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ON THE ASYMPTOTIC FORMULA FOR THE PROBABILITY OF
A TYPE I ERROR OF MIXTURE TYPE POWER ONE TESTS?

By MosHE PoLLAK

The Hebrew University of Jerusalem

Let X;, X,,... be iid with density f, with respect to a sigma finite
measure p, where {f,},cq, @ C R, is an exponential family. Let F be a
probability measure on Q and let 6, € Q. Define

f fy(Xl) /y(Xn)
2 fo,(X1) -+ fo,(X)

T(B, F) = w if no such n exists. Previous studies have found that if F has a
positive and continuous density with respect to Lebesgue measure on £, then

T(B,F)=min{n dF(y)ZB},

BR,(T(B,F) < ) = ., | [“exp(~x} dHy(x) dF(6),

where Hj are certain measures arising in a renewal-theoretic context.

Here we show that in a nonlattice context, this convergence holds for
general probability measures F. We also show that the convergence is uniform
for all probability measures F whose support is contained in an arbitrary
interval [a, b] interior to £, if the distribution of X, is strongly nonlattice
for all y € Q.

1. Introduction and summary. Let Q be an open interval on the real line
and let {f}, <o be the densities of a one-parameter exponential family with
natural state space { with respect to a sigma-finite measure p. Denote:

fAx) =exp{yx —¢(y)}, - <x<o, yeQ.

Without loss of generality, assume that 0 = (0) = ¢’(0). Let X, X,,... be a
sequence of iid random variables, let P, be the probability measure (on R*)
under which X; have density f, with respect to p, and let E, denote expectation
under Fy. Let F be a probability measure over £ with F({0}) = 0. Denote:

L(n, ) = TT[(X)/6(X),

L(n,F) = fﬂ L(n, y) dF(y),

T(B, F) = min{n|L(n, F) > B}

oo if no such n exists.
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The statistical test which stops at T(B, F) and rejects H,: 6 = 0 in favor of
H,: 6 + 0 has power one for certain values of § [cf. Robbins (1970)]. It is known
that [Lai and Siegmund (1977) and Woodroofe (1982), Section 6.1] the signifi-
cance level of this test is

(1) Py(T(B, F) < ) =fQE0[1/L(T(B, F), F)] dF(6).

Let S = yX | X, — ny(y), let 7 = min{n|S) > A}, 7 = o if no such n exists
and let p, =S — A on {1 < c0}. If the Fy-distribution of yX; — ¢(y) is non-
lattice, it follows from standard renewal theory [cf. Feller (1971)] that under P,
p, has (as A — o) a limiting distribution H,. If F has a positive continuous
density with respect to Lebesgue measure on £, then by Lai and Siegmund (1977)

(2) BP\(T(B,F) < «) - B_,wfﬂ_/(;wexp{—x} dHy(x) dF(9)

[see also Woodroofe (1982), Section 6.2]. The method involved in the proof of (2)
is nonlinear renewal theory [developed by Woodroofe (1976) and Lai and
Siegmund (1977); see Woodroofe (1982) for a survey]. Formula (2) yields an
approximation for the significance level of the test associated with T(B, F'). The
approximation is remarkably good, even for low values of B [Lai and Siegmund
(1977)].

Let 8, denote the probability measure degenerate at 8. For testing H,: § = 0
against an alternative H,: § = y with a power one test, 7(B, §,) is optimal in the
sense that it has least P,-expected sample size among all power one tests with
significance level a < FB(T(B,d,) < o). If the alternative H, is not simple,
T(B, §,) may not yield a test of power one at every point in the alternative and is
not efficient for values of 6 other than y. One can maintain power one and
asymptotic (B — o) efficiency at every point in the alternative by employing a
rule T(B, F') with F having a positive continuous density for all points in the
alternative [see Pollak and Siegmund (1975) and Pollak (1978)]. The asymptotic
efficiency of 7(B, F) is manifest when B is large. When B is not large T(B*, §,)
will have a significantly smaller P -expected sample size than T(B, F') [where B*
is such that T(B*,§)) and T(B, F) yield tests with power one at § = y having
the same level of significance]. For reasons of continuity, E,T(B*,3,) will be
smaller than E,T(B, F) for a sizeable §-neighborhood of y. As for practicality,
the integration involved in computing L(n, F') may make application of T(B, F)
cumbersome. Therefore, choosing a measure F* concentrated at a single point or
having atoms at a few points and employing T(B, F*) may be much more
appealing than using T(B, F') with continuous F. The range of values of B where
this may be the case is large, and seems to include many of the “practical” cases.
[For an indication of this, see Pollak and Siegmund (1985).] While the test
associated with T(B, F*) may not have power one at all points in the alternative,
averaging F* with a continuous F will rectify this, at the same time retaining
reasonably good efficiency for most points in the alternative. Therefore, there is
an interest in establishing (2) for a wider range of measures F.
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Other questions of interest concern the uniformity (in F') of the convergence in
(2). These become of importance when several measures are being considered or
when the measure F is random. [This may be the case, for instance, if a machine
requires calibration at a value § = 0 at the start of each day, a power one test is
daily employed on the products to check whether § = 0, and the measure F,
which represents the values of § when @ # 0, is daily updated. For another
example of a random F, arising in a different context—one where the uniformity
of the convergence is crucial—see Pollak (1983).]

