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ON THE AMOUNT OF NOISE INHERENT IN BANDWIDTH
SELECTION FOR A KERNEL DENSITY ESTIMATOR

BY PETER HALL' AND J. S. MARRON?
University of North Carolina, Chapel Hill

In the setting of kernel density estimation, data-driven bandwidth, i.e.,
smoothing parameter, selectors are considered. It is seen that there is a
well-defined, and surprisingly restrictive, bound on the rate of convergence of
any automatic bandwidth selection method to the optimum. The method of
least squares cross-validation achieves this bound.

1. Introduction. A widely studied method of usir;g a sample X,,..., X, to
estimate their common density function, f, is the kernel estimator,

" n 1 x— X
=n1Y —-K L,
fh(x) n igl 3 ( 3 )

where K is called the kernel function and A is called the bandwidth or
smoothing parameter. The choice of A is crucial to the performance of this
estimator. Too small an A gives a curve that is too noisy in that it is quite
dependent on the particular realization of the data at hand, showing features
that are not shared by the density f. Too large an A creates a bias that can
eliminate, by oversmoothing, some interesting features of f.

A considerable amount has been written about “optimal” selection of the
bandwidth (see, e.g., Fryer (1977) and Wegman (1972)). In particular there are
well-known asymptotic formulas for the minimizer of mean integrated square
error (see Parzen (1962) and Rosenblatt (1971)). Unfortunately, these depend
intimately on the unknown density, f, while any practical method of choosing a
bandwidth must depend only on the sample. In this paper it is demonstrated
that there are well-defined, and surprisingly restrictive, limits to the accuracy of
any possible data-driven bandwidth selector.

Among the most promising automatic methods of choosing a bandwidth, are
those based on cross-validation. Several recent papers (see, e.g., Hall (1983),
Stone (1984, 1985) Burman (1985) and Marron (1985)) have shown that if 4 is
some suitably chosen cross-validated bandwidth, then under surprisingly mild
conditions, A is “asymptotically optimal,” in the sense that

(1.1) ACh, f)/0(h;, )1
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or
(1.2) h/h; -1

in some mode of convergence, where ﬁ, is the minimizer of integrated square
error,

Ak, £) = [[fulx) = £(2)]” ds.

Among the most promising of this type of result is that of Hall (1983) and
Stone (1984), where 4 is chosen by least squares cross-validation. One means of
defining this is to let /_ be the minimizer of

CV(R) = [h(x) ds = $ fi (%),

where f, »,: denotes the kernel density estimator with the ith observation deleted
from the sample. This bandwidth was proposed and motivated by Rudemo
(1982) and Bowman (1984).

While asymptotic optimality is very encouraging, there remains the important
question of exactly what this implies for the set of data at hand. In particular it
could be that impossibly large samples are necessary before the asymptotics
effectively describe what is happening. One means of addressing this issue is to
consider the rates of convergence in (1.1) and (1.2). This has been done in Hall
and Marron (1985) and in the related regression setting by Rice (1984). A
remarkable and rather depressing feature of these results is that the convergence
is very slow. In particular, under very common assumptions (such as K a smooth
symmetric probability density and f twice differentiable),

(1.3) he }:f . 0,(n"1/10),
Alh,, f) - A4y,
(1'4) ( c Z()ﬁf f() f f) - Op(n_l/5).

Hence, very large samples indeed are required before one may be sure that his
giving reasonable performance.
The rates given in (1.3) and (1.4) would be very discouraging except for the
fact that
hf ~ ﬁ f

(15) =0,

Ak, f) = A(By, f)
(1.6) fA(ilf,f)f

where A is the minimizer of the mean integrated square error,

= 0,(n"19),
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In other words, the level of noise involved in selecting the bandwidth by
cross-validation is of the same order as the difference between the two reasonable
choices of “optimal bandwidth,” ﬁ and h;. In this paper, we take h as the
optimum, because this is the bandw1dth that makes f as close to f as poss1ble for
the particular set of data at hand, as opposed to close for the average over all
possible data sets.

The fact that the rates in (1.5) and (1.6) are the same as those in (1.3) and (1.4)
leads one to suspect that these rates are the best possible. Section 2 contains a
theorem that demonstrates that this is indeed the case.

Another way of thinking about this is the following. The excruciatingly slow
rates in (1.3) and (1.4) motivate the question: Is it possible that we may find a
bandwidth selector that will be substantially closer to the optimum than
cross-validation? The theorem of Section 2 shows that this is not possible, so
there is no point searching for one.

