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NONPARAMETRIC BAYESIAN REGRESSION

By DANIEL BARRY

University College, Cork

It is desired to estimate a real valued function F on the unit square
having observed F with error at N points in the square. F' is assumed to be
drawn from a particular Gaussian process and measured with independent
Gaussian errors. The proposed estimate is the Bayes estimate of F given the
data. The roughness penalty corresponding to the prior is derived and it is
shown how the Bayesian technique can be regarded as a generalisation of
variance components analysis. The proposed estimate is shown to be con-
sistent in the sense that the expected squared error averaged over the data
points converges to zero as N — co. Upper bounds on the order of magnitude
of the expected average squared error are calculated. The proposed technique
is compared with existing spline techniques in a simulation study. Generalisa-
tions to higher dimensions are discussed.

1. Introduction and summary. Let (y,x,),i=1,2,..., N, satisfy
»= F(Xi) + €

where x, €[0,1] X [0,1] for each i, F is a fixed but unknown regression
function, and the errors {e,} are uncorrelated with mean zero and variance v.
This paper concerns estimation of F. The classic example of this situation is
where X = (X, X,) specifies coordinates on a plane and Y is a measure such as
height above sea level. Our aim is to use the data to construct a map.

Wahba (1978) considers the above problem when x, € [0,1], i = 1,2,..., N.
Later in Wahba (1979) she extended the technique to cover estimation in higher
dimensions. Here we consider another possible generalisation to two dimensions
of Wahba’s work and claim that it fits more satisfactorily into the Bayesian
formulation described in Wahba (1978).

Motivated by a decomposition often used in two-way analysis of variance we
can write

F(x,,x5) = p+ a(x;) + B(x,) + v(x,, x5),

where

,u=f01f01F(u,v)dudv,

a(x,) =f01F(x1,v)dv _—

B(xz) = ['Flu, ;) du — p,
v(x), x5) = Flxy, x5) — alxy) = B(xy) — .
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A prior for F is constructed by putting independent priors on p, a, 8, and vy as
follows:

(i) b~ N(O, 0p)-
(i) a(x,) ~ Z\(x,) — [oZ,(u) du where Z, is a Brownian motion with vari-
ance v;.
(ifl) B(xy) ~ Zy(xy) — [9Zy(u) du where Z, is a Brownian motion with vari-
ance v,.
(iv) y(x,,%5) ~ Z(x1,%5) — [oZ(x,u)du — [¢Z(u,x5)du + [4[eZ(u, v)dudo,
where Z is a Brownian sheet with variance v,.

To complete the specification of the probability model required for a Bayesian
analysis we assume (v) given F, the data {y,} are independent with

~ N[F(x,),v], i=12,...,N.

The proposed estimate of F is then the limit of the Bayes estimate of F as
vy, — 00, i.e.,

ﬁ(xl’x2) = hm Eu(,{F(xl’x2)lyl, Yoseees yN}’

where E, is expectation w1th respect to the posterior density resulting from the
probablhty model defined in (i) to (v) above.

In Section 2 we indicate how the above prior came about as a generalisation of
the one-dimensional priors described in Wahba (1978). Section 3 demonstrates
that the suggested Bayesian analysis corresponds to choosing F' to minimise

N
Y (5 - F(x,)" + P(F),

where

P(F) = clfol[folFl(xl, ) dvrdxl + czj;l[follf’z(u,xz) durdx2

+cl2/:f01F12(u, o)2 dudv,

F,, F, are partial derivatives, F, is the second-order mixed partial derivative,
and ¢, = v/v,, ¢y = v/vz, ¢,3 = 0/0,,. The possibility of regarding the technique
as a generalisation of variance components analysis is examined in Section 4.

Asymptotic properties are considered in Sections 5 and 6. These properties
depend only on the assumption that the errors are uncorrelated with mean zero
and constant variance. The symbol E will be used throughout to denote expecta-
tion with respect to these assumptions. Thus the expectations have a frequentist
interpretation since they can be interpreted without reference to the prior; from
a Bayesian viewpoint they are expectations conditional on F. In Section 5 we
prove:

THEOREM. Define
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Then, under certain smoothness assumptions on F,
12 v, v, vy

A 1 v
— —N=+—+—=+—].
ER(F,F)sNP(F)+(4)[N+U+D S

Hence ER(F, F)— 0 as N —» oo provided

v, >0, Nv,—> o, v,—0, Nv,— o0, v,,—>0, Nov,— 0.
In Section 6 we consider data on a grid and prove:

THEOREM. Suppose we have N = mn observations on a grid
{(xy,,%5;):1<i<m,1<j<n}.

