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USING THE STEPWISE BAYES TECHNIQUE TO CHOOSE
BETWEEN EXPERIMENTS

By REpA MAZLOUM AND GLEN MEEDEN!

Cairo University and Iowa State University

In Meeden and Ghosh (1983) a theory was developed for choosing,
possibly at random, from a group of experiments the one to be observed. Here
we consider the problem when the class of possible designs is restricted to a
subclass of all designs. A theorem which identifies some admissible decision
procedures and generalizes the early work is proved. Some applications to
finite population sampling are discussed.

1. Introduction. Suppose that 6, the true but unknown state of nature, is
known to belong to some finite set ® and the statistician is faced with the
decision problem specified by the decision space D and the loss function L(4, d),
d € D. Before making the decision, however, the statistician may choose, possi-
bly at random, to observe one of & different experiments. Let

k
= {y =(Yp.-»Yg): ;= 0fori=1,...,kand ) v;,= 1}.

i=1

We call vy = (v,...,7;) a design and if the statistician uses y then he observes
the ith experiment with probability y,. The problem for the statistician is to
choose a y and then a decision rule for each possible experiment. In Meeden and
Ghosh (1983), the admissible decision procedures were characterized.

It sometimes happens that the class, T, of all possible designs is not available
to the statistician. For example, there may be a different cost associated with
observing each of the experiments and the statistician can only consider designs
whose expected cost is no larger than some predetermined constant. More
generally let T * denote a subclass of I'. The theorem of Section 2 identifies some
admissible decision procedures when the statistician’s choice of designs is re-
stricted to I'*. This is a mild generalization of a theorem of Meeden and Ghosh
(1983). In Section 3 the theorem is applied to some examples in finite population
sampling.

2. Admissibility when choosing an experiment. In what follows L(6, d)
is a nonnegative loss function. Assume that L(-,-) is such that for any prior
distribution A on O, ¥,L(6, d)A(8), as a function of d, is uniquely minimized by
a member of D. Convenient conditions which guarantee this are that D be
. compact and convex and that L(6, -) be convex.

Received December 1984; revised February 1986.

!Research supported in part by NSF Grant DMS-8401740.

AMS 1980 subject classifications. 62C15, 62D05, 62C10.

Key words and phrases. Choosing between experiments, admissibility, stepwise Bayes, finite
population sampling, uniform admissibility.

269

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [ 5

S

The Annals of Statistics. MIKOJIS ®

Www.jstor.org



270 R. MAZLOUM AND G. MEEDEN

Let xj,..., X5 be the finite sample spaces of the k (> 2) experiments avail-
able to the statistician. For i = 1,..., k let X; be a random variable taking
values in x; with F, = {f,(-10): 6 € O} a family of possible probability func-
tions. For each i assume that for each x; € x; there exists a § € © such that
f(x,16) > 0. Finally let §; denote a typical decision rule (possibly randomized)
from x; to D with risk function 7,(6; 8;). We note that both L and D may also
be allowed to depend on i with no change in the results to follow.

Let 8 = (8,,...,8,). For the statistician a decision procedure for this problem
is a pair (v, 8). For such a pair its risk function is

k
r(8;v,8) = X vir(6; 8;).
i=1 .

A pair (y, d) is said to be admissible relative to I'* if y € I'* and if there does
not exist another pair (y’,8’) with y’ € I'* and r(6; y’,8’) < r(6; v, d) for all
0 € © with strict inequality for at least one 8.

Note if vy is such that y; = 0 for some i, then we will only consider pairs (¥, 8)
where the corresponding member of 8 is unspecified, i.e., for a given design there
is no need to consider decision rules for experiments which are impossible to
observe.

Theorem 1 will exhibit the nature of some admissible pairs (y, 8) when the
class of possible designs is restricted to I'*. Before stating the theorem some
additional notation is needed.

If A is a prior distribution over ©, then

k
R(y,8;A) = Z Y:iR(8;5 M)
i=1
is the Bayes risk of the pair (¥, 8) against A where R;(§;; A) is the Bayes risk of
4, against A.

