USING THE STEPWISE BAYES TECHNIQUE TO CHOOSE BETWEEN EXPERIMENTS

By Reda Mazloum and Glen Meeden¹

Cairo University and Iowa State University

In Meeden and Ghosh (1983) a theory was developed for choosing, possibly at random, from a group of experiments the one to be observed. Here we consider the problem when the class of possible designs is restricted to a subclass of all designs. A theorem which identifies some admissible decision procedures and generalizes the early work is proved. Some applications to finite population sampling are discussed.

1. Introduction. Suppose that θ , the true but unknown state of nature, is known to belong to some finite set Θ and the statistician is faced with the decision problem specified by the decision space D and the loss function $L(\theta, d)$, $d \in D$. Before making the decision, however, the statistician may choose, possibly at random, to observe one of k different experiments. Let

$$\Gamma = \left\{ \gamma = (\gamma_1, \ldots, \gamma_k) \colon \gamma_i \geq 0 \text{ for } i = 1, \ldots, k \text{ and } \sum_{i=1}^k \gamma_i = 1 \right\}.$$

We call $\gamma = (\gamma_1, \dots, \gamma_k)$ a design and if the statistician uses γ then he observes the *i*th experiment with probability γ_i . The problem for the statistician is to choose a γ and then a decision rule for each possible experiment. In Meeden and Ghosh (1983), the admissible decision procedures were characterized.

It sometimes happens that the class, Γ , of all possible designs is not available to the statistician. For example, there may be a different cost associated with observing each of the experiments and the statistician can only consider designs whose expected cost is no larger than some predetermined constant. More generally let Γ^* denote a subclass of Γ . The theorem of Section 2 identifies some admissible decision procedures when the statistician's choice of designs is restricted to Γ^* . This is a mild generalization of a theorem of Meeden and Ghosh (1983). In Section 3 the theorem is applied to some examples in finite population sampling.

2. Admissibility when choosing an experiment. In what follows $L(\theta, d)$ is a nonnegative loss function. Assume that $L(\cdot, \cdot)$ is such that for any prior distribution λ on Θ , $\Sigma_{\theta}L(\theta, d)\lambda(\theta)$, as a function of d, is uniquely minimized by a member of D. Convenient conditions which guarantee this are that D be compact and convex and that $L(\theta, \cdot)$ be convex.

Received December 1984; revised February 1986.

¹Research supported in part by NSF Grant DMS-8401740.

AMS 1980 subject classifications. 62C15, 62D05, 62C10.

Key words and phrases. Choosing between experiments, admissibility, stepwise Bayes, finite population sampling, uniform admissibility.

Let χ_1,\ldots,χ_k be the finite sample spaces of the $k\ (\geq 2)$ experiments available to the statistician. For $i=1,\ldots,k$ let X_i be a random variable taking values in χ_i with $F_i=\{f_i(\cdot|\theta)\colon\theta\in\Theta\}$ a family of possible probability functions. For each i assume that for each $x_i\in\chi_i$ there exists a $\theta\in\Theta$ such that $f(x_i|\theta)>0$. Finally let δ_i denote a typical decision rule (possibly randomized) from χ_i to D with risk function $r_i(\theta;\delta_i)$. We note that both L and D may also be allowed to depend on i with no change in the results to follow.

Let $\delta = (\delta_1, \dots, \delta_k)$. For the statistician a decision procedure for this problem is a pair (γ, δ) . For such a pair its risk function is

$$r(\theta; \gamma, \delta) = \sum_{i=1}^{k} \gamma_i r_i(\theta; \delta_i).$$

A pair (γ, δ) is said to be admissible relative to Γ^* if $\gamma \in \Gamma^*$ and if there does not exist another pair (γ', δ') with $\gamma' \in \Gamma^*$ and $r(\theta; \gamma', \delta') \leq r(\theta; \gamma, \delta)$ for all $\theta \in \Theta$ with strict inequality for at least one θ .

Note if γ is such that $\gamma_i = 0$ for some i, then we will only consider pairs (γ, δ) where the corresponding member of δ is unspecified, i.e., for a given design there is no need to consider decision rules for experiments which are impossible to observe.

Theorem 1 will exhibit the nature of some admissible pairs (γ, δ) when the class of possible designs is restricted to Γ^* . Before stating the theorem some additional notation is needed.

