The Annals of Statistics
1987, Vol. 15, No. 1, 443-448

THE PENALTY FOR ASSUMING THAT A MONOTONE
REGRESSION IS LINEAR'
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For jointly distributed random variables (X, Y) having marginal distri-
butions F and G with finite second moments and F continuous, the propor-
tion of Var(Y) explained by linear regression is [Corr(X,Y)]? while the
proportion explained by E(Y|X) can be arbitrarily near 1. However, if the
true regression, E(Y|X), is monotone, then the proportion of Var(Y) it
explains is at most Corr[Y, G~ }(F(X))].

1. Introduction. Interest is often focused on the problem of finding a
function of a random variable X ~ F that closely predicts another variable
Y ~ G. If we use expected squared-error loss as a criterion, the best such
function is ¢(X) = E(Y|X). This paper discusses the penalty associated with
assuming that ¢(X) has a linear form. When F is continuous, bounds on this
penalty are obtained in terms of p = Corr[Y, X ] or p, = Corr[Y, G~ Y(F(X))].

Taking E(X) = E(Y) =0 and Var(X) = Var(Y) = 1, we partition the ex-
pected unexplained variation left from linear prediction:

(1.1) E(Y - pX)’ = E(Y - $(X))" + E(6(X) - pX)".

The left-hand side of (1.1) = 1 — p? while the right-hand side is the sum of an
“intrinsic variation” component 7 = E(Y — ¢(X))? and an “extra-linear varia-
tion” component ¢ = E(¢(X) — pX)2 For random variables with arbitrary
means and finite nonzero variances, we define intrinsic and extra-linear variation
as the values of 7 and ¢ for the corresponding standardized linear transforms.
This definition makes n the proportion of Var(Y) unexplained by ¢, and ¢ the
penalty for assuming that ¢ is linear. Breiman and Meisel (1976) discuss the
difficulties in estimating 7.

Since each term in (1.1) is nonnegative we quickly see that n is bounded
between 0 and 1 — p?. The upper bound is obtained, for example, when (X, Y)
follows the standard bivariate normal distribution since here ¢(X) = pX. For
arbitrary marginal distributions, it may be impossible for ¢ to be linear. The
expected squared distance between the linear regression pX and the set of
possible regressions thus becomes a lower bound for y. Vitale (1979) provides a
complete characterization of the form of the functions ¢ which are allowable
when the marginal distributions of X and Y are fixed.
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The focus of this paper concerns lower bounds for n or, equivalently, upper
bounds for y. Theorem 1 below shows that if F' is continuous we can create a
sequence of joint distributions approaching n = 0 and ¢ = 1 — p?. However, if
we restrict our attention to regression functions ¢ which are monotone, Theorem
2 shows that 7 and ¢ generally take values in a much narrower range, depending
on F and G. A consequence of this theorem is that » > ¥ when both margins are
normal so that the extra-linear variation cannot be greater than the intrinsic
variation in this case. We conclude by suggesting a simple way to estimate the
bounds for n and .

2. Lower bounds for intrinsic variation. In general, the marginal distri-
butions F and G by themselves may restrict the range of n for any fixed
correlation p. For example, if F is concentrated on two points then all regres-
sions are linear and 7 =1 — p% If both X and Y are discrete with marginal
probability functions given by

P(X=x,)=p;>0 and P(Y=yp)=¢q;>0 fori=1,...,k,

then 7 can achieve its lower bound of zero only when the values q; are
rearrangements of the p,, that is, only when F and G have the same size steps.
However, if F is continuous, then for any possible correlation p, zero is a tight
bound for n, as we now prove. Note that the range of p over the class D(F, G) of
all joint distributions with fixed margins F and G is given by Hoeffding (1940).

THEOREM 1. Let F and G be distribution functions with finite second
moments and F continuous, and let H € D(F, G) have correlation p. Then there
exists a joint distribution function Hy with marginal distributions uniformly
close to F and G over their domains, and correlation arbitrarily close to p, for
which 7 is arbitrarily close to 0.