In Section 3 there are some remarks and extensions of the theorem of Section
2. Section 4 gives additional insight into the theorem of Section 2 by putting it in
a bigger framework. The proofs are in the remaining sections.

2. Main theorem. To get a result that includes not only bandwidth selec-
tors that have been proposed, but all possible selectors, we need to show that, for
any measurable function of the data, A(X,,..., X,), the rates in (1.3) and (1.4)
" are the best possible. For such a broad class of possible selectors, a mechanism
for ruling out trivialities is required, e.g., observe that 4; itself is a function of
the data. Hence, a minimax approach, somewhat similar to that first used in
density estimation by Farrell (1972), will be used here.

The idea is to insist that A perform well uniformly over a collection of
underlying densities, #. Given B > 0, let & be the class of all densities f,
which have two derivatives with

(=) < B,
for all real x.

In addition suppose that K is a compactly supported probability density with
a Hoélder continuous second derivative. These assumptions are far from the
weakest possible, and are made with a view toward keeping the proofs from
being unacceptably long. The interested reader will find it easy to dispense with
many of these.

The rates (1.3) and (1.4) are the best possible in the sense that:

THEOREM 2.1. Under the above assumptions, for h any measurable function
of Xiy..., X,

lim lim inf sup P

e20 now jeg

lim liminf sup P,

e20 noowo feg
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3. Remarks.

REMARK 3.1. There are some important differences between our results (and
their proofs) and traditional work on “optimal rates of convergence” for non-
parametric density estimators (see Farrell (1972), Wahba (1975), Meyer (1977a,
b), Bretagnolle and Huber (1979), Stone (1980), Ibragimov and Has’minskii
(1981), Sacks and Ylvisaker (1981), Sacks and Strawderman (1982) and Stone
(1982)). The classical argument involves showing that there is a bound on the
rate of convergence of any estimator to the density f. This rate is achieved by
several estimators, including kernel methods. In this paper we confine attention
not only to kernel estimators, but to kernel estimators using a specific fixed
kernel K. The only variable is the bandwidth for that particular estimator. We
are, in effect, switching attention from the problem of “best estimates” of a
density to that of “best estimates” of the bandwidth A ;- Finally, keep in mind
that A, is a random variable, so the notion of “estimating” it is different than
for estimating f.

REMARK 3.2. Perhaps it is worth noting that even in the absence of the
results of Hall and Marron (1985) (and some related results of Rice (1984) in the
regression setting), the theorems of this paper would still be of statistical
significance. This is because, even if one did not have a bandwidth procedure
that could achieve the rates given in (1.3) and (1.4), it is still important to know
that the remarkably restrictive bound on these rates, presented in this paper, is
present.

REMARK 3.3. It should be pointed out that the only error criteria considered
in this paper are of L? type. Some rather compelling reasons for considering the
L' norm to be more natural are given in Devroye and Gyorfi (1984). Unfor-
tunately there is a trade-off to be made in choice of norms, because the L' norm
seems to be far less tractable analytically than the L? norm. Indeed as far as we
know, there is not even a known practical method of selecting the bandwidth to
give L' analogs of (1.3) and (1.4), so deeper properties such as those of Hall and
Marron (1985) and the present paper seem, at least for the moment, too much to
ask for. We use L? norms here because, in our opinion, it is more important to
understand the deeper aspects of bandwidth selection than it is to worry about
mathematical details such as precisely how one measures error.

REMARK 3.4. -~Several extensions of Theorem 2.1 are completely straightfor-
ward. In Hall and Marron (1985), it is seen that the rates of convergence in (1.3)
change if one assumes that f has more derivatives and K has a corresponding
number of vanishing moments (see Parzen (1962) or Rosenblatt (1971) to see how
this affects the rate of convergence of /; to 0). The rates also change if one
assumes that the data are random vectors instead of random variables. In both
of these settings, Theorem 2.1 is essentially the same, except the rates change
such that the rates in the analogs of (1.3) and (1.4) are again the best possible.
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REMARK 3.5. If one considers results of the type (1.1) and (1.2) to be “first
order optimality,” then a reasonable notion of “second order optimality” is
optimization of the rate of convergence in results like (1.3) and (1.4). Observe
that Theorem 2.1 says that the least squares cross-validated bandwidth, h,, is
second order optimal.

4. A bigger view. One of the less attractive features about Theorem 2.1 is
that the suprema are over the very large class #. In fact, a much smaller class,
%,, which may depend on n, is all that is necessary.