If λ is a prior distribution over Θ , then

$$R(\gamma, \delta; \lambda) = \sum_{i=1}^{k} \gamma_i R_i(\delta_i; \lambda)$$

is the Bayes risk of the pair (γ, δ) against λ where $R_i(\delta_i; \lambda)$ is the Bayes risk of δ_i against λ .

Let $g_i(x_i; \lambda) = \sum_{\theta} f_i(x_i|\theta)\lambda(\theta)$, i = 1, ..., k, be the marginal probability function of X_i under the prior λ . Two priors λ^i and λ^j $(i \neq j)$ are said to be orthogonal if $\Theta(\lambda^i) \cap \Theta(\lambda^j)$ is empty where $\Theta(\lambda^r) = \{\theta \colon \lambda^r(\theta) > 0\}$ r = i, j. For a set of priors $\lambda^1, ..., \lambda^n$ define a sequence of sets associated with the *i*th experiment,

$$\Lambda_i^1 = \left\{ x_i : g_i(x_i; \lambda^1) > 0 \right\}$$

and

$$\Lambda_i^r = \left\{ x_i \colon x_i \notin \bigcup_{j=1}^{r-1} \Lambda_i^j \text{ and } g_i(x_i; \lambda^r) > 0 \right\}$$

for $r=2,\ldots,n$.

A decision rule δ_i defined on χ_i is said to be stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ if $\delta_i(x_i) = \delta_i^r(x_i)$ for all $x_i \in \Lambda_i^r$ for $r = 1, \ldots, n$ where δ_i^r is Bayes against λ^r . δ_i is said to be unique stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ if it is stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ and $\bigcup_{i=1}^n \Lambda_i^r = \chi_i$. Finally the pair (γ, δ) is (unique) stepwise

Bayes against $\lambda^1, \ldots, \lambda^n$ if δ_i is (unique) stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ for each i with $\gamma_i > 0$.

In the following example we will compute a pair of stepwise Bayes decision rules.

EXAMPLE. Consider just two experiments with $\chi_1=\chi_2=\{0,1,2\}$ and with $\Theta=\{0,\frac{1}{2},1\}$. Let $f_1(0|0)=1$, $f_1(0|\frac{1}{2})=f_1(0|1)=\frac{2}{10}$ and $f_1(2|\frac{1}{2})=f_1(1|1)=\frac{1}{10}$. Let $f_2(0|0)=f_2(1|\frac{1}{2})=1$ and $f_2(1|1)=f_2(2|1)=\frac{1}{10}$. The problem is to estimate θ with squared-error loss with D=[0,2]. Let λ^1 put mass one on $\theta=0$ and λ^2 put mass one-half on $\theta=\frac{1}{2}$ and $\theta=1$. It is easy to see that $\delta=(\delta_1,\delta_2)$, the unique stepwise decision rule is given by $\delta_1(0)=0$, $\delta_1(1)=\frac{9}{16}$ and $\delta_1(2)=\frac{15}{16}$ and $\delta_2(0)=0$, $\delta_2(1)=\frac{1}{2}$ and $\delta_2(2)=\frac{3}{4}$.

Returning now to the general situation suppose $\delta = (\delta_1, \ldots, \delta_k)$ is such that δ_i is stepwise Bayes for each i against the sequence of priors $\lambda^1, \ldots, \lambda^n$ and Γ^* is the class of designs available to the statistician. How should the statistician choose a $\gamma \in \Gamma^*$ such that the pair (γ, δ) is admissible relative to Γ^* ? A partial answer to this question is given in the following theorem which is a mild generalization of part (a) of Theorem 1 of Meeden and Ghosh (1983) where the class of possible designs has been restricted to Γ^* a subset of Γ , the class of all possible designs.

