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AN ALTERNATIVE REGULARITY CONDITION FOR HAJEK’S
REPRESENTATION THEOREM'

BY LUKE TIERNEY

University of Minnesota

Hajek’s representation theorem states that under certain regularity
conditions the limiting distribution of an estimator can be written as the
convolution of a certain normal distribution with some other distribution.
This result, originally developed for finite dimensional problems, has been
extended to a number of infinite dimensional settings where it has been used,
for example, to establish the asymptotic efficiency of the Kaplan—Meier
estimator. The purpose of this note is to show that the somewhat unintuitive
regularity condition on the estimators that is usually used can be replaced by
a simple one: It is sufficient for the asymptotic information and the limiting
distribution of the estimator to vary continuously with the parameter being
estimated.

Introduction. Consider the problem of estimating a real valued parameter 6
using a sequence of estimators {7} based on data from a distribution with a
well-behaved likelihood. Hajek’s representation theorem [Hajek (1970) and
Roussas (1972) with a characteristic function proof due to Bickel] states that
under certain regularity conditions on the sequence {T,} the limiting distribu-
tion,

2(8) = nlin;.?(fr?(Tn - 9)}8),
can be written as
2(6) = N(0,i(8) ) *£,(9),

for some distribution #,. Here #(Y|#) denotes the distribution of the random
variable Y when the true parameter is 6, () denotes the asymptotic informa-
tion and #* represents the convolution operator. Convergence of distributions is
in the sense of weak convergence.

Hajek’s representation theorem is useful for studying the asymptotic efficiency
of estimators. Recently it has been extended to nonparametric settings where it
has been used to show that the empirical distribution function [Beran (1977b)],
the Kaplan—Meier estimator [Wellner (1982)] and Cox partial likelihood estima-
tors for the proportional hazards model [Begun, Hall, Huang and Wellner (1983)]
are asymptotically efficient. All these extensions use as their regularity condition
on their estimators a variation of H4jek’s original condition which states that
the representation theorem holds at any 8, where Z(Vn (T, — 6,)|6,) — £(8) for
any sequence 6, of the form 6, = § + O(n~'/?). An estimator satisfying this
condition at a particular § will be called Hdjek regular at 6 [see Wong (1986)].
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A regularity condition on the sequence {T} is needed to rule out super-
efficiency. The local condition of Hajek regularity is rather natural from a
mathematical point of view since it fits readily into the proof. On the other hand,
by taking a more global point of view (and at the expense of adding a layer to
the proof), it is possible to show that an alternative condition that may be easier
to interpret and to verify is also sufficient: If the parameter space is an open set,
the limit #(0) = lim,,_,  2(/n (T, — 0)|0) exists for all 8§ and £(0) is continu-
ous in @ (in the weak convergence topology), then Hajek’s representation is valid
for all 8. A proof of this result in this one-dimensional setting is given in the next
two sections. Simple examples given in the final section show that this alterna-
tive regularity condition is neither implied by nor does it imply Hajek regularity.
Before stating the theorem we formulate our regularity condition on the likeli-
hood. '

A well-behaved likelihood. Rather than state explicit sufficient conditions
on the likelihood we adopt the following convention: The likelihood will be
called well behaved at 8 if there exists a number i(8) such that for any {7} that
is Hajek regular at 8, we have

2(Vm (T, - 0)l8) - N(0,i(6) ") £,(0),

for some distribution Z,(8). The likelihood will be called well behaved on an
open subset @ of R if it is well behaved at every 6 € @ and i(f) is continuous
on .

Explicit sufficient conditions to insure that the likelihood is well behaved can
be found in the references cited above.

The representation theorem. Let @ be an open subset of R and assume
that the likelihood is well behaved on Q. Then we have the following result.

THEOREM. Suppose {T,} is such that LWn (T, - 6)|0) > £(0) for all
0 € Q and Z(0) is continuous in 8. Then for each 0 there exists a distribution
Z(0) such that

2(0) = N(0,i(8) ") » £,(0).