ProoF. The proof proceeds by constructing a joint distribution Hy based on

points sampled from H.
Without loss of generality assume that X and Y are standardized and that H

has compact support C. If H does not have compact support, approximating the
conditional distribution of H given C for a suitably large region C leads to the
conclusions of the theorem for p and 7. Taking the conditional distribution of
H,, outside of C equal to that of H leads to the stated convergence of marginal
distributions. Let
xo = inf{x}, y,=inf{y}, x,=sup{x}, y,=sup{y},

where inf and sup are taken over all (x, y) € C. Sample n — 1 points (x;, ¥;),
i=1,...,n—1,from H and let S = {(x;, y)|i =0,...,n}. Let

x} = inf{x|x > x; and either (x, y) € Sor x is a flat point of F},

¥ = inf{y|y > y, and either (x, y) € Sor y is a flat point of G},

Ri be the “reCtangle” [(xi’ yi)’ (xi’ yi+)’ (x:.’ yi)’ (x:’ yi+)] ’
1=0,...,n—1,
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and let H, be the joint distribution corresponding to the uniform mixture of
uniform variates on the R,. [Note: x is a flat point of F if there is some ¢ > 0
such that F(x + ¢) = F(x).] Then the two marginal distributions of H, agree
with the sample margins at the sampled coordinates and are linearly inter-
polated between these points over intervals where the marginal distribution is
strictly increasing. By the Glivenko—Cantelli theorem it follows that the mar-
ginal distributions of H,, converge uniformly to those of H.

To show the convergence of p, = E[XY|H,] to p, let r, = n”'Xx,y;, so that

[0, — Pl < |pp — 1| + |1, — 0|

Set 8, = (x; — x;)/2, &, = (¥ — ¥)/2, and notice that the bounded supports of
F and G imply that (max;$; + max;e;) — 0, almost surely. Thus for p; equal to
the uniform distribution on R, and for almost every realization

%ZLp@i

Pr

(i 8)(%+ )
=r,+o0(1), |

because the x; and y, are bounded. Thus |p, — 7,| converges almost surely to 0.
Since r, — p almost surely, it follows that p, — p a.s.

Finally, since under H, Var(Y|X = x;) = (3" — ¥)?/12 < (max;¢;)?/3 con-
verges almost surely to 0, so does 1,, = E[Var{Y|X)]. The proof is concluded by
choosing N = n sufficiently large. O

When the form of ¢ is restricted only by the marginal distributions and the
value of p, Theorem 1 shows that we can have 7 approach O through
the construction of a sequence of distributions H,. However, the function
E[Y|X = x] under H, is very irregular, suggesting that further restricting the
allowable regression functions may provide a more meaningful lower bound on 7.
Specifically, as in isotonic regression, we now consider only functions ¢(x) that
are monotone. Heuristically, the monotone regression “farthest” from linear is a
step function. This suggests that such functions may produce lower bounds for 7.
The following example is instructive.

EXAMPLE. Let —o0 =2,<2, < -+ <2zg_; <2zg= oo and define the re-
gions S, = {(x,y): 2;_, <x <z and 2;,_, <y<g;} for i=1,..., K. Let the
random variables X and Y both have cdf F' and density f with mean 0 and
variance 1. Take their joint density, &, to be ‘

h(x, y) = {f(x)f(y)/[F(zi) — F(z,_,)] for(x,y) €S,
0 otherwise.

Notice that X and Y are conditionally independent given the region S; and that
densities of this form can give Corr(X, Y) with any value in [0,1) by adjusting
the size of K and the relative sizes of the S;’s. Also for this joint density,
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o(x)=E(Y|z,_,<Y<z)if z,_,<x <z, i=1,..., K. Since E[$(X)*]=p
in this case, n =1 — p.

The value of 7 given by the step function ¢ in this example suggests the lower
bound on 7 among all monotone ¢ given by the following theorem:

THEOREM 2. Suppose X ~ F and Y ~ G, with F continuous, E(Y) =0,
Var(Y) =1 and Var(X) finite. Suppose that there is a version of ¢(x) =
E(Y|X = x) which is increasing in x. Then

(2.1) n=E[(Y- (X)) 21 p,,
where p, = Cort[ Y, G"Y(F(X))] and G~ '(u) = inf{x: G(x) > u}.

