reexpressed as the
average normalized posterior variance (which is independent of the Bayes
estimates) plus the sum of the average normalized squared bias and the complex-
ity of the Bayes estimates,

K
r(8, F") =y, trace(SM) + ¥ [ [¥21Px — x|l? + C,] p"(x) di,
k=1 YA}

where A} = {x: 8"(P,y,X|x) =1}, k=1,..., K.
Since the complexity costs are nonnegative, we can bound the Bayes risk from
below,

r(8", F") > y, trace(SM) + C,P"( A}).
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For & # 1, it is clear that
| Pympn(x) — mpn(x)]1? = v2|| P, X — P X||* > o0

in probability as n — co under P". Consequently, P"(A})= P"(8%(X) =
¥,X) — 1. Thus, we have r(6", F) - trace(EM) + C, = R(§,,0). O

Perhaps surprisingly, the generalized Bayes estimator for the uniform prior,
0, is not minimax. It is straightforward to show that its risk is smaller than
0,(X) = X near 8 = 0, but it is larger when ||8|| is large. This raises the problem
of finding estimators which dominate the maximum-likelihood estimator when
the loss incorporates a complexity cost. Kempthorne (1985) provides partial
characterizations of admissible estimators which dominate the maximum-likeli-
hood estimator under squared-error loss when p > 3. The approach is gener-
alized in Kempthorne (1987) to the problem of dominating arbitrary inadmissible
decision procedures. The theory and methods developed there can be applied to
the case when the loss includes complexity costs.
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