Let g,(x; A) = Zyf(x,]0)N(8), i = 1,..., k, be the marginal probability func-
tion of X, under the prior A. Two priors X' and A/ (i #j) are said to be
orthogonal if O(X) N O(A\/) is empty where O(X") = {8: N'(8) > 0} r = i, j. For
a set of priors A,..., A" define a sequence of sets associated with the ith
experiment,

Ali = {xi: gi(xi; }\1) > 0}

and
r—1 .
j=1
forr=2,...,n.
A decision rule §; defined on ¥; is said to be stepwise Bayes against A,..., A"
if 8,(x;) = 8/(x;) for all x; € A’; for r = 1,..., n where 8] is Bayes against X". §;
is said to be unique stepwise Bayes against X,..., A" if it is stepwise Bayes

against A,..., A" and U”_,A’; = x;. Finally the pair (v, 8) is (unique) stepwise
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Bayes against A,..., A" if §; is (unique) stepwise Bayes against A,..., \* for
each i with y; > 0.

In the following example we will compute a pair of stepwise Bayes decision
rules.

EXAMPLE. Consider just two experiments with X1 = x, = {0,1,2} and with
= {0, 2’1} Let £,00]0) =1, f,(0]3) = f(0[]1) = L % and f1(2|%) = f,(1]1) = 1.
Let £5(0]0) = f5(1]%) = 1 and f,(1|1) = f,(2|1) = 7. The problem is to estimate 6
with squared-error loss with D = [0,2]. Let ' put mass one on § = 0 and A2 put
mass one-half on § = § and 6 = 1. It is easy to see that 8 = (§,, §,), the unique
stepwise decision rule is glven by 8,00=0, 8,(1)=2% and §,(2)= 1 and
8,(0) = 0, 8,(1) = 3 and 8,(2) =
Returning now to the general s1tuat10n suppose 5 = (81, , 8;,) is such that §;
is stepwise Bayes for each i against the sequence of priors >\1 ...,\"and T'* is
the class of designs available to the statistician. How should the statistician
choose a y € I'* such that the pair (v, 8) is admissible relative to I'*? A partial
answer to this question is given in the following theorem which is a mild
generalization of part (a) of Theorem 1 of Meeden and Ghosh (1983) where the
class of possible designs has been restricted to I'* a subset of T, the class of all
possible designs.

THEOREM 1. Let T'* be a class of designs and N, ..., \* be a set of mutually
orthogonal priors such that
(i) UL | A’; is nonempty forr = 1,2,..., n and
(ii) 8, is stepwise Bayes against N, ..., \* for the ith problem fori = 1,2,..., k.
Let 8 = (8,,...,8,) and forj = 1,2,..., n define the following subsets of I'*:

@ = ®(X,...,N) = {y € &;_;: R(v,8 ) = inf(R(y', 8 M): v/ € &,_,} }
where ®, = T'*. Let
N,=N(N,...,\*) = {i: y;> 0 forsome y € ®,}.

If 8, is unique stepwise Bayes for each i € N, then for any y € ®, the pair
(v, 8) is admissible relative to T'* if and only if (v,d) is admissible relative to
o, :

The proof is very similar to that given in Meeden and Ghosh (1983) and will
be omitted.

Suppose we have a 8 which is unique stepwise Bayes against X', ..., A" and we
wish to find a y € T'* such that the pair (v, 8) is admissible relative to I' *. One
possible conjecture is that y € ®,, is enough to guarantee the admissibility of the
pair (v, 8). To see that this cannot generally be true consider the following
example.

Suppose there are just two possible experiments with

r(6,8,) = ry(0,8,) ford + 6,
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and
(6, 8,) < ry(6y,8;).

Let T'* =T, the class of all possible designs. Note that the pair (y’, ) where
¥’ = (1,0) dominates (y, ) for every y # y’. If 6, & U™ ,©(X), then®, =T* =T
and not every member of ®, leads to an admissible pair.

The following corollary gives a useful condition that guarantees that every
member of ®, yields an admissible pair.

CoROLLARY 1. If UL ,O(X)=0 and if y € ®, then (y,d) is admissible
relative to T *.

The proof of the corollary is straightforward and will be omitted.