These classes consist of several small perturbations of some fixed density.
Start with, for convenience, a compactly supported density f,, which has four
bounded derivatives and satisfies f,(x) = ¢® > 0 for x € [0,1]. Define

c® = sup |f{(x)|/2.

x; j<4
Let ¢ be any function on [0, 1], which has four derivatives and satisfies
w(3>0,  sup WO(x)| <2
0<x<1/2

4,(1')(0) = 4,(1’)’(%) =0,
for 0 <j < 4. Set Y(x) = —¢(1 — x) for x € [4,1], and extend ¢ from [0,1] to
(— o0, 00) by periodicity. Let m equal the integer part of n'/° and define

v(x) = y(x, n) = m™%(mx).

For v=0,...,m—1, let y(x)=7v(x) on C,=[om™,(v+ 1)m~1!], and
v,(x) = 0 off C,. .

The elements of %, are indexed by sequences of length m, all of whose
elements are zeros and ones, {7,: 0 < v < m — 1}, and are given by

f(x) = f(7,.--, T-1)(%) = fo(x)[l + EoToYo(x)]’
for x € (— 00, 00). These are all probability densities with support equal to the
support of f,, and satisfy -
sup |f V(x) < e®.
x; j<2

In particular, the second derivatives of the densities in %, are all uniformly
bounded. The kernel K of Section 2 has been designed for just this kind of
density.

Note that Theorem 2.1 is an immediate consequence of:

THEOREM 4.1. Under the above assumptions, for h any measurable func-
tion,

. . h—
(4.1) lim liminf sup P

e20 noo© fez, ﬁf

A(h, f) - Ak, 1)
A(hy, f)

(4.2) lim liminf sup P,

e>0 noowo fez

> en_l/sl =1.
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Another reason to consider %,, instead of %, is that this easily allows a
companion result about the fact that the rates of convergence in (1.3) and (1.4)
can be achieved.

THEOREM 4.2. Under the above assumptions, there is a bandwidth selection
method, h., so that,

h.—h
ﬁf

(4.3) 11m limsup sup P

Ao poe fe#,

Ak f)— A f)
A(hy, f)

BN }\n‘l/m} =0,

(4.4) hm limsup sup P

Ao poeo feZ,

> }\n‘l/5] =0.

Theorem 4.2 is formulated in terms of %, instead of #, because the very
large size of % allows some paradoxical (and not statistically relevant) behavior.
For example, it is easy to construct a sequence {f,} in # so that h; — oo, by
considering rescalings of a fixed density f.

Theorem 4.2 is an extension, to the case of uniformity over %,, of Theorems
2.1 and 2.2 of Hall and Marron (1985). The bandwidth fz may be taken to be the
one chosen by least squares cross-validation, as 1ndlcated in that paper. The
technical details of this extension for (4.3) are summarized in Lemmas 6.2 and
6.3. Formula (4.4) is a consequence of (4.3) by computations of the type appear-
ing at the end of Section 5.

REMARK 4.1. Ferguson (1985) has asked whether the minimax character of
Theorem 4.1 can be replaced by some notion of “averaging.” More specifically,
can the trivialities discussed in Section 2 be ruled out by a mechanism that looks
at a “typical” case instead of at the worst possible case? An inspection of the
proofs reveals that this is indeed the case. In particular the suprema over %, in
Theorem 4.1 can be replaced by simple averages over %,. This same idea could
have been used in many of the more traditional works on optimal rates of
convergence given in Remark 3.1.

5. Proof of Theorem 4.1. Section 6 contains the statement of a number of
lemmas, which will be used in this section. Their proofs are given in the
Appendix. The symbols C,C,,C,,... denote generic positive constants. The
complement of an event & will be denoted &. Superscript notation in AY), M),
etc., denotes differentiation with respect to A. The classification argument used
by Stone (1982) and Marron (1983) is an important element of this proof.

First observe that it is enough to consider only A that take on values that
coincide with the h (where f € #,). To see this, given a data-driven bandwidth
h, define f to be any element of %, such that

\h; — k| = inf |, - A|.
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Then ﬁ; is also a data-driven bandwidth, i.e., it is a function of n and
X,..., X, alone and does not employ any knowledge about the unknown

n

density. For each f, € %,
\hj— Al < |hj— Al + |h— A | <20h— k.
Therefore, the first conclusion of Theorem 4.1, (4.1), follows from

(5.1) lim lim inf sup P, [|h7 f| > en—3/10] =1,

e—>0 n—oo feZ,

(6.1) of Lemma 6.1, and Lemma 6.2.
To prove (5.1), first write

A(h, f) = Ak, £) = 2[[ fu(®) = F)] [ F(2) = F(x)] dx
(5.2)