Here we show that in case yX, — {/(y) are nonlattice, the convergence in (2)
exists for general probability measures F. We show that this convergence is
uniform for all probability measures F whose support is contained in an arbitrary
interval [a, b] interior to {2, under the restriction that the P -distribution of X,
be strongly nonlattice [see Stone (1965)] for all y € Q. (This requirement is
fulfilled, for example, in case the observations are normal or exponential. It is not
fulfilled if they are binomial or Poisson.) It should be noted that the uniformity
result may not hold if the strongly nonlattice assumption is not satisfied (e.g., the
Bernoulli case).

Even when the strongly nonlattice assumption is satisfied, the uniformity
result is not transparent. The standard approach of decomposing a nonlinear
renewal process calls for representing L(n, F) via

n
3) log L(n, F) = 0 Y. X, — ny(6) + &(n, 6, F),
=1
where £(n, 0, F') are sequences which are slowly varying. If these are slowly
varying uniformly in § and F, letting 7' = T(B, F), this representation would be
applied to

(4)  BP(T(B,F) < ) =fE0exp{—[logL(T, F) — log B]} dF(6)

[which is equivalent to (1)] to yield a uniform convergence in (2). The difficulty is
that the representation (3) may fail, let alone £(n, 6, F') slowly vary uniformly
[e.g., consider the N(8,1) case with F = {8, _, + 14, , —the representation fails
for 8 = y]. Looking at it differently, to each B, F there corresponds a (one-sided
or two-sided) boundary y(¢) via the relation

B = erXP{yv(t) - ty(y)} dF(y).

The stopping time T(B, F) is equal to the first time n that the sequence of
partial sums X? X, crosses the boundary y(¢), and one can try to get the
asymptotics of the overshoot Y78 "X, — y(t) to account for uniform conver-
gence in (2) via smoothness properties of y(t). However, it is generally not the
case that for ‘“neighboring” mixing measures F), F, the corresponding boundaries
v,(t), vo(t) are close uniformly in B. [For instance, consider F; = F,, F, =
(1 —¢€)8, + ed, where 0 <a <b. An easy calculation shows that y,(0)=
(log B)/a, while v,(0) = (log B — log ¢)/b + 0(1).]

Nevertheless, due to the following reasoning, the uniformity result is true. By
virtue of (4) it is enough to show that the representation (3) and the uniformity
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in 8 and F of the slowly varying characteristics of {(n, 6, F') hold not for all 4,
but for a §-set Ayz(F) having arbitrarily large F-probability—Ilarger, say, than
1 — ¢, ¢ arbitrary. It does not matter if Az(F') varies with B or F, as long as
1 — ¢ remains a lower bound for its probability and the slowly varying character-
istics of &(n, 8, F) continue to hold for n in the vicinity of T(B, F'). The rigorous
presentation of this reasoning is the content of the proof supplied in this article.

2. General convergence. We will use the notation of the previous section.
THEOREM 1. Suppose that F{0} =0 and F{{0|60X, — ¢(0) has a lattice
Py-distribution}} = 0. Then
BP{T(B,F) < o} —>B_,wf9f0 exp{ —x} dH,(x) dF(8).

Essentially, the idea of the proof is to apply Lemmas 1 and 5 below and the
nonlinear renewal theorem to (4) above.
Let a < b be interior points of Q. Fix § >0, 8= %, p=3, and a =

Denote
T=T(B,F), X,=X,X/n, e=¢e(n)=nF'?

k =x(n, 6) = min(e, 16}, 161/ \§7(8) ), o = o(n) = n?"172,

S[a, b] =set of all probability measures F whose support is contained
in [a, b], and which satisfy F{0} = 0 and F{{6|0X, — y(0) has
a lattice distribution}} = 0,

1(8) =6y'(6) — y(0), I, = (log B)/1(0),
m, =the integer value of {; — (I4)%/4,

n, =the integer value of I, + ({4)°/4,

&9 =(ng)’ "% e =min(e,, §16], 101/ ¥7(8) ), o = (me)* 7V,
Ap=Ag(F)= {610 #0, F{[0 — }k,0 + 3x]} = 6« for all my < n < n,},
Rp=Rg(F)=Apn {6]|6| > (log B)~1%,

0* =is defined by ¥'(6*) = X,

6% =6%(6, B) = 6] + [(1 — p)ly 1?12,

n* =n*(6, B) = min{|0|72/4 =38 71,}.

oo

The following lemmas are stated in somewhat greater generality than needed
for Theorem 1 so as to enable their use for the proof of Theorem 2.