Theorem 1 and Corollary 1 are essentially a generalizaton of part (a) of
Theorem 1 of Meeden and Ghosh (1983) where the class of all possible designs T
has been replaced by I'*. The earlier theorem was stated for the case with just
two experiments, i.e., £ = 2. In addition, it was assumed that neither ry(6, §,) <
ry(0, 8;) for all § with strict inequality for at least one 6 nor vice versa. This
assumption, in the & = 2 case, that neither risk vector dominates the other also
guarantees that every design y € @, yields a pair which is admissible relative to
I'*, i.e., no convex combination of the two vectors can dominate any other
convex combination of the vectors.

Note that for the 2 > 2 case the assumption that none of the % risks vectors
of §,,...,0, is dominated by any other one is not sufficient to guarantee that
every design y € ®, yields a pair which is admissible relative to I'*. This is
because for £ > 2 the condition:

none of the risk vectors of 6,,...,8, is dominated by any
(C.1) k
other one,

does not imply the condition:

(C.2) no convex combination of the risk vectors of §,,...,8, is
dominated by any other convex combination of the vectors,

as it does when k& = 2.

We note in passing that condition (C.2) always guarantees that every design
belonging to ®, will yield an admissible pair. However, it will usually not be as
easy to verify as the condition of Corollary 1.

In the next corollary we give a partial converse to Theorem 1.

COROLLARY 2. If (v, 8) is admissible relative to T'* and if T'* is convex then
there exists a sequence of mutually orthogonal priors N, ..., N* such that (i) and
(ii) of Theorem 1 are satisfied. In addition y € ®,.

ProoF. Since (Y, d) is admissible relative to I'* there exists a prior, say A!,
against which (¥, 8) is Bayes. Hence §; restricted to A% is Bayes for i = 1,..., &
and y € ®(N). If AL, = x, for i = 1,..., k the corollary is proved so assume this
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is not the case. Consider now the decision problem when § € ® — ©(X') and we
only consider pairs of the type (y, 8’) where §/ =8, on A, for i = 1,..., k. For
this restricted problem (y, 8) is admissible and hence Bayes against some prior,
say A2, As before §; is stepwise Bayes against A' and A2. We continue in this way
until we get a set of mutually orthogonal priors, say Al,..., A%, such that 8 is
unique stepwise Bayes. (Note: We remove from the set of priors any prior, say
N, for which U%_| A’ is empty.) This completes the proof. O

As we remarked earlier, Theorem 1 gives a method of finding designs to use
with a unique stepwise Bayes decision rule 8 such that the pair is admissible
relative to I' *. Corollary 2 suggests that not all such “admissible” designs can be
found using Theorem 1 since an “admissible” y must belong only to ®; not ®,.
By returning to the example given just before Theorem 1 we see that this is
indeed true.

For the example it is easy to find the risk functions r,(6, §,) and ry(0, §,) and
check that neither one dominates the other. If T'* = T, the class of all possible
designs, then by our earlier remarks for any y € ' the pair (v, 8) is admissible
relative to T'.

We also note that the above choice of N and A? is the only sequence of
mutually orthogonal priors against which 8 is unique stepwise Bayes. To see this,
note that since (y, 8) is admissible the pair is Bayes against some prior. This
prior can only be N, the prior which puts mass one on 8 = 0 since 8,(0) = §,(0).
The next prior can only be A%, the prior which puts mass 1 on § = 1 and 6 = 1.
Hence X! and A? is the unique sequence which makes 8 a unique stepwise Bayes
estimator.

Now it is easy to check that R,(§;, ) = Ry(8,, A) =0 and R, (8,, A%) <
R,(8,, A?) and so @, contains just one design, which puts all its mass on the first
experiment. However, as we have seen for every design y the pair (vy,3d) is
admissible relative to I'. This example also shows that part (b) of Theorem 1 of
Meeden and Ghosh (1983) is false.

3. Applications. We will now show how Corollary 1 can be used to prove
uniform admissibility in finite population sampling. [For a more detailed discus-
sion see Section 3 of Meeden and Ghosh (1983).]