+ [[F(x) - ()] o

Using the formula
(8/9R) f(x) = A7 [£4(x) — ful(=)],
where

ax) = () £ L[255),

i=1
L= -z2K'(2),
differentiation of (5.2) with respect to 4 and evaluation at & = A ; give
0=a0(hy, f) + A72e(Ry, 1),

where

§(h, 1) = [[Fu(x) - 8@ [ F () - £(x)] dx.
Expand AD(A j» ) in a Taylor series about h ; (the minimizer of AD(h, f)),
= A(hy, f) = (B; = B, )A®(h2, 1),

where h* lies between A ; and h 1,- The key to the proof of (5.1) is the following
combination of the last two expressions:

To use this, first choose 0 < a, < b, < oo so that 2a, < n'/°h; < b,/2 for all
n and all f €%, by (6.1) of Lemma 6.1. Define h;— h; if a,n~1% < h <
b,n"%, and h; = (a, + b,)n"Y5/2 otherwise. The fact that the numerator of
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(5.3) is pivotal there is demonstrated by:

LEMMA 5.1. Given 1, > 0, we may choose n, > 0 and a sequence f, = f,, €
%, such that, for all large n,

B, [16(As, )l > non=0] > 1 —m.

The proof of Lemma 5.1 is in Section 7.

We now work with the “worst-case” density f, = f,, for some fixed 1,, 7, > 0.
For this choice of f, define A" = h* (h* as in (5.3)) if |fz; - ﬁh' <n Y4 and
At=nh ;,» otherwise. The fact that the denominator of (5.3) is no problem follows
from:

LEMMA 5.2. There is an n4 > 0, so that

P[0 < A0(H, 1) < nyn9] - 1.
The proof of Lemma 5.2 is in Section 8.
To finish the proof of (5.1), let n, = 2(b,15) ™ 'n,. Define the events
& = {lh; - hy) < n~4},
& = (IA%(RT, fi)| < mgn~*°},
£3 = {ﬁ; (S n_l/s(al, bl)}'

By (5.3),
B, [1h; = Ayl > nn 2% 8]
—2¢( A, .
(5.4)

> B, [12¢(A;, £,)| > bngnn "% &] - B[ &] - P[]
> B, [1§(A3, f)l > mn*"; &,] - B[] - P, [&)]
>P[&]1-P[&] - B[&] -,

the last line following from Lemma 5.1. Lemma 5.2 implies that P,l[c%] - 0, and
P, [£3] — 0 follows from (6.1) of Lemma 6.1 together with Lemma 6.2. If n is so
large that n,n=%"'° < n=1/4, then by (5.4),

B [1h; — Ayl > g
= P, [Ih; - hy| > nn=%% & + B, [£]
> (B[]~ P|&] - P[&] - ) + B,[£]
=1-P[&] -P[&] —m>1-m
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as n — oo. This proves (5.1) and hence (4.3). To establish (4.2), note that

A(h, ) — ARy, £) = 3(A - Ay )a@(m*, 1),
where h* is between A and fz,. Now apply (6.3) of Lemma 6.1, Lemma 6.5, and
the preceding methods.

6. Statement of additional lemmas. The proofs of the following lemmas
are in the Appendix:
LEMMA 6.1. For some ny > 0,

(6.1) 0< inf n'/’h; < sup n1{5hf< 00;

n>ny, f€F, nx>ny, fEZ,
for any & > 0 there exists n = n(&) such that
(6.2) inf - M(h;, f)=Q+n)M(h, f)

|h—h|>en~ /"
for all f € #, and all large n; for some ny > 0,
(63) 0< inf n¥MP(h,,f)< sup n¥MP(h;, )< oo;

n>ny, fEF, n>ny, fEZ,
for any € > 0 there exists 1 = n(¢) such that
(6.4) inf  |M®(h, [) — MO(hy, {)] < n(e)n >

|h—h| <en~V/5

for all f € #, and all large n, and n(¢) > 0 as ¢ > 0.

LEMMA 6.2.

llm limsup sup P, [|h, hy > }\n—3/10] =0.

Ao oo feZ,

LEMMA 6.3.

llm lim sup supP,[|ﬁ - hy > )\n‘3/1°] —0.