THEOREM 1. Let Γ^* be a class of designs and $\lambda^1, \ldots, \lambda^n$ be a set of mutually orthogonal priors such that

- (i) $\bigcup_{i=1}^k \Lambda_i^r$ is nonempty for r = 1, 2, ..., n and
- (ii) δ_i is stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ for the ith problem for $i = 1, 2, \ldots, k$. Let $\delta = (\delta_1, \ldots, \delta_k)$ and for $j = 1, 2, \ldots, n$ define the following subsets of Γ^* :

$$\Phi_j = \Phi(\lambda^1, \dots, \lambda^j) = \left\{ \gamma \in \Phi_{j-1} \colon R(\gamma, \delta; \lambda^j) = \inf \left\{ R(\gamma', \delta; \lambda^j) \colon \gamma' \in \Phi_{j-1} \right\} \right\}$$

where $\Phi_0 = \Gamma^*$. Let

$$N_n = N(\lambda^1, \dots, \lambda^n) = \{i: \gamma_i > 0 \text{ for some } \gamma \in \Phi_n\}.$$

If δ_i is unique stepwise Bayes for each $i \in N_n$, then for any $\gamma \in \Phi_n$ the pair (γ, δ) is admissible relative to Γ^* if and only if (γ, δ) is admissible relative to Φ_n .

The proof is very similar to that given in Meeden and Ghosh (1983) and will be omitted.

Suppose we have a δ which is unique stepwise Bayes against $\lambda^1, \ldots, \lambda^n$ and we wish to find a $\gamma \in \Gamma^*$ such that the pair (γ, δ) is admissible relative to Γ^* . One possible conjecture is that $\gamma \in \Phi_n$ is enough to guarantee the admissibility of the pair (γ, δ) . To see that this cannot generally be true consider the following example.

Suppose there are just two possible experiments with

$$r_1(\theta, \delta_1) = r_2(\theta, \delta_2)$$
 for $\theta \neq \theta_0$

and

$$r_1(\theta_0, \delta_1) < r_2(\theta_0, \delta_2).$$

Let $\Gamma^* = \Gamma$, the class of all possible designs. Note that the pair (γ', δ) where $\gamma' = (1,0)$ dominates (γ, δ) for every $\gamma \neq \gamma'$. If $\theta_0 \notin \bigcup_{i=1}^n \Theta(\lambda^i)$, then $\Phi_n = \Gamma^* = \Gamma$ and not every member of Φ_n leads to an admissible pair.

The following corollary gives a useful condition that guarantees that every member of Φ_n yields an admissible pair.

COROLLARY 1. If $\bigcup_{i=1}^n \Theta(\lambda^i) = \Theta$ and if $\gamma \in \Phi_n$ then (γ, δ) is admissible relative to Γ^* .

The proof of the corollary is straightforward and will be omitted.

Theorem 1 and Corollary 1 are essentially a generalizaton of part (a) of Theorem 1 of Meeden and Ghosh (1983) where the class of all possible designs Γ has been replaced by Γ^* . The earlier theorem was stated for the case with just two experiments, i.e., k=2. In addition, it was assumed that neither $r_1(\theta,\delta_1) \leq r_2(\theta,\delta_2)$ for all θ with strict inequality for at least one θ nor vice versa. This assumption, in the k=2 case, that neither risk vector dominates the other also guarantees that every design $\gamma \in \Phi_n$ yields a pair which is admissible relative to Γ^* , i.e., no convex combination of the two vectors can dominate any other convex combination of the vectors.

Note that for the k>2 case the assumption that none of the k risks vectors of δ_1,\ldots,δ_k is dominated by any other one is not sufficient to guarantee that every design $\gamma\in\Phi_n$ yields a pair which is admissible relative to Γ^* . This is because for k>2 the condition:

(C.1) none of the risk vectors of $\delta_1, \ldots, \delta_k$ is dominated by any other one,

does not imply the condition:

(C.2) no convex combination of the risk vectors of $\delta_1, \ldots, \delta_k$ is dominated by any other convex combination of the vectors,

as it does when k=2.

We note in passing that condition (C.2) always guarantees that every design belonging to Φ_n will yield an admissible pair. However, it will usually not be as easy to verify as the condition of Corollary 1.

In the next corollary we give a partial converse to Theorem 1.

COROLLARY 2. If (γ, δ) is admissible relative to Γ^* and if Γ^* is convex then there exists a sequence of mutually orthogonal priors $\lambda^1, \ldots, \lambda^n$ such that (i) and (ii) of Theorem 1 are satisfied. In addition $\gamma \in \Phi_1$.