LEMMA 1. There exists 0 < By < oo such that if B > B; then
F{Acgmelement} < 5(b — a)8 whenever F € S[a, b].

PROOF. Suppose a <0 < b. Suppose 0 # 0 € [a, b] and F{[0 — }x,
0 + ;k]} < 8k for some my < n < ny. There exists 0 < B; < oo (independent of
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0, F) such that if B> B; then, for such 6, F{[0 — }&j, 0 + 3651} < 28¢5
whenever F' € S[a, b]. Therefore

(AB)complement c {0|F{(0 — %8:,0 + %ez)} < 288;}

if B> B,.
Let b, = b, and define recursively b; = max{#|0 < 0 < b,_, — 3¢}
F{(0 — e,0 + )} <2865}, i=1,2,..., and define

-1

D;={01b,— Lef <0 <b,+ e} }.

Thus, (0, b] N (Ap)~mrlement ¢ U, D,. Clearly, F(D,} < 28¢} = 28|D;). Also
D;nD;=¢ if |i —j]>1, so F{U; D} < FU;D,;} + FU D2J+1} < 28b + 28¢},
+28b < 58b. Consequently, F{(0,b]N (4, )°°mple‘“e“‘} < 58b. A similar argu-
ment holds for [a,0), so that F{(Ag )cmpleme“t} < 58(b — a). The argument
for 0 < a < b and for a < b < 0 is analogous. O

LEMMA 2. Let 0 <7 < oo and denote
¢(n,0, F) —log[L(n F)//““/z’”" )dF(y)}

Then

sup sup max R,{maxl{(n +7,0,F)—¢(n,0,F)| > n} = Boo0.

FeS[a,bl0&A, n=(1-p)lg Jjz1

PROOF. Let W/ denote the event {|8* — 6| < £}. There exists a constant
¢ > 0 independent of n, 8, F such that if a < § < b, then

(5) (I1X, - v(0)] <ce} cW,.
Following the proof of Lemma 2 of Pollak and Siegmund (1975), for A > 6
PO&—Xn - \P'(O) > Z}

(6) B (X —1P'(0)>z}exp{n‘(0 - A))_{n - (‘4’(0) - ‘I/(A))]} dP,

< exp{~n[(y'(6) + 2)(A = 6) = (¥(A) - ¥(8))]}
XP{X, —¥'(8) > z}.
Setting z = ce and A = 0 + n1/28~1/2 yields for large enough n
(7) Py{X,— y'(8) > ce} < exp{ — Lcen/?}

uniformly for ¢ < § < b. Hence

sup Y P{X,—'(6) > ce} —,_0.

a<l<bn=r
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A similar analysis yields

sup Y Py{X, — ¥/(8) < —cg} >, _,.0.

a<0<bn=r

Hence, by (5)
(8) inf })0{ n vvr:)} _)r—>ool‘
a<f<bd n=r
Note that

log L(n,8 + Af)
= n[(6 + A8)X, — y(8 + A8)]

= n{0X, ~¢(6) + 86[%, — ¥'(6)] — 39"(6)(46)°[1 + o(V)]},
where 0(1) —» 0 as A — 0 uniformlyin @ € [a — 3¢, b + e]if a — 36, b+ je €
Q. For large enough n, for § = 6*, this becomes

log L(n,0* + A8) = n{0*X, — y(6*) — 34"(6*)(A0)°[1 + o(1)] }.
Therefore, there exists B, (independent of F) such that if B > B, and 0 € Ay,
on W? for n > (1 — p)l,, if F € S[a, b]
ZL(n, ) dF(y)
JiX omeL(n, y) dF(y)
(fob+(1/2)o, + f«f_(lﬂ)o’)lf(n, y) dF(y)
[t L(n, y) dF(y)
L(n,0* + o,/4) + L(n, 0* — 0,/4)
<1+ "
deymin{L(n, 0* — &), L(n,0* + ¢5)}