A2 e fef

LEMMA 6.4. Foreach 0 < a < b < oo and each ¢ > 0,

supr{ sup f[fh(x) f(x)]v(x) dx >n‘“€} -0,
f v; a<t<b

supr{ s |[ [4:x) = #(a)]o(x) s >t} =0
f v; a<t<b|’C,

LEMMA 6.5.

sup P, [n®31AP(hy, ) — M®(hy, f)| > ] - 0.
fe#,
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7. Proof of Lemma 5.1. The proof is via a sequence of three lemmas. Let P,
be the probability measure defined by

ple] = 2‘”‘fo1’;[@"],

and let E, denote expectation with respect to P,. Under P,, f should be
regarded as a random variable. There are precisely 2™ elements in %,. Writing

f=Q+32my) f=Q+24v)f
for sequences {7,} and {7,} of 0’s and 1’s, we see that
g(hs, f) = —coS,
where ¢, is the constant value taken by f, on U C,,
§=3,(r, - 7)®,

and
o, = [ [ £ (%) = 3 ()] v(x) .

(The function y was defined in Section 4.) Notice that S depends on f only
through the indicators r,; this observation is crucial to our argument.

Let & denote the sample X,..., X,. Under the probability measure P, and
conditional on %, the ,’s are independent Bernoulli random variables with

(11) 4,= Bln, = 12] = (MO + 9(X)]} /(1 - T + 7(X)]},
where I1(") denotes the product over indices i with X; € C,. Thus,
ﬁ = EO[SI‘%A] = 2o(q\o - fv)wv’
62 = VMO[Sl‘g] = 2vq’\v(]‘ - qu)Ii)f,
B =32,E[|(r, ~ 4.)0 (2] =< 2 "

The next two lemmas describe asymptotic properties of 62 and 8.

LEMMA 7.1. There exist fixed constants 0 < d, < d, < oo such that

Py[din=%"% < 6% < dyn™%%] > 1.

LEMMA 7.2. For each ¢ > 0,
Po[l? > ne—14/5] 0.
The proofs of these lemmas, and the next lemma, are postponed to the end of
this section. Let ® be the standard normal distribution function.

LEMMA 7.3. For some fixed ¢ > 0,
lim inf inf {B[IS| > n=%"%] - 2[1 — ®(cex)]} > 0.
x>

n—oo
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To finish the proof of Lemma 5.1, choose x > 0 so small that
2[1 - @(ex)] > 1 - ny/2,
and let n, = ¢y x. Then for large n,

1-m< P0[|COS| > 112n_9/10] =2"" ) P [lg(ilf, f)l > nzn_g/m].
fe#,

n

Therefore, there must exist some f, € &%, such that
L=y < Byig(Af, 1) > mn=].

Proor oF LEMMA 7.1. Let N, denote the number of elements of 2 within
C,, and notice that the P; distribution of the sequence {N,} does not depend on
f. Observe that for a constant ¢ >0, E;(N,) = E;(N,) ~ Cn*/®. Therefore, for
large n,

P,[N, > 3cn*/® for some v] < Cn'/°P, [N, > 3cn*/?]
< Cn'/°P,|N, — E;(N,)| > en*?]
< Cn*%(cen*®) °E, [N, — E,(N,)?]
= 0(n=%%).

Thus, if & is the event that no interval C, contains more than 3cn*/ elements of
%, then inf; _ z P[£] - 1.
Let =(*) denote summation over indices i with X; € C,, and observe that

IO+ y(X,)] = exp{ » (—1)"“rlz<v>[y(x,-)]f}

j=1
= exp(T + T,®),
where
T = 2¥y(X,),

o0
TS| < Y jIZOy( X)) = T,

j=2
Bearing in mind that sup|y| < C,n~%%, we may easily prove that on the set &
and for all large n, T < C, uniformly in o.
Thus, for each z > 0 there exist numbers 0 < ay(2) < by(z) < o such that,
on the set {|T{?| <2} N &,
ay(z) < IO[1 + y(X,)] < by(2),
for all v. Remembering the definition (7.1) of §, in terms of II[1 + y(X,)], we

now deduce the existence of a positive decreasing function a(z) < 1, such that
on &, |T{"| < z implies |§, — 1| < 1 — a(z). Therefore, on &,