PROOF. Since (γ, δ) is admissible relative to Γ^* there exists a prior, say λ^1 , against which (γ, δ) is Bayes. Hence δ_i restricted to Λ^1_i is Bayes for i = 1, ..., k and $\gamma \in \Phi(\lambda^1)$. If $\Lambda^1_i = \chi_i$ for i = 1, ..., k the corollary is proved so assume this

is not the case. Consider now the decision problem when $\theta \in \Theta - \Theta(\lambda^1)$ and we only consider pairs of the type (γ, δ') where $\delta_i' = \delta_i$ on Λ_i^1 for i = 1, ..., k. For this restricted problem (γ, δ) is admissible and hence Bayes against some prior, say λ^2 . As before δ_i is stepwise Bayes against λ^1 and λ^2 . We continue in this way until we get a set of mutually orthogonal priors, say $\lambda^1, ..., \lambda^n$, such that δ is unique stepwise Bayes. (Note: We remove from the set of priors any prior, say λ^r , for which $\bigcup_{i=1}^k \Lambda_i^r$ is empty.) This completes the proof. \square

As we remarked earlier, Theorem 1 gives a method of finding designs to use with a unique stepwise Bayes decision rule δ such that the pair is admissible relative to Γ^* . Corollary 2 suggests that not all such "admissible" designs can be found using Theorem 1 since an "admissible" γ must belong only to Φ_1 not Φ_n . By returning to the example given just before Theorem 1 we see that this is indeed true.

For the example it is easy to find the risk functions $r_1(\theta, \delta_1)$ and $r_2(\theta, \delta_2)$ and check that neither one dominates the other. If $\Gamma^* = \Gamma$, the class of all possible designs, then by our earlier remarks for any $\gamma \in \Gamma$ the pair (γ, δ) is admissible relative to Γ .

We also note that the above choice of λ^1 and λ^2 is the only sequence of mutually orthogonal priors against which δ is unique stepwise Bayes. To see this, note that since (γ, δ) is admissible the pair is Bayes against some prior. This prior can only be λ^1 , the prior which puts mass one on $\theta=0$ since $\delta_1(0)=\delta_2(0)$. The next prior can only be λ^2 , the prior which puts mass $\frac{1}{2}$ on $\theta=\frac{1}{2}$ and $\theta=1$. Hence λ^1 and λ^2 is the unique sequence which makes δ a unique stepwise Bayes estimator.

Now it is easy to check that $R_1(\delta_1, \lambda^1) = R_2(\delta_2, \lambda^1) = 0$ and $R_1(\delta_1, \lambda^2) < R_2(\delta_2, \lambda^2)$ and so Φ_2 contains just one design, which puts all its mass on the first experiment. However, as we have seen for every design γ the pair (γ, δ) is admissible relative to Γ . This example also shows that part (b) of Theorem 1 of Meeden and Ghosh (1983) is false.

3. Applications. We will now show how Corollary 1 can be used to prove uniform admissibility in finite population sampling. [For a more detailed discussion see Section 3 of Meeden and Ghosh (1983).]

Consider a finite population U with units labeled $1,2,\ldots,N$. Let y_i be the value of a single characteristic attached to the unit i. The vector $y=(y_1,\ldots,y_N)$ is the unknown state of nature and is assumed to belong to $\Theta\subset R^N$. A subset s of $\{1,2,\ldots,N\}$ is called a sample. Let n(s) denote the number of elements belonging to s. Let S denote the set of all possible samples. A design is a probability measure defined on S. Given $y\in\Theta$ and $s=\{i_1,\ldots,i_n\}$ where $1\leq i_1< i_2<\cdots< i_n\leq N$ let $y(s)=(y_{i_1},\ldots,y_{i_n})$. Suppose we wish to estimate $\gamma(y)=\sum_{i=1}^N y_i$, the population total, with squared-error loss. Let e(s,y) denote an estimator where e(s,y) depends on y only through y(s). Typically the class of possible designs is restricted to some family and one wishes to find a pair (p,e) which is admissible relative to the given family of designs. In finite population sampling this is known as uniform admissibility. Two such families

which are often considered for a given positive integer n (n < N) are $\Gamma_1 = \{p: \sum_{s \in S} n(s) p(s) \le n\}$, the class of designs of expected sample size less than or equal to n and $\Gamma_2 = \{p: p(s) = 0 \text{ if } n(s) \ne n\}$, the class of designs of fixed sample size n.