2exp{n[0*X,, — ¥(6*) — 14" (6*)(05/4)"[1 + 0(1)]]}
Sejexp(n[0*X, — ¥(0%) — 14" (8*)(e)"[1 + 0(V)]]}

2exp{ — & [min, _,_,¥"(0)]of(1 — )iy}
<1+ e
9

<1+

<1+

B—>oo

This, together with (8), accounts for Lemma 2. O

LEMMA 3. Let 0 <n < 0. Let
K, (6) = sn4"(0){[ X, - v(8)] 47(6)),
Ju(3,0,0) = iny(0){y — 6 — [ X, - v(6)] /(6))’
+n(y - 6)"% " (\)/6.
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Let {A(0))7-, be any random sequence :cuch that 0 — o < A ,(0) < 8 + o.
hen

() sup B max |K,.(0)~K(0)]zn}~,..0

a<l<b Jj=1,.

(ii) sup R,{ max max aIJnﬂ-(y,ﬂ, A, (0))

a<b<b 0—o<y<b+o j=1,...,p

~d(3,0,0,(0))] = 1) = 0.

Proor. Part (i) follows from Proposition 1 of Lai and Siegmund (1979),
noting that the proof of this Proposition 1 can be carried through uniformly for
a<f<hb

As for part (ii), note that

Ju(3,0,) =n(y = 0)*% " (X)/6 + K,(0) + 34"(6)(y - 6)’n
- X [Xi=v(0)](y-9).
i=1
Therefore, for § —0 <y <6+ 6,1 <j < pn* and large enough n

|ns (5,0, 7,,(8)) — J(7,8,1,(0))]
< pn%® sup |y (8)|+ sup |¢""(8)]o*n

(9) a<f<b a<f<b
n+j
Ko f(0) = K (0)] + 9/(8)pn%0? +
i=n+1
uniformly for ¢ < § < b. By Kolmogorov’s inequality,
n+j
Po{ X [Xi-v(0)]fo> n/4}
j=1 LI PR
n+j
- PG{J e Do CERC | I
pn® i=n+1

< ¢”(0)Pn“02/(n/4)2 -
uniformly for a < 6 < b. Part (ii) now follows from (9) and part (i). O

LEMMA 4. Using the notation of Lemma 3, denote
9+ (1/2)0,
Qu(8, F) =log[" * Mexp{~d,(7,0,1,(0))} dF(y).

—(1/2)0y



MIXTURE TYPE POWER ONE TESTS 1019

Let 0 <9 < . Then

sup sup max B max [Q,,(8,F)=Q6,F)|>n)
FeS[a, bl 0€Ay my<n<ng ‘J=Ll,-..,pn*A(ng—n)

—)B—vooo‘
Proor.

Qn+j(0’ F) - Qn(01 F)

- log{ fo "(‘/; f"”exp{ ~ [, 0,2,4(8)) = (7,6, 7,(6))]}

xexp{ —J,(7,0,X,(0))} dF(y)/

f0+(1/2)ooexp{ _Jn(y’ 0’ )\n(ﬂ))} dF(y)}
0—(1/2)q

This is the logarithm of an expectation of exp{-[,. A3, 0, A, (0)) —
J(,0,,(0))]}. Lemma 4 is therefore a consequence of Lemma 3(ii). O

LEMMA 5.

logL(n,F)=0Y X,— ny(6) + &(n,0, F),
i=1
where {{(n, 8, F)}*_, is a sequence of random variables which satisfies for any
0<n<ow

sup sup max Po( max |é§(n+7,0,F) - &(n, 0, F)| >"7)
FeS[a,bl0€Ay mg<n<ng ‘J=1,...,pn*A(ng—n)

- 0.

B—

Proor. Using the notation of Lemma 3 and Lemma 4, for § € Az and
my < n < n, there exists A (0) € (8 — 6,6 + o) such that
0 +(1/2)0,
log [*""/""L(n, y) dF(y)
6—(1/2)0,
0+(1/2)0,

- logfo—a/z)oo exp{n[yX, — ¥(¥)]} dF(y)

= 1og """ exp(n[0X, - 4 (8) + (y - 0)(X, - ¥/(0))
0—(1/2)0y

~3(y = 0)°4"(8) — (¥ — )*y " (7(6)) /6] } dF(»)
— 0% X, - ny(6) + K, (0) + @u(6, F).

i=1

Lemma 5 now follows from Lemma 2, Lemma 3(i) and Lemma 4. O

The following two lemmas are needed in order to apply the nonlinear renewal
theorem.
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LEMMA 6.
sup  sup Pp{T(B, F) > ny} = 5_ 0.
FeS[a,b]0Ry

Proor. Denote w, = X, — ¢'(6).