(7.2) [a(z)/zlEoﬁ’fluz(v)y(xmsz} <6} <3 0}/4,

for all z > 0.
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Let
Wwy(h,z) = 1{|2(")7(X,«)|52}L [ fh(x) - gh(x)] y(x) dx,

po(h, 2, )= E;[@2(h,2)] and p(h,z2, f)=Z,pyh,z ). We claim that the
function c(n, h, 2z, f) defined by u(h,z, f)=c(n, h, z, f )n=%5, is bounded
away from zero and infinity uniformly in n > 1, h € n~V%(a,, b,), z > z, and
f € #,, for some z, > 0. This is relatively easy to verify if we take z, = 0. To
see that z, < oo is permissible, notice that

ok, 2, £) 2 po(hy oo, f) = [B{IZOVX) > 2} B {d(h, ) )]
E;[}(h, )] < Cin7H,
uniformly in v =0,...,m — 1, h € n"%a,, b)) and f € %,. Also observe that
P {|IZ®v(X,) > 2} < 27%E, [|IZ@y(X,)?]
= 272E,(N,E[y¥( X)X, € C,]
—(N2 - N,)E[v(X,)v(X,)|X,, X, € C,])

< z-2cz[E,(Nv)ncou-1 fc v*(x) dx

~E( N,:")(ncou‘l Jorr' =) dx)z]

<z7%C,,
uniformly in v and f, where ||C,|| denotes the length of C,. Consequently,
po(byz, 1) 2 p(hyo0, ) = (€,C,)*n %7

uniformly in v, h, z and f. Adding this inequality over v, we see that the stated
properties of the function ¢ are available for some finite x, > 0.

Take z = z, in (7.2). In view of the properties of ¢ established in the previous
paragraph, Lemma 7.1 will follow from (7.2) if we prove that for each ¢ > 0, and
for z =z, and z = oo,

(7.3) sup P,| sup [Z,[@2(n %, 2) —p,(n V% 2, f)]| > en %% > 0.
fe#, a<t<b :
Using Hoélder continuity of K and L, and the fact that these functions have
compact support, we may choose A > 0 so large that
3, [162(n "5, 2) — @2(n~ Vo, 2)

(7-4) +|”‘o(n_1/5s’ 2, f) - "‘v(n_l/5t’ 2, f)|]

<Cn7?,

uniformly in n, z=2, and o, f,v,a, <s<t<b, with |s—¢ <n~?

, and
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samples X,,..., X,. Let a; =¢,<t; < -+ <t,_, < b, <t, be a partition of
(a,, b)) with ¢, — t;_, = n™* for each i. In view of (7.4), result (7.3) will follow if
we show that for each ¢ > 0,

pf = Ein{Izv[wg(n_l/5ti’ Z) - ,"'u(n_l/5ti’ 2, f)]l > En_9/5}

converges to zero uniformly in f € %, for z = 2z, and cc.

Since K and L have compact support, and each t; € (a;, b,), then for each i
we may divide the subscripts v among a fixed finite number % (not depending on
i or n) of sets V..., V,, such that for each i and j, and for z = 2z, and oo, the
variables W% (n~1/%,, 2), v € V. are stochastically independent, and for each i,
each subscript v is contalned in just one set V. Consequently, for all integers
1>1,

p; < 2.2P, { Y [@2(n=V0%;, 2) — p(n~V0%, 2, f)]| > ek‘ln‘9/5}
veV;
21
<33 Ef{ (k™m0 Y [@2(n~V%, 2) — u(n"%, 2,f )] }
veV;

An inequality for moments of sums of independent random variables (see
Burkholder (1973), formula (21.4)) now gives

" r E;(IY,-UI”)}»

veV,;

P < Cl(l)(e_lk)2lnlsl/52izj{[ > E,(Y"%)

veV;

where Y., = 02(n" Y%, 2) — p(n"YV 5tt, 2, f). The same moment inequality
gives E,(| Y, %) < C n “4 uniformly in i, v and f. Since the number of partition
points is of order n*

sup p; < C3nwl/52i[(nl/5nf4)l + n1/5n—4l] = 0(n*V%) >0,
f
provided only that I > 5\. This completes the proof of Lemma 7.1. O

ProoF oF LEMMA 7.2. The argument used to prove Lemma 7.1 shows that
for some c;3 > 0,

P(= 02 > en™%5} - 0.
Lemma 6.4 gives

PO{ sup|d,| > n‘”f} - 0.
v
Lemma 7.2 follows on combining these results. O

PROOF OF LEMMA 7.3. Let & denote the event that 62 < n~/2°, Accord-
ing to Lemmas 7.1 and 7.2,

Po(cff") < PO[(;‘Z < dln—9/5] + PO[B‘ > n—1/20(d1n_9/5)3/2] -o.
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On the set & the Berry—-Esseen bound (see Petrov (1978), page 111) gives
sup |P[S<x|Z]—-0((x—f)/6) <An~ V2,

—00<x<00

where A is an absolute constant. Therefore, on & and for x > 0,
Py(S| > x|%) 21 - ®((x — £)/8) + ®((—x — )/6) — 2An~V/%
> 2[1 — ®(x/6)] — 24n~" V%,

Taking expectations, and using Lemma 7.1 again, finishes the proof of Lemma
7.3.0

8. Proof of Lemma 5.2. Note that Lemma 5.2 will follow from (6.3) of
Lemma 6.1 together with, for any ¢ > 0,

P, {n?9\02(R, f,) — M®(hy, f,)] > €} - 0.
Hence, by Lemma 6.5, it is enough to show that
(8.1) P, (n?9AD(AY, 1,) — AO(Ry, £,)] > &} = .