PROOF. Let Z = G~ {(F(X)). Then by Lemma 2.4 in Whitt (1976), Z and Y
are identically distributed with cdf G. Also let W = ¢(X) and let Fy; be its cdf.
We can rewrite (2.1) as

n=1-E(Y$(X)) 21 - E(YZ) =1 - E(Z¢(X)),

Corr[ 2, W] = E(Z¢(X))/{Var(¢(X))
> E(Y9(X))/|Var(¢(X)) = Corr[Y, W].

Inequality (2.2) follows from a slight generalization of Theorem 2.5 in Whitt
(1976): Let U ~ Uniform(0,1), and let W = f(U) and Z = g(U), where f and g
are increasing functions with W ~ Fy, and Z ~ G. Then the random variables W
and Z have the maximal correlation among all random variables with distribu-
tions in D(Fy, G).

It is straightforward to show that the joint cdf of W and Z is H*(w, 2) =
min( Fy,(w), G(2)). The generalization follows by applying the maximal correla-
tion result in Hoeffding (1940).

To apply the generalization for showing (2.2), take U = F(X), f(u)=
$(F~Y(u)) and g(u) = G~ (u). O

(2.2)

REMARKS.

1. If ¢(x) is decreasing in x, substitute —X for X in the proof, yielding
n > 1 — py, where p, = Corr{Y, G~'(1 — F(X))].

2. If Y is not standardized, the theorem implies that

E[(Y - $(X))] /Var(Y) 2 1 - p.

Thus it provides a bound on the proportion of variance explained by ¢(X).

3. The theorem can be extended to cases where both X and Y are discrete
provided there exists a monotone function h so that A(X) has the same
distribution as Y. In particular, this includes the case where X and Y are
identically distributed.

4. Another method of proof proceeds by first assuming W = ¢(X) is discrete,
say W=w, forx, < X <x;,,i=0,...,n — 1, where x, = — o0 and x, = + o0.
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Then, noting that E(Y) = E(Z) =0, we have by Abel’s partial summation
formula

E(YW) = YpwE(Y|x; < X <x;,,)
=Y (0 —w)P(X 2 2,,,)E(Y|X = Xip1)s
and
E(ZW) = Y pw,E(Z|x; < X < x;,,)
=Y (w1 —w)P(X 2 x,,)E(Z)1X 2 %;,4),

where p, = P(W = w).

Now (w,,, — w,)P(X > x;) > 0, and it is easy to show that E(Y|X > x,,,) <
E(Z\X = x,,,) by using the fact that Y and Z are identically distributed and
that Z is an increasing function of X. Thus the E(ZW) sum dominates the
E(YW) sum termwise.

The proof for arbitrary ¢(X) is obtained by taking a sequence of discrete
¢,(X) converging to ¢(X).

This method of proof makes it clear that the example before Theorem 2 hits
the bound, since there Z = X and taking x; = z,,

E(Ylr; < X <x;31) = E(Y|x; < Y <x;,y).

Thus the bound cannot be improved without more restrictive assumptions.

3. Discussion. In this paper we have developed new sharp bounds for the
intrinsic and extra-linear variation in regression.

Among functions f(X) with finite variance, Corr[Y, f(X)] is maximized by
p,, = Cort[Y, ¢(X)] [see, for example, Brillinger (1966)]. In particular, p,, cannot
be smaller than either p, or p. Additionally, the intrinsic variation may be
written as n = 1 — p2. These facts, together with Theorem 2, demonstrate that

1-py<n<1 —max(P%,Pz),

when ¢ is monotone and X is continuous. The equivalent bounds for the
extra-linear variation are then given by

(b2 —0?)" < ¥ < po— o™
Furthermore, since ¢ minimizes the expected squared error, we see that
E(Y — h(X))? 2 1 — p, no matter what transformation h(X) is chosen.
An interesting special case arises when the two marginal distributions are
known to be in the same location/scale family—for example, both margins
normal. Here p, = p so that an increasing regression implies

=y
Since 0 < p < 1in this case, the extra-linear variation cannot be greater than the
intrinsic variation.
The quantity p, can be easily estimated from data. For example, if
(%15 Y1), -5 (%, 3,) are observations where the y;’s have been scaled to make
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Yy, = 0and n~'Ly? = 1, then we may take p, = n~'Ly; Y[,y Where (i) is the
rank of x; in the x sample and y;;; denotes the jth largest y value. This
estimate has the form of a generalized correlation coefficient (Kendall, 1970).
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