L(n, F) = [exp{n[5X, ~ v(3)]} dF(»)

> [ exp(n(0) + o) ~ U] ()
_ o+<1/2>eexp{n[0(¢/(0) +w,) + (y—8)(¥(8) + w,)
0—(1/2)e

= [¥(8) + (y = )W (0) + 1y - 0)’v(8)]]} dF (),
where [ — 8| < l¢; so for § € Ay, n > I, and large enough B,
(10) L(n,F) = exp{nl(ﬂ)}exp{ —n|w,|(10] + ée)}exp{ —¢”(0)n*} k.
Denote z = {I(8)p/[8(|0] + 1e)1}(Zy)"*~®. By (6) above, setting A =
6 + z/¢"(0),
Py{w,, > 2} < exp{—ny[(y(8) +2)(A = 8) = ($(A) = ¥(0))]} = -0

uniformly in 6 € R, and similarly Py{w,, < —2} > 5_, 0.
Therefore, inserting n, instead of n in (10), it follows that

inf inf P){L(n,, F)=B e
Feg[la,b]oglRB o{ (ng, F) }—’B 0

which is equivalent to the statement of. Lemma 6. O

LEMMA 7.

sup sup Pp{T(B,F) <my} = 5_ 0.
FeS[a,b] Ry

PROOF. Let T =T(B,F) and denote S,= nX,. Following the proof of
Lemma 3 of Pollak and Siegmund (1975), for any y > 0,

BT < mg) < B(S,, — ¥'(0)my = y[y"(8)m,] "}

+ exp0S,, — myy(6)} dP,
(11) (T<mg, Sy =4/(O)mg < Y47 (8)myT2) {05, = mob(0)} P,

< R){Sma - (0)m, > y[\P"(a)mo]lﬂ}

+exp{I(8)m, + 0y [47(0)my]" ) Po{T < my).

Since P{T < my} < P{T < ®} < 1/B [cf. Robbins (1970)], for y =
(mg)*/%/4"'(8), the second term on the far right side of (11) is less than
exp{ —(log B)'/?} when B is large enough, for all § € R . Also for large enough
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B, for the same value of y, for all § € Ry
Py{(S,,, = ¥(0)my = y[4"(8)my] )
< B{X,,, - ¥/(0) = (mp)""7")

< exp{~ 1(my)"®} > 5.0,

where the last inequality follows from (7) above and the convergence is uniform
in 6 € [a, b] — {0}. This completes the proof of Lemma 7. O

Proor oF THEOREM 1. Let a, < b, < 0 < a, < b, be interior points of

and denote T =[a,, b;]VU [a,, b,]. Suppose first that the support of F is
contained in I'. By virtue of (4) and the definition of T

J, Evexp{ ~[log L(T, F) - log B]} dF(#) < BR(T < o)
a2
Sj; Egexp{ —[log L(T, F) — log B]} dF(6) + F{Aggmrlement},

Letting Z(A) denote the indicator function of the set A, define
o0
o(6) = 'Eoexp{ ~[log L(7, F) ~ log B]} — [“exp(~x) dHo(x)‘E(ﬂ €A,

Lemmas 5, 6, and 7 ensure that the considerations of the proof of Theorem 1 of
Lai and Siegmund (1977) carry through for § € A, so that ¢(8) = 5_, 0. Hence
[r¢(8)dF(8) - 5_, 0, which implies

‘/A Ejexp{ —[log L(T, F) — log B]} dF(9)

(13)

et 0]
Clearly
(14) /ﬂfowexp{—x} dH,(x) dF(8) — /A _[)wexp{—x} ng(x)dF(O)‘

< F{ Acgmplement} .

Since § is arbitrary, (12), (13), and (14) in conjunction with Lemma 1 account
for Theorem 1 for F whose support is contained in T'.

For general F, suppose first that — oo = inf{x|x € @} and sup{x|x € @} = o0.
Let y> 0 and choose —0 <a, <b, <0 <a,<b, <o such that F(I') >
(1 — y) where T =[a,, b,]U [a,, b,]. Let B* = B/F(T'} and let dF¥*(x) =
dF(x)/F{T} for x € T; dF*x) =0 otherwise. Clearly {T(B,F) < o0} 2
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(T(B*, F*) < 0}. Since F* € S[a,, b,]
limint BP{T(B, F) < 0} > liminf BR(T(B*, F*) < 0}
— 0 —> 00

\

v

[ [ exo(~x) dHy(x) dF(6)(1 - ).
On the other hand, from (4) it follows that

BP{T(B,F) < »)} < freXp{— [log L(T, F) — log B] dF(6) + v
and so in a manner similar to the proof for ' € S[a, b] it follows that

limsup BE,{T(B, F) < ) < [ [ exp{—x) dH,(x) dF(8) + v.
B— TvYo
Decreasing y towards zero—i.e., increasing b, to zero and b, to oo, and
decreasing a, to — oo and a, to 0—concludes the proof.