Then, under certain smoothness assumptions on F,
N 1 B,(v, + v 172
ER(F,F) < - P(F) + o[(—l(—l;—‘i)) ]

0[( By(v, + v,)

1/2
m ) ] * O[(BIB2UI2)1/210g(BlB2012)]’

where B, = max(x,; — x;;_,), By = max(x,; — x5,_1).

This theorem provides more precise rates of convergence in the grid case. The
choice of values for c,, c,, and c;, in a particular application is difficult and is
typical of all nonparametric estimation techniques. In the simulation study
described in this paper Wahba’s method of generalised cross validation [see
Craven and Wahba (1979)] was used to choose values for c¢,, ¢,, and cj,. It
remains to be shown that the values so obtained have the orders of magnitude
suggested by the asymptotic calculations.

Wahba’s two-dimensional regression technique is described in Section 7 and is
compared with the Bayesian technique in a simulation study reported in Section
8. Finally, generalisations of the Bayesian technique to higher dimensions are
described in Section 9.

2. The Bayes estimate. Wahba (1978) considers the problem of estimating
a regression function F: [0,1] — R given data (x,, 3,), i = 1,2,..., N, with
yl = F(xl) + el’
where {e,} are iid N(0, v). A prior for F is constructed by writing
F(x) = p + a(x),
where p = F(0), a(x) = F(x) — F(0) and then putting independent priors on p
and a as follows:

(i) p ~ N, v).
(ii) a(x) ~ Z(x) where Z is a Brownian motion with variance v,, i.e., Z is a
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mean-zero Gaussian process with
Cov[Z(x), Z(y)] = vymin(x, y).
The estimator F is defined by
F(x) = lim E,{F(x)ly, %, %),

where E, is expectation with respect to the posterior density generated by the
prior and the normality assumptions on the errors {e,}. Wahba shows that this
procedure is equivalent to choosing F absolutely continuous to minimise

L (3= Fx))’ + e F(x)' as,

where ¢ = v/v,. She further describes the equivalence between roughness penal-
ties of the form [JF™(x)?dx and corresponding Bayesian priors which for
m > 1 are integrated Wiener processes [see Shepp (1966)]. Here we generalise the
m =1 prior to the situation where we have data in two dimensions and follow
Wahba in defining the estimator.

One possible generalisation of Brownian motion to two dimensions is called a
Brownian sheet. This is a Gaussian process Z indexed by {(x,, x,): x; > 0,
x, > 0} and satisfying

EZ(x,,x,) =0,
COV[Z(xl’ x3), Z( yz)] = min(x,, y,)min(x,, ¥,).

See Zimmerman (1972).
The one-dimensional prior was based on the decomposition

F(x) = F(0) + (F(x) — F(0))

with a Brownian motion prior on the term F(x) — F(0). Consider a similar
decomposition here,

F(xl’ x2) = F(O’O) + (F(xl’x2) - F(O’O))’

with a Brownian sheet prior on F(x,, x,) — F(0,0). This is not satisfactory since

with probability one a Brownian sheet is constant along the lines x;, = 0 and

xo, = 0. We do not want to impose such conditions on our estimator.
Alternatively we might consider the following four-way decomposition:

F(xl’x2) = F(O’O) + [F(xl’o) - F(O’O)] + [F(O’ x2) - F(O’O)]
+[F(x,, x5) + F(0,0) — F(x,,0) — F(0, x,)].

We could then put independent priors on each part: F(0,0) ~ N(0, v,), Brownian
motions on [ F(x,,0) — F(0,0)] and [ F(0, x,) — F(0,0)] and a Brownian sheet on
(F(xy, x5) + F(0,0) — F(x,,0) — F(0, x,)). The problem with this approach
however is that it imposes different smoothness conditions on the function values
along the axes through zero.