Consider a finite population U with units labeled 1,2,..., N. Let y; be the
value of a'single characteristic attached to the unit i. The vector y = (yy,..., Yx)
is the unknown state of nature and is assumed to belong to ® c R™. A subset s
of {1,2,..., N} is called a sample. Let n(s) denote the number of elements
belonging to s. Let S denote the set of all possible samples. A design is a
probability measure defined on S. Given y€ ® and s = {ij,...,i,} where
1<i<iy< -+ <i, <N let s)=1(y,..-,%,) Suppose we wish to esti-
mate y(y) = LY ,y, the population total, with squared-error loss. Let e(s, y)
denote an estimator where e(s, y) depends on y only through y(s). Typically
the class of possible designs is restricted to some family and one wishes to find a
pair ( p, e) which is admissible relative to the given family of designs. In finite
population sampling this is known as uniform admissibility. Two such families
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which are often considered for a given positive integer n (n < N) are I, =
{p: Z,csn(s)p(s) < n}, the class of designs of expected sample size less than or
equal to n and T, = {p: p(s) = 0 if n(s) # n}, the class of designs of fixed
sample size n.

We will consider the following estimator:

ex(3,8) = o+ (n()) Y E (/m) ) Zm).
i€s i€s iEs
" proposed by Basu (1971), where (m,,..., my) is a vector of positive constants
which are not all equal.
Let S, denote all samples of size n,
S(max) = {s: s€ S,and ), m;= max ), m;)

ies S'€ES, jey
and
Ty(max) = {p: p(s) = 0if s & S(max)}.
If a;,...,a, are r (1 < r < N) distinct real numbers, let

Y, (a,...,a,) = {y: y/m;=a,forsomej=1,...,r,foralli=1,...,N}.

THEOREM 2. If p € Ty(max), then the pair (p, e,) is uniformly admissible
relative to T, when the parameter space is assumed to be Y, (ay,...,a,) and
hence the pair is uniformly admissible relative to T, when the parameter space is
RN

ProoOF. This theorem is just Theorem 4 of Meeden and Ghosh (1983) with T,
replaced by TI';. The proof given below closely follows the earlier argument.

There it was shown that e,(y, s) is unique stepwise Bayes for any s € S,
against a certain sequence of priors when y was assumed to belong to
Y, (a;,...,a,). It is easy to check that this is true for all s € S, not just those
belonging to S,. For this sequence of priors, say X, ..., A?, we next identify some
designs which belong to ®,,.

For a design p and the estimator e, the pair (p, e;) has risk function

(3 pre) = E p(o)|n (6} L) Emi) - (£ 2m)|.

seS Vies igs igs
where z; = y,/m; for i = 1,..., N. For a given s let a; , = n7(s)(X;¢,m;) for
i€sand a;, , = —m, for i ¢ s. Hence
N 2
r(y; D, el) = Z p(s)[ E ai,szi] .
seS i=1

It follows as before that for any prior A in the sequence

N
5 )
1=1

R(p,e; N) = [E(2) - E(2.2,)] ¥ p(s)

seS
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Since E(Z2%) — E(Z,Z,) > 0, by the Schwarz inequality, a design belonging to T,
will belong to @, if for each i = 1,..., n it attains the following infimum:

inf R(p,e; XN)

peTy
N
oy - [R@Y-B@z) ot T e Zat
- [5(z0) - Bz jof. T p@)]n @) Em) ¢ Tt
L ses iEs iEs
We may assume that the populatlon is labeled so that m; > my > -+ = my.
Let S,={s: s€S,and ;. ,m; = 1m}S UM S,and T, ={p: peT}

and p(s) = 0if s € S}. Clearly any de31gn p which attains the infimum of (3.1)
must belong to T,. Therefore

(32)  inf R(p,eX) = [E(2) - E(2, zz)] inf 5 p()9(3),

1 L i=1
where p(i) is the probability, under design p, of selecting the sample of size i
that has the i largest m;’s and

N 2 N

v(i) = i‘l( Y mj) + ) m} fori=1,...,N.
J=i+1 Jj=i+1

[Note y(N) = 0.]

Let  be a function defined on the interval [1, N] which is obtained from y
by connecting the points (i, ¥()) and (i + 1, (i + 1)) with straight line seg-
ments fori =1,..., N — 1.

We will be able to complete the proof of this theorem once the following
lemma is proved.

LEMMA. 4 is a strictly decreasing convex function on [1, N].

PrOOF. It is easy to check that y is strictly decreasing.