If inf(x|x € Q) > — o0 or sup{x|x € ) < o0, a similar proof is valid. The
details are omitted. O

3. Uniform convergence. We will continue to use the notation of the
previous sections. The distribution of X is said to be strongly nonlattice [Stone
(1965)] if liminf, _, . |E exp{itX} — 1| > 0.

THEOREM 2. Suppose that the P,-distribution of X, is strongly nonlattice for
ally € Q. Let a < b be interior points of Q. Then

BP{T(B, F) < ») -»B;w‘/;bj;)wexp{—x} dH,(x) dF()
uniformly in F € S[a, b].

The proof breaks down into two parts: for § € R 5, the proof is similar to that
of Theorem 1, with the strongly nonlattice property ensuring uniform conver-
gence. For § € Ay — R, the proof shows that 6.X, — ¢(8) is stochastically small
enough to ensure that any “overshoot” is negligible. The details are spelled out in
the following lemmas.

LEmMmA 8. If X is strongly nonlattice then so is cX + d for any ¢ # 0,
—o0 <d < c0.

ProoF. It suffices to show that if X is not strongly nonlattice, then neither is
cX + d. Without loss of generality, let ¢ = 1.

Suppose there exists a sequence {£,}%,, |¢;| = ;_ ,, o such that Ee"* — . 1.
Then e'%* — ,_, 1 in probability. Therefore, for any integer &, e*4* — ;| 1in
probability, and this convergence is uniform for any finite set of integers
k=1,...,m.



MIXTURE TYPE POWER ONE TESTS 1023

.....

for any large enough j, there exists k; € (1,..., m} such that

lEeik,tj(x+d) -1] = I(Eeikjt,x -1) + (eikjtjd -1) + (Eeik!tlx _ 1)(eik,t,d _ 1)‘
<27+ 7

Letting n — 0, it follows that X + d is not strongly nonlattice. O

LEmMMA 9. Let Y, Y,,... be strongly nonlattice iid random variables with
EY, >0, P(Y,=0) <1. Let

V= min{n

n \%
ZY;'>O}’ Z=3Y.

1=1 A

i=1

Then Z is strongly nonlattice.

Proor. The lemma is trivial if P(Y, > 0) = 1. Consider the case that
P(Y, > 0) < 1. One must show that liminf, , . |Ee*” — 1| > 0. Suppose this were
not the case, but that there exists a sequence {¢;}72,, |{;| > ,;_ 0 such that
Ee'” - ;_ 1. Then

(15) e -, 1

in probability. Since Ee'v? = EE(e'%?|Y;), it follows that on {Y; > 0} (on which
Z=1Y)

(16) P(e" >, 1Y, >0) = 1.

Let u* = sup{x|P(Y; < x) <1). Clearly, u* > 0. Let U, = (—u*0]. If
u* < oo, let U, = (—ku*, —(k — Du*], k=1,2,....
Suppose Y, € U,. Then P(V=%k +1,Y,>0,...,Y,,, > 0]Y) > 0. On this
event
k+1

(17) eit? = ¢itYi T eits¥n.
m=2
From (16) it follows that

k+1
P I'[2ei'JYm—>jw1|Yl,V= k+1,Y,>0,...,Y,,,>0| =1
=

a.s. on Y; € U,. From (15) and (17) it therefore follows that
Ple™ >, 1Y, € U,) = 1.

J— oo
Therefore P(e’s™ -, 1)=1 and so Ee's" -, 1, contradicting the as-
sumption that Y, is strongly nonlattice. O

LemMMA 10. Let S?=6Y" X, — ny(0), let == (8, A) = min{n|S¢ > A}
and let Hy be the Py limiting distribution of S® — A as A - . Then the
convergence in Py-distribution of S° — A is uniform in 6 € [a, b] — {0}.
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Proor. Let
Y, = 60X, - y(9),

n
V,=0, Vk=min{n|n>Vk_1, Y YL>0}, k=1,2,...,

1=V, _;+1

and

Vi
Z,= Y Y, k=12,...
i=V_,+1
By Lemmas 8 and 9, the Pj-distribution of Z,, is strongly nonlattice.
Let G, denote the renewal function defined by Gy(x) = =2_,G§™(x) where
G4™ is the distribution of L}_,Z,. By Theorem (ii) of Stone (1965), there exists
r > 0 (r = r(0)) such that

(18) Gylx) = x/py + 1o/ (27) + Y(x),
where p, = E,Z,, p, = E,Z% and
(19) Yy (x)exp{rx} - . 0.