We will consider the following estimator:

$$e_1(y,s) = \sum_{i \in s} y_i + \{n(s)\}^{-1} \Big\{ \sum_{i \in s} (y_i/m_i) \Big\} \Big(\sum_{i \notin s} m_i \Big),$$

proposed by Basu (1971), where (m_1, \ldots, m_N) is a vector of positive constants which are not all equal.

Let S_n denote all samples of size n,

$$S(\max) = \{s : s \in S_n \text{ and } \sum_{i \in s} m_i = \max_{s' \in S_n} \sum_{i \in s'} m_i \}$$

and

$$\Gamma_2(\max) = \{p: p(s) = 0 \text{ if } s \notin S(\max)\}.$$

If $\alpha_1, \ldots, \alpha_r$ are $r \ (1 \le r \le N)$ distinct real numbers, let

$$\overline{Y}_m(\alpha_1,\ldots,\alpha_r) = \{ y: y_i/m_i = \alpha_j \text{ for some } j=1,\ldots,r, \text{ for all } i=1,\ldots,N \}.$$

THEOREM 2. If $p \in \Gamma_2(\max)$, then the pair (p, e_1) is uniformly admissible relative to Γ_1 when the parameter space is assumed to be $\overline{Y}_m(\alpha_1, \ldots, \alpha_r)$ and hence the pair is uniformly admissible relative to Γ_1 when the parameter space is R^N .

PROOF. This theorem is just Theorem 4 of Meeden and Ghosh (1983) with Γ_2 replaced by Γ_1 . The proof given below closely follows the earlier argument.

There it was shown that $e_1(y, s)$ is unique stepwise Bayes for any $s \in S_n$ against a certain sequence of priors when y was assumed to belong to $\overline{Y}_m(\alpha_1, \ldots, \alpha_r)$. It is easy to check that this is true for all $s \in S$, not just those belonging to S_n . For this sequence of priors, say $\lambda^1, \ldots, \lambda^n$, we next identify some designs which belong to Φ_n .

For a design p and the estimator e_1 the pair (p, e_1) has risk function

$$r(y; p, e_1) = \sum_{s \in S} p(s) \left[n^{-1}(s) \left(\sum_{i \in s} z_i \right) \left(\sum_{i \notin s} m_i \right) - \left(\sum_{i \notin s} z_i m_i \right) \right]^2,$$

where $z_i = y_i/m_i$ for i = 1, ..., N. For a given s let $a_{i,s} = n^{-1}(s)(\sum_{i \notin s} m_i)$ for $i \in s$ and $a_{i,s} = -m_i$ for $i \notin s$. Hence

$$r(y; p, e_1) = \sum_{s \in S} p(s) \left[\sum_{i=1}^{N} a_{i,s} z_i \right]^2.$$

It follows as before that for any prior λ^i in the sequence

$$R(p,e_1;\lambda^i) = \left[E(Z_1)^2 - E(Z_1Z_2)\right] \sum_{s \in S} p(s) \left(\sum_{i=1}^N a_{i,s}^2\right).$$

Since $E(Z_1^2) - E(Z_1Z_2) \ge 0$, by the Schwarz inequality, a design belonging to Γ_1 will belong to Φ_n if for each i = 1, ..., n it attains the following infimum:

$$\inf_{p\in\Gamma_1}R(p,e_1;\lambda^i)$$

$$(3.1) = \left[E(Z_1)^2 - E(Z_1 Z_2) \right] \inf_{p \in \Gamma_1} \sum_{s \in S} p(s) \left(\sum_{i=1}^N \alpha_{i,s}^2 \right)$$

$$= \left[E(Z_1^2) - E(Z_1 Z_2) \right] \inf_{p \in \Gamma_1} \sum_{s \in S} p(s) \left[n^{-1}(s) \left(\sum_{i \notin s} m_i \right)^2 + \sum_{i \notin s} m_i^2 \right].$$