The proof is based on the fact that for continuous #(6) Hajek’s representa-
tion theorem can only fail for a set of § values with measure zero, whereas the
assumed continuity of #(8) and i(6) implies that if the representation fails to
hold for some @ it must fail on an interval of 8’s, thus producing a contradiction.
To begin the proof, note that Hajek regularity is used in Bickel’s proof to show
that L(/n (T, — 6,)l6,) » £(8) for §,=0 + h(1/Vn), and any h which, in
turn, is used to derive a characteristic function identity that implies the
representation theorem. The basis of the derivation is an analytic continuation
argument for a function of A. To use this argument it is sufficient to prove that
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the functional identity holds for a bounded infinite set of A values. We call {7}
weakly regular at 0 if there exists a bounded infinite subset H of R such that for
any h € H there exists a subsequence n(k) of integers for which

L (VR (R)(Tuiry = Guiao Wuiy) = £(6) i£6, =0 + h/Vn.

Then the representation will hold at 8 if {T,} is weakly regular at 8. We state
this as a lemma.

Lemma 1. If {T,} is weakly regular at 0, then there exists a distribution
L(0) such that

2(6) = N(0,i(8) ") » 2,(6).

The proof is a straightforward modification of Bickel’s proof of the Hajek
representation theorem as given in Roussas (1972) or Beran (1977a) and is
therefore omitted.

Next note that any {T,} satisfying the continuous limit hypothesis of the
theorem is weakly regular at Lebesgue almost all 6:

LEMMA 2. If {T,} is such that L(Vn(T, — 6)|0) > L(0) and £(0) is
continuous in 0, then {T,} is weakly regular for Lebesgue almost all 8 in .

Proor. This proof is a modification of Bahadur’s (1964) proof of his Lemma
4. Let p(F, G) be a bounded metric inducing weak convergence and let

fn(al’ 02) = {g(g(‘[’;(Tn - ol)lal), g(ag)), for 01, 02 e Q,

otherwise.

b

Then

f.(8 + Vn /h,0) < f(0 + %,0 + %) + p(y(o + %),y(())).

Since #(+) is continuous the second term tends to zero for all § and A. On the
other hand, if

8.(0) = £,(0,6),

and @ is the standard normal distribution then

fg,,(o+ %)d@(a)

- fg,,w)exp{—g; B %0} do(6)

-0,

by dominated convergence. Thus for any ~ we have f,(0 + h/ Vn, 0) - 0in ®
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measure. Hence there is a subsequence f,,(8 + A/ yn(k), 8) that converges to
zero ® a.e. and hence is Lebesgue a.e. Now consider a bounded sequence #,, of
distinct real numbers and take the union of all the corresponding null sets. At all
6 in the complement of that union, and thus at Lebesgue almost all 6, the
sequence {T,} is weakly regular. O

These two lemmas produce the proof of the theorem.

PrOOF OF THEOREM. Suppose the representation fails to hold for some 6.
Since the mapping 6 — (#(8), 6) is continuous and the set

A= {(N(o, i(6) ) 2,0): & a distribution, § € o)

is closed in the product topology, if (£(6,),0,) € A then we must have
(£(0),0) ¢ A for all 6 in some neighborhood of 6,. But, by Lemma 2, {T,} is
weakly regular at almost all points in that neighborhood, which, by Lemma 1,
provides a contradiction. O

Comparison of regularity and the continuous limit condition. It is easy
to construct examples of estimators that satisfy one of these conditions but not
the other. Thus neither condition implies the other. Let Xi,...,X, be iid
N(0,1),let T, = X if | X| > 1/logn and

— 1 1 —
T,=X|1- —=|+X/|—+— if | X

n ( /n 1( n ), if | X| <
Then £(8) = N(0,1) for 6 # 0 but £(0) = N(0,2). So £(0) is not continuous at
zero. On the other hand, if 8, = O(n"'/2), then LWn(T, - 6)8,) > £0) =
N(0, 2) since

logn’

_ 1 1
PT +#X|1- —=|+X,—
{” ( Vn Vo

AR

So {T,} is Hajek regular at 6 = 0.

To find an example where 7, is continuous but not regular let f be some
infinitely differentiable function such that f(x) =1 if x <0 or x > 2 and
f(1) = 2, and for each n let X, ,,...,X,, , be iid N(6, f(6/n)). Then T, = X,
has Z(8) = N(0,1) for all 8, i.e., 2(8) is continuous, but L(Vn (T, — 1/ Vn)|0 =
1Vn) = N(0,2) for all n, so {T,} is not regular.
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