CORRECTION

BOOTSTRAP TESTS AND CONFIDENCE REGIONS FOR FUNCTIONS OF A COVARIANCE MATRIX

By Rudolf Beran and Muni S. Srivastava

The Annals of Statistics (1985) 13 95-115

Corollary 2 of Section 3.2 is incorrect because the remainder term in equation (3.15) does not behave as asserted. We wish to thank David Tyler for pointing out this error.

Suppose dimension p=2, the cdf F has finite fourth moments, and is such that the eigenvalues of Σ_F both equal $\nu(\Sigma_F) > 0$. Let $Z_F = \{z_{F,ij}\}$ be the random symmetric matrix defined in Section 2. For any constant symmetric 2×2 matrix $A = \{a_{ij}\}$, let

$$K_F(A) = L[(y_F + w_F(A), y_F - w_F(A))'],$$

where

$$egin{align} y_F &= 2^{-1}(z_{F,\,11} + z_{F,\,22}), \ &w_F(A) &= 2^{-1}\!\!\left\{\!\left[(z_{F,\,11} - z_{F,\,22} + a_{11} - a_{22})^2 + 4(z_{F,\,12} + a_{12})^2
ight]^{1/2} \ &-\left[(a_{11} - a_{22})^2 + 4a_{12}^2
ight]^{1/2}
ight\}. \end{array}$$

COROLLARY 2.1. Under the model described above, $L[J_{n,\lambda}(\hat{F}_n)]$ converges weakly to $L[K_F(Z_F)]$ as $n \to \infty$. However, if $\min(m, n) \to \infty$ while $m/n \to 0$, then $J_{m,\lambda}(\hat{F}_n)$ converges weakly to $L[\lambda(Z_F)]$, in probability.

Thus, in the equal roots case, the modified bootstrap estimate $J_{m,\lambda}(\hat{F}_n)$, which is based on bootstrap sample size m = o(n), converges to the same limit law as does $J_{n,\lambda}(F)$; but $J_{n,\lambda}(\hat{F}_n)$ does not.

PROOF. Let $\mu_F(r_1,r_2)=E_F(x_{11}^{r_1}x_{12}^{r_2})$. Let D_4 be the set of all nonnegative integer pairs (r_1,r_2) such that $r_1+r_2=4$. Let $\{F_n\}$ be any sequence of cdf's such that $F_n\Rightarrow F$, $\mu_F(r_1,r_2)\to \mu_F(r_1,r_2)$ for every $(r_1,r_2)\in D_4$, and $n^{1/2}(\Sigma_{F_n}-\Sigma_F)\to A$, a symmetric 2×2 matrix. By a straightforward calculation using Theorem 1 and the formulae for the two eigenvalues, $J_{n,\lambda}(F_n)\Rightarrow K_F(A)$.

Let $W_{n,\,F} = n^{1/2}(\hat{F}_n - F), \ Z_{n,\,F} = n^{1/2}(\Sigma_{\hat{F}_n} - \Sigma_F), \ \text{and} \ t_{n,\,F} = \{(\mu_{\hat{F}_n}(r_1,\,r_2) - \mu_F(r_1,\,r_2): \ (r_1,\,r_2) \in D_4\}.$ The empirical processes $\{(W_{n,\,F},Z_{n,\,F},\,t_{n,\,F})\}$ converge in law to a Gaussian process $(W_F,Z_F,0)$. There exist versions $\{(W_{n,\,F},Z_{n,\,F},\,t_{n,\,F})\}$

Received August 1985.

and $(W_F^*, Z_F^*, 0)$ of these processes such that $\lim_{n\to\infty}(W_{n,F}^*, Z_{n,F}^*, t_{n,F}^*) = (W_F^*, Z_F^*, 0)$ for every realization. The relations $Z_{n,F} = n^{1/2}(\Sigma_{F+n^{-1/2}W_{n,F}} - \Sigma_F)$ and $t_{n,F} = \{\mu_{F+n^{-1/2}W_{n,F}}(r_1, r_2) - \mu_F(r_1, r_2)\}$ are preserved with probability 1 by the versions $\{(W_{n,F}^*, Z_{n,F}^*, t_{n,F}^*)\}$. Define versions $\{\hat{F}_n^*\}$ of $\{\hat{F}_n\}$ by $\hat{F}_n^* = F + n^{-1/2}W_{n,F}^*$. With probability 1, $\hat{F}_n^* \Rightarrow F, \mu_{\hat{F}_n^*}(r_1, r_2) \to \mu_F(r_1, r_2)$ for every $(r_1, r_2) \in D_4$, and $n^{1/2}(\Sigma_{\hat{F}_n^*} - \Sigma_F) \to Z_F^*$. In view of the previous paragraph, $J_{n,\lambda}(\hat{F}_n^*) \Rightarrow K_F(Z_F^*)$. This implies the first assertion of Corollary 2.1.

The second assertion is argued similarly: The convergences $\hat{F}_n \Rightarrow F$, $\mu_{\hat{F}_n}(r_1, r_2) \to \mu_F(r_1, r_2)$ for every $(r_1, r_2) \in D_4$, $m^{1/2}(\Sigma_{\hat{F}_n} - \Sigma_F) \to 0$, which occur in probability, imply that $J_{m,\lambda}(\hat{F}_n) \Rightarrow K_F(0) = L[\lambda(Z_F)]$ in probability. \square

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720 DEPARTMENT OF STATISTICS UNIVERSITY OF TORONTO TORONTO, ONTARIO M5S 1A1 CANADA