We may assume that the population is labeled so that $m_1 \geq m_2 \geq \cdots \geq m_N$. Let $\overline{S}_k = \{s\colon s \in S_k \text{ and } \Sigma_{i\in s} m_i = \Sigma_{j=1}^k m_j\}, \ \overline{S} = \bigcup_{k=1}^N \overline{S}_k \text{ and } \overline{\Gamma}_1 = \{p\colon p \in \Gamma_1 \text{ and } p(s) = 0 \text{ if } s \notin \overline{S}\}$. Clearly any design p which attains the infimum of (3.1) must belong to $\overline{\Gamma}_1$. Therefore

(3.2)
$$\inf_{p \in \Gamma_1} R(p, e_1; \lambda^i) = \left[E(Z_1^2) - E(Z_1 Z_2) \right] \inf_{p \in \overline{\Gamma}_1} \sum_{i=1}^N p(i) \psi(i),$$

where p(i) is the probability, under design p, of selecting the sample of size i that has the i largest m_i 's and

$$\psi(i) = i^{-1} \left(\sum_{j=i+1}^{N} m_j \right)^2 + \sum_{j=i+1}^{N} m_j^2 \text{ for } i = 1, ..., N.$$

[Note $\psi(N) = 0$.]

Let $\tilde{\psi}$ be a function defined on the interval [1, N] which is obtained from ψ by connecting the points $(i, \psi(i))$ and $(i + 1, \psi(i + 1))$ with straight line segments for $i = 1, \ldots, N - 1$.

We will be able to complete the proof of this theorem once the following lemma is proved.

LEMMA. $\tilde{\psi}$ is a strictly decreasing convex function on [1, N].

PROOF. It is easy to check that $\tilde{\psi}$ is strictly decreasing.

Let i_0 be an integer satisfying $2 < i_0 < N-2$. Let L_k denote the slope of the line connecting the two points $(i_0, \tilde{\psi}(i_0))$ and $(i_0 + k, \tilde{\psi}(i_0 + k))$. To prove the lemma it suffices to show that $L_2 \geq L_1$ and $L_{-1} \geq L_{-2}$. We will just show that $L_2 \geq L_1$ since the proof of the other is similar.

Now

$$\begin{split} L_2 - L_1 &= \frac{1}{2(i_0 + 2)} \left(\sum_{j=i_0 + 3}^M m_j \right)^2 + \frac{1}{2i_0} \left(\sum_{j=i_0 + 1}^N m_j \right)^2 + \frac{1}{2} m_{i_0 + 1}^2 \\ &- \frac{1}{2} m_{i_0 + 2}^2 - (i_0 + 1)^{-1} \left(\sum_{j=i_0 + 2}^N m_j \right)^2. \end{split}$$

Let $d = \sum_{j=i_0+3}^{N} m_{j}$. Then we have

$$\begin{split} L_2 - L_1 &= \left[i_0(i_0+1)(i_0+2)\right]^{-1} d^2 \\ &+ \left\{i_0^{-1} m_{i_0+1} - \left(i_0+1\right)^{-1} m_{i_0+2} + \left[i_0^{-1} - \left(i_0+1\right)^{-1}\right] m_{i_0+2}\right\} d \\ &+ \left(2i_0\right)^{-1} m_{i_0+1}^2 + \left(2i_0\right)^{-1} m_{i_0+2}^2 + i_0^{-1} m_{i_0+1} m_{i_0+2} \\ &- \left(i_0+1\right)^{-1} m_{i_0+2}^2 + 2^{-1} \left(m_{i_0+1}^2 - m_{i_0+2}^2\right), \end{split}$$

which is greater than zero and the lemma is proved. \Box

Returning to the proof of the theorem we note for any $p \in \overline{\Gamma}_1$

$$\sum_{i=1}^{N} p(i)\psi(i) = \sum_{i=1}^{N} p(i)\tilde{\psi}(i) \ge \tilde{\psi}\left(\sum_{i=1}^{N} ip(i)\right) \ge \tilde{\psi}(n)$$

by the lemma and Jensen's inequality. Since for any design $p \in \Gamma_2(\max)$, $\sum_s n(s)p(s) = n$, it follows that such a design must belong to Φ_n as well. To show the admissibility of e_1 and such a design relative to Φ_n , and hence to Γ_1 as well, we will invoke Corollary 1.