Let i, be an integer satisfying 2 < i, < N — 2. Let L, denote the slope of the
line connecting the two points (i,, ¥(i,) and (i, + &, ¥(i, + k)). To prove the
lemma it suffices to show that L, > L, and L_, > L_,. We will just show that
L, > L, since the proof of the other is similar.

Now

1 M > 1 X 21
Ly— L= ———— | - | L
? bo2(ip + 2) j=zzo:+3mj 2 | j= ;Z+1mj 2 et

1 N 2
_Emlo+2 (b +1)7| X my|.

J=ip+2
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Let d =XV

J=to

L,-L,= [io(io + 1)(i0 + 2)] ~ld?

+{i61m,-0+1 = (i + 1)_1mi0+2 + [ial — (o + 1)_1] mi0+2>d

+3m;. Then we have

. -1_9 . -1_9 1
+(2i0) " m 1y + (2i) M o+ ig My My s

_(io'|'1)_1 ¢+2'|'2 ( m; 1 m?0+2),

which is greater than zero and the lemma is proved. O

Returning to the proof of the theorem we note for any p € T,

th()

by the lemma and Jensen’s inequality. Since for any design p € I'y(max),
Y .n(s)p(s) = n, it follows that such a design must belong to ®, as well. To
show the admissibility of e, and such a design relative to ®,, and hence to T as
well, we will invoke Corollary 1.

Since T, contains designs which put positive mass on all possible samples the
sequence of priors against which e, is Bayes when the parameter space is
Y, (ay,...,a,) for 1 <r < N is of length r. This sequence of priors puts positive
mass on each member of Y (a,,..., a,) and by Corollary 1 the result follows.

Theorem 4 of Meeden and Ghosh (1983) claimed to prove that e, along with
any design belonging to I',(max) was uniformly admissible relative to I',. Since I';
contains T,, Theorem 2 of this paper implies that the earlier result is true.
However, the argument given earlier was incomplete. This is because when the

set of designs is assumed to be T, and the parameter space is Y (ay,...,a,) and
r > n; then e, is stepwise Bayes against a sequence of priors which does not put
mass on every point in the parameter space. In this case one cannot use
Corollary 1 to prove admissibility for the designs belonging to ®,. In the earlier
work, in an attempt to overcome this difficulty, it was shown that for s € S,
none of the risk functions of e, was dominated by any other one. However, as
was remarked in Section 2 this is not enough to guarantee admissibility.

It is possible to give a complete proof of Theorem 4 of the earlier paper when
the class of possible designs is T,, without using Theorem 2 of this paper. To see
this, consider the parameter space Y, (a,,..., a,) where r > n. As was remarked
above, by Corollary 1, which was used implicitly in the earlier paper, for any
design p € I‘2(max) the pair (p,e;) is admissible relative to I, when the
parameter space is Y, (B,,. .., B,) for every {B,,..., 8,} € {ay,...,a,}. By read-
ing carefully through this earlier argument one finds that if r( y, p,e’) <
r(y; p, e,) forall y e Y, (B,,...,B,) forsome p’ €T, and e’, then p’ € I‘2(max)
and e’ = e,. Now suppose there exists a p’ € T(max) and e’ such that (p’, e’)
dominates (p,, ;) on Y,(a;,..., a,). Then it must do so on every Y.(Bis---sB)
with {B,,...,B8,} C {a,...,a,} so that p’ € I'(max) and e’ =e, for every

Zp( )¢()—Zp( )¥(i) =¥ > §(n)
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sample possible under some parameter point of Y(8,,...,8,) for some
{By,.-., B,} € {ay,..., ). Since every sample possible under Y, (ay,...,a,) is
also possible under some Y, (B,,...,B,) this shows that e’ =e; when the
parameter space is Y, (o, ..., «,) and completes the proof. O

We note that the convexity argument used to prove Theorem 2 is a generaliza-
tion of an argument given in Joshi (1966) where uniform admissibility results for
the sample mean were given.

Finally we note that the results of Section 2 are in some sense related to the
work of Scott (1975). It is easy to see that his admissibility and uniform
admissibility results hold for the problem discussed in Section 2 and not just for
finite population sampling. .
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