To verify (8.1), first recall our definition of A, which gives
At — hy| < n”V4+ By — By

Therefore, by Lemma 6.2,
(82) P, {IAt = | > 2n74) > 0.
It now follows from (6.4) of Lemma 6.1 that

P, {n2/5|M<i>(ﬁT, f1) = M®(h, f,)| > e} -0,
and since (by (8.2))

P, {sz, h; € n”%(ay, bl)} -1,

the proof of (8.1), and hence that of Lemma 5.2, will be completed if we show
that

(8.3) | P, (n*\DP(AT, ;)| > €} 0,
(8.4) P, {n*5D®(hy, f,)| > €} -0,
where

Statements (8.3) and (8.4) are immediate consequences of
&{ sup ﬁﬂUWMAM>§em
hen V%, b))

which may be verified by a partitioning argument that is similar to, but easier
than, that used in the verification of (7.3).
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APPENDIX
Proofs of Lemmas in Section 6.

OUTLINE OF PROOF OF LEMMA 6.1. Write
M(h,f)=V(h,f)+B(h,f),

where

V(h, f) = n-lh—lffK(u)“’f(x — hu) dudx
- [fK(u)f(x - hu)‘durdx,

2
B(h, 1) = f{ [K ()1 - hu) - ()] ] a.
The derivatives M®(h, f) and M®(h, f) may be studied by differentiating
V(h, f), then approximating as in Rosenblatt (1971), and by differentiating
B(h,f) and using a Taylor expansion with integral form of the remainder.

PRrOOFs oF LEMMAS 6.2 AND 6.3. First note that, for D as in (8.5) and 6 as in
Hall and Marron (1985):

LEMMA Al. Foreach 0 < a < b < oo and all positive integers [,

(A1) sup  En""DO(n"'5, ) < Cy(a, b, 1),
n, fe%,a<t<b
(A.2) sup E(n"/%6M(n=15¢, f)* < Cy(a, b,1).

n,fe€Z,a<t<bd
Furthermore, there exists ¢; > 0, not depending on a, b or I, such that
(A3) En/°[D®(n" s, f) - DO(n %, [ ) < Cyla, b, L)ls — 4,
(A4)  En/°[s0(n" Vs, f) - 8O(n V%, £ ) < Cya, b, L)ls — £,
forallf€e %, anda<s<t<b.

LEMMA A2. Forsome >0 andany 0 <a < b < oo,

(A5) sup B{ sup [[DO(n /5%, f)] + 8(n~ 2%, £)] > n=%57} >0,
fes,

a<t<bd

Furthermore, for any ¢, > 0 and 1, > 0,

sup P,{ sup  n/ODO(n V5%, £) — DO(hy, £ )
(A.6) fe#  \|t—n'Ph<n™%
+180(n158, £) = 8O(hy, )] > n_3/5“} o,
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The proofs of Lemmas A.1 and A.2 are omitted because they closely parallel
the proofs of Lemmas 3.1 and 3.2 in Hall and Marron (1985).

LEMMA A3. Foranye> 0,

sup Py [|ﬁ, — hy > en‘1/5] - 0.
s

Proor. It suffices to show that for any sequence of choices f, = f,, € %,
and for each ¢ > 0,

(A7) P, [ik;, — hy| > en™V%] > 0.

We may easily prove that for some b > 0, P [n < fz <n’]->1.Let H=H,
be a set of bandwidths in the range [n~?, ”], such that #(H) < n® for some
a > 0. Arguing as in the proofs of Lemmas 2 and 4 of Stone (1984), we may show
that for each ¢ > 0,

(A8) P,,[:ug IA(R, f,) — M(h, f,)I/M(h, f,) > ] 0.