Since Γ_1 contains designs which put positive mass on all possible samples the sequence of priors against which e_1 is Bayes when the parameter space is $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ for $1\leq r\leq N$ is of length r. This sequence of priors puts positive mass on each member of $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ and by Corollary 1 the result follows.

Theorem 4 of Meeden and Ghosh (1983) claimed to prove that e_1 along with any design belonging to $\Gamma_2(\max)$ was uniformly admissible relative to Γ_2 . Since Γ_1 contains Γ_2 , Theorem 2 of this paper implies that the earlier result is true. However, the argument given earlier was incomplete. This is because when the set of designs is assumed to be Γ_2 and the parameter space is $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ and r>n; then e_1 is stepwise Bayes against a sequence of priors which does not put mass on every point in the parameter space. In this case one cannot use Corollary 1 to prove admissibility for the designs belonging to Φ_n . In the earlier work, in an attempt to overcome this difficulty, it was shown that for $s \in S_k$ none of the risk functions of e_1 was dominated by any other one. However, as was remarked in Section 2 this is not enough to guarantee admissibility.

It is possible to give a complete proof of Theorem 4 of the earlier paper when the class of possible designs is Γ_2 , without using Theorem 2 of this paper. To see this, consider the parameter space $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ where r>n. As was remarked above, by Corollary 1, which was used implicitly in the earlier paper, for any design $p\in\Gamma_2(\max)$ the pair (p,e_1) is admissible relative to Γ_2 when the parameter space is $\overline{Y}_m(\beta_1,\ldots,\beta_n)$ for every $\{\beta_1,\ldots,\beta_n\}\subset\{\alpha_1,\ldots,\alpha_r\}$. By reading carefully through this earlier argument one finds that if $r(y;p',e')\leq r(y;p,e_1)$ for all $y\in\overline{Y}_m(\beta_1,\ldots,\beta_n)$ for some $p'\in\Gamma_2$ and e', then $p'\in\Gamma_2(\max)$ and $e'=e_1$. Now suppose there exists a $p'\in\Gamma_2(\max)$ and e' such that (p',e') dominates (p_1,e_1) on $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$. Then it must do so on every $\overline{Y}_m(\beta_1,\ldots,\beta_n)$ with $\{\beta_1,\ldots,\beta_n\}\subset\{\alpha_1,\ldots,\alpha_r\}$ so that $p'\in\Gamma_2(\max)$ and $e'=e_1$ for every

sample possible under some parameter point of $\overline{Y}_m(\beta_1,\ldots,\beta_n)$ for some $\{\beta_1,\ldots,\beta_n\}\subset\{\alpha_1,\ldots,\alpha_r\}$. Since every sample possible under $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ is also possible under some $\overline{Y}_m(\beta_1,\ldots,\beta_n)$ this shows that $e'=e_1$ when the parameter space is $\overline{Y}_m(\alpha_1,\ldots,\alpha_r)$ and completes the proof. \square

We note that the convexity argument used to prove Theorem 2 is a generalization of an argument given in Joshi (1966) where uniform admissibility results for the sample mean were given.

Finally we note that the results of Section 2 are in some sense related to the work of Scott (1975). It is easy to see that his admissibility and uniform admissibility results hold for the problem discussed in Section 2 and not just for finite population sampling.

Acknowledgment. We wish to thank the referee for suggestions which led to considerable improvement of the paper.

REFERENCES

- BASU, D. (1971). An essay on the logical foundations of survey sampling, part one. In Foundations of Statistical Inference (V. P. Godambe and D. A. Sprott, eds.). Holt, Rinehart and Winston, New York.
- JOSHI, V. M. (1966). Admissibility and Bayes estimation in sampling finite populations, IV. Ann. Math. Statist. 37 1658-1670.
- MEEDEN, G. and GHOSH, M. (1983). Choosing between experiments: Applications to finite population sampling. *Ann. Statist.* 11 296–305.
- Scott, A. J. (1975). On admissibility and uniform admissibility in finite population sampling. *Ann. Statist.* 3 489-491.

DEPARTMENT OF STATISTICS
COLLEGE OF ECONOMICS AND
POLITICAL SCIENCE
CAIRO UNIVERSITY
CAIRO, EGYPT

DEPARTMENT OF STATISTICS 304A SNEDECOR HALL IOWA STATE UNIVERSITY AMES, IOWA 50011