Let 0 < v. A check of Stone’s (1965) proof reveals that there exists a constant
r > 0 independent of 6 € [a, b] — [—7, v] such that the convergence in (19) is
uniform in 8 € [a, b] — [, v]. Now

00 n—1 n
Py(S’ - A > x) ZP,,(ZZl<A, ZZL>A+x)

(20) _ ¥ L= 6§74 + x - )] G (as)
- fo“‘[1 ~ GIP(A + x — 5)]G,(ds).
Note that
foA[l ~ GP(A +x—s)] ds —>A_,w/:o[1 ~ GM(x +5)] ds
(21)

= [7[1- 6§(s)] ds
uniformly for x > 0, § € [a, b] — [—7, y]. Also, letting Y, be as in (19)
[ = G°(A + x - 5)]%,(ds)

0

=[1 - G(A +x—8)]Y(s)]s + fOAYa(s)G;“(A +x— ds)

@2 L[ - 6)]Y(4) - [1 - G4 + )] %,(0)

—ﬁnm—www+@)

0
uniformly for x > 0, § € [a, b] — [~¥, Y]. Combining (18) and (20) together with

—)A—boo
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(21) and (22) proves that the convergence of the P,-distribution of S! — A to H,
is uniform in € [a, b] — [—7, ¥].

Now suppose 8 € [—vy,y] — {0}. By Theorem 3 of Lorden (1970), for any
A=>0,

Ey(S! — A)’ < SE{[6X, — v(8)] " }'/I(8) < 20°E,X{/1(8) — 4_,0.
Hence, S — A - ,_,0 in P,probability, uniformly in A > 0, and thus also
Hy,-,_, 6(0). Therefore, if 7 > 0, there exists y > 0 such that the Lévy distance
between H, and the P,-distribution of S’ — A is bounded by 7, uniformly for
A >0, 6 €[—v,v] - {0}. By the above, there exists A, such that if A > A4,
the Lévy distance between H, and the P,-distribution of S’ — A is bounded by 7
uniformly for 6 € [a, b] — {0}. Since 7 is arbitrary, the proof of Lemma 10 is
complete. O

LEMMA 11.
sup sup P{T(B,F)<(1-p)ly} =50
FeS[a, b] 0€(a, b]- {0}

ProorF. The proof is analogous to the proof of Lemma 7, replacing m,
by (1 - p)l, and y by p[I(0)log B]'/2/[2|0)(¢"(8))/?]. The second term
on the right side of (11) is less than exp{— jplog B}. There exists a con-
stant ¢, > 0 such that the first term on the right side of (11) is less than
Py{X1_py, — ¥'(0) > c,|0]}. By virtue of (6), there exists a constant ¢, > 0 such
that this probability is uniformly less than

exp{ -(1- 9)100202} = exp{—cz(l - P)[BZ/I(B)]IOgB} = B-wl
uniformly for 6 € [a, b] — {0}. O

LEMMA 12. Let

1 \2/4-3B

Then

sup sup P{T(B,F)>n*} -, 0.
FeS[a,b]l 0€Ayz—Ry

PrOOF. Let w, = X, — ¢/(#). For large enough B, for § € Az — Ry
Ln F) = [7 ey 3 X, = ng()) ()
0—(1/2)¢j i=1
n 0+(1/2e} ,
= enl® [T exp(n[(y - 0)(0)
0—(1/2)ef
—[¥(3) = ¥(0)] + yw,]) dF ()

n( s;)2) e~ 20llenln §ek

0+(1/2)e5

$(8)

> e""a)exp( -

> e IO =0% /D= 200llw,ln gk
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Since |0] > (n*)~ @ ~38/2 it follows that n*§2 > (n*)?%; and, since also I, < n* /7,
it follows that &} > (n*)#~1/2 Therefore, for large enough B (for § € Az — Rj)
L(n*, F) > dexp(n*[162 - 2/0]|w,.| — [ — B](log n*)/n*|)
> 8exp(02n*[§ - 2|w,+/10] — [+ — B](log n*)/(n*)w]).