Now use Holder continuity of K to show that for any (random) bandwidth A
with Pfl[n_b <h<n®]1-1,

B, [1a(%, 1,) - M(&, £)/M(k, f,) > €] = o0.
Finally invoke (6.2) of Lemma 6.1 to obtain (A.7). O

LEMMA A4. Forany e > 0,

sup P, [|fzc — hy| > en‘1/5] - 0.
ez,

PROOF. Again, it suffices to prove that for any ¢ > 0 and sequence f, = f,, €
P

(A9) P [lh, = by > en™V] > 0,

and it is easily shown that for some b > 0, P,[n_” < flc < n®] - 1. Define
CV(h, f)=CV(h) + [+ 2n " n—1)"(n+1) ¥ [/(X) = B f(X,)]
i=1

and let H be as in the proof of Lemma A.3. Minimising CV is equivalent to
minimising CV(-, f), for any f. Using the argument leading to Stone’s (1984)
Lemmas 2, 3 and 4, we may show that for any ¢ > 0,

B[ sup|CV(R, 1) = M(h, f)/M(k, 1) > | = 0.
heH

This formula serves as an analogue of (A.8) in the proof of Lemma A.3. The proof
of (A.9) may now be completed as was that proof. O
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LeEMMA A5. For some € > 0,
supP,[|ﬁ, — R+ |h,— by > n‘1/5‘E] - 0.
fez,

PrROOF. Argue as in Lemma 3.3 of Hall and Marron (1985), but use Lemmas
3.4 and 3.5 to replace the limit theorems A,/A, —,land h/hy— ,1 (in the
notation of that paper), and use our Lemma A.2 in place of Lemma 3.2 there. O

To finish the proof of Lemma 6.2, note that it suffices to show that for any
sequences f, = f,, €%, and A, = o,
(A.10) P (\hy, — kgl > A,n=¥%] =0,
Observe that ‘
0= 89(fg 1) = MOy, 1) + DOy, 1)
= (&), — h;)MO(*, f,) + DO(h,, f,),

where A* lies in between ’;f, and A;. Define ¢, = c¢(n) and c, = cy(n) by
h; =c,n™'% and M®(h;, f,) = con=*/° Then ¢, and c, are bounded away
from zero and infinity as n — oo (note (6.1) and (6.3) from Lemma 6.1). Given
any ¢ > 0, there exists n(¢) > 0 such that n(¢) —» 0 as £ — 0 and for large n,

sup  |M®(h, f;) = M®(hy, f,)| < 0(§)n">>.

|h—hy | <¢n”1/5

(A.11)

(Note (6.4) of Lemma 6.1.) Let a,, b, be fixed positive lower and upper bounds to
¢, respectively, and let a, be a fixed positive lower bound to c,. Choose
£ € (0, a,/2) so small that n(§) < a,/2. By (A.11),

hy — k) < (ayn%/2) IDO(A ., f,)]

< 2a;'n%5 sup |D(l)(n_1/5t: f1)|,
a,/2<t<a,/2+b,

whenever the event &, = {|l'i,l — k| <£én”'%) holds. Let &, be the event
{sup, ., o/ DP(n~5%, )| < n~3/57¢), where a = a,/2, b=a,/2 + b, and ¢ is
as in (6.4) of Lemma A.2. Whenever &; N &, holds, so does the event &, =
{lh; — h;| < 2a;'n"'/57¢). Let &, be the event that

|D(l)(ilfn’ fl) - D(l)(hfl, fu)l > n=710,
Then
P, [1h;, - kgl > An=¥]
(A12) <P [&] + P [&] + Bl&Nné&]
+B, hD“’(hm £ > An=¥19(2a5 10 2/5) "t — p=1/10].

Chebyshev’s inequality and (A.1) of Lemma A.1 show that the last-written
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probability converges to zero as n — co. Lemma A.3 gives P, [&; N &,] = 0.
Result (A.10) follows from (A.12), which finishes the proof of Lemma 6.2. O

To finish the proof of Lemma 6.3 use essentially the argument employed to
prove Lemma 6.2, but replace (A.11) by

0= cvO(h,) = MO(h,, k) + DO(h,, f,) + 8O(R,, f,)
= (h, = k) M®(h*, f,) + DO(A,, f,) + 8D(h,, f,),

where A* lies in between A, and h f- 0

PROOF OF LEMMA 6.4. This proof is similar in character to, but much easier
than, the proof of (7.3). O

ProOF OF LEMMA 6.5. First use the argument employed to prove (A.1) of
Lemma A.1, to show that, for each 0 < a < b < oo and all positive integers /,

sup En'?2D®(n~5¢, f )* < C(a, b,1). O

n, fe€%,, a<t<bd
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