Following the notation and proof of Lemma 2, if |X,. — ¢/(8)| < c¢(n*)#~1/2,
then

2"";;*'/'0' < 2c(n*)B—(1/2)+(1—3B)/2 _ 2c(n*)_3/2
so that (for large enough B)
L(n*, F) > exp{0°n*/6} > B.
Lemma 12 now follows from the fact that by (7)
sup P,,{LY,I* R AC)ES c(n*)B_l/z} = v ,0.0

0eAy—- Ry

LEMMA 13. Let n* be as in Lemma 12. Denote 6% = |6| + [(1 — p)Il,]2A~1/2,
Let x > 0. Then

sup sup P,,{. max 0% X, > x} - 5.0
FeS(a,b]l6e€Apy—R, ‘i=1,...,n"

PrOOF. Let (21) > 0 be in the interior of Q. For all § € Ay — Ry, when B is
large enough

=1-[1- Py{exp{nX,} > exp{nx/ﬁ#}]"*
<1- [1 - Ejexp{nX,}/exp{nx/0%}] "
<1-[1- exp{y(2n)}/exp{nx/0%}]"
- B—»ooO‘

A similar analysis for Pj{min;_,  ,.0*X; < —x} completes the proof of

Lemma 13. O

.....

PROOF OF THEOREM 2. By virtue of (1) and the definition of T

fA Egexp{ —[log L(T, F) — log B]} dF(6) < BP{T < o)}

(23)
< [, Evexp{~[log L(T, F)  log B]} dF(9) + F{agmsere=).

Lemmas 5, 6, 7, and 10 ensure that the considerations of the proof of Theorem 1
of Lai and Siegmund (1977) carry through uniformly for § € Ry, F € S[a, b}, so
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that

sup
FeS[a,b]

/;? Egexp{ —[log L(T, F) — log B] } dF(8)
(24) ’
__/R fo exp{ —x} dH,(x) dF(a)‘ - 5..0.

Let y > 0. By (24) there exists B, such that if B > B,

sup fEaexp{—[logL(T F) —log B]} dF(6)

FeS[a,b]

(25)
<v/4.

_fR foooexp{—x}ng(x)dF(g)

Case I. If F{Ap— Ry} < v/8, then it clearly follows from (25) that if
B > B,

— log B]} dF(6)

(26)
<v/2.

- [ [Texp(~x) dy(x) dF(0)

Case II. If F(Az— Rg} > v/8, let 6% be as in Lemma 13. By virtue of
Lemma 11 and Lemma 2, if 5 > 0, then

log L(T, F) — log [**" (T, y)dF(y)’ >n}
0—(0% —|0)

sup sup Po{
FeS[a,b] 0€Ayz—Ry

0.

“ Bowx

Clearly

[ OLT, y) dF(y) < exp (0% X,1) B
0—(6% —10)

Lemmas 12 and 13 therefore imply that log L(T, F) —log B - 50 in
Py-probability uniformly for § € Az — R . Since Hy — 4_, (8,5, (see the proof of
Lemma 10), it follows that there exists B, such that if B > B,, then

f ~ Eyexp{~[log L(T, F) — log B]} dF(0)

AB RB

_fA . f0°°exp{—x} dH,(x) dF(0)| < v/4,

B—
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so that by (25) if B > max(B,, B,), then

fA Eyexp{ — [log L(T, F) — log B]} dF(6)

(27)
__/ fwexP{ —x}dH,dF(8)| < v/2.
ApJ0
Clearly
(28) fA fowexp{ —x} dH,(x) dF(6)

< F{ Acgmplement} .

_fb/(;ooexp{—x}dHo(x)dF(ﬂ)
By virtue of Lemma 1, § can be chosen so that
(29) F{ Acgmplement} <y /4’

Now (23), (25), (26)/(27), (28), and (29) imply that there exists B; such that if
B > B, then

b poo
sup b]lBPO{T< oo}—fafo exp{ —x} dH,(x) dF(6)| < .

FeS[a,

Since vy is arbitrary, this completes the proof of Theorem 2. O

4. Remarks. The set {§|6X, — {/(8) has a lattice P;-distribution} is at most
countable [Woodroofe (1982), Section 6.2], so that the restriction in Theorem 1 is
not prohibitive. If F gives positive probability to a value 6 for which X, — ¢(8)
has a lattice P,-distribution, then it can be shown that

n
log L(n,F)=0) X, — ny(0) + log F{8} + 0,(1),
i=1
where o,(1) — , _, ., 0 in probability. Therefore, Theorem 1 will not hold as is; the
lattice property is not asymptotically negligible.

The strongly nonlattice property is utilized to attain uniformity in the
convergence of the distribution of S? — A (Lemma 10). If other means can be
found to yield uniformity—such as regarding probability measures F whose
support is a finite set of points—then the requirement of the strongly nonlattice
property may be relaxed.
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