This can be seen by applying the argument to be given in Section 3 to this
Bayesian model to show that the Bayes estimate in this case corresponds to the
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use of a roughness penalty of the form
1 1 101
By [ Fi(x,0) dx + By [ Fo(0, ) dy + B [ [ Fro(x, ¥)" dyax,
0 0 0 Y0

where F|, F, are partial derivatives, F|, is the second-order mixed partial
derivative, and B,, B,, B,, are constants depending on the error variance v and
the variances associated with the elements of the prior specification. There is
rarely a prior justification for this.

To avoid this difficulty we propose the following decomposition:

F(xy, %,) = p+ alx)) + Bxy) + v(xy, x5),

where

p= f f F(u,v)dudv all integrals have range [0,1],
a(x,) =fF(x1,v) dv—ffF(u,v) dudv,
B(x,) =fF(u,x2)du—ffF(u,v)dudv,

y(xq, x,) = F(x,, x,) — fF(xl, v)dv — fF(u, x,) du + ffF(u, v) dudv.
We proceed to put independent priors on p, a, 8, and v as follows:

1. p ~ N(O, vy).
2. a(x)) ~ Z(x,) — [Z,(u)du, where Z,(u) is Brownian motion with variance

0.
3. B(xy) ~ Zy(xy) — [Zy(v) dv, where Z,(v) is Brownian motion with variance
020
4. ¥(xy, x9) ~ Z(xy, X3) — [Z(u, x,)du — [Z(x,, v) dv + [[Z(u, v) dudv, where
Z(u, v) is a Brownian sheet with variance v,,.
The following results may be easily shown:
L. Cov(a(x), ( y)) = vy[min(x, y) —x —y + (x* + y*)/2 + }]
= v,h(x, y), say.
. Cov(B(x), B(y)) = vah(x, ¥).
3. Cov(y(xy, x4), Y( 215 o)) = 012h(xy, ¥)R(x4, Y5).
In summary, therefore, the prior specification is the same as the distribution of
the process

[N

B+ R(xy, xy),
where u ~ N(0, v,), and R(u, v) is a mean zero Gaussian process with
Cov(R(x,, x5), R(y1, %)) = 0,h(x), 31) + v.h(x,, 32)
+oh(xy, y1)h(x,, 3,)
= Q(x,y), say.
We now assume that we have observations (x,, 3,), i = 1,2,..., N, with
x, = (x,,,%,,) €[0,1] x [0,1]
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and
yl = F(Xl) + el

with {e;} iid N(0, v). The proposed estimator is defined by
F(x,,x,) = Dlim Eu(,{F(xU xz)lyv Yareees yN} ’
0> o0

where E, is expectation with respect to the posterior density generated by the
above prior and the normality assumptions on the error terms.

3. The roughness penalty. For a function F: [0,1] X [0,1] = R, let F;
denote the partial derivative with respect to x,, F, the partial derivative with
respect to x,, and F,, the second-order mixed partial derivative.

Let H consist of all functions F: [0,1] X [0,1] —» R satisfying the following
conditions:

(i) F is absolutely continuous.

(ii) F, is an absolutely continuous function of x, for each x; in [0, 1].
(iii) F, is an absolutely continuous function of x, for each x, in [0,1].
(iv) F,, € L?[0,1]%, i.e,, [ifoF2(u,v)dudv < .

Then we have the following theorem.

THEOREM 3.1. The Bayes estimate generated by the prior of Section 2 is the
unique element in H minimising
N

(3.1) ¥ (5 - F(x,))* + P(F),

i=1

where
P(F) = CILI[LIFl(xI, v)dv]2 dx, + czfol[j:Fz(u,xz) du]2 dx,y
+c12LILIFl2(u, 0)® dudp
with ¢, = v/v,, ¢y = v/v,, and ¢;5 = V/V;,.
Proor. For F,G € H define
(F,G) = [//F(u,o)dudu][/fG(u,o)dudo]
+a1/[fFl(xl, u) du”fGl(xl, ) dv] dx,
+a2f[fEZ(u,x2) duH/G2(v,x2) dv] dx,

+a12ffFl2(u, 0)Go(u, v) dudy,

where a, = 1/v,, ay, = 1/v,, and a5, = 1/v,.
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It can be shown that { -, -) is an inner product for H. The only difficulty is in
proving that (F, F) = 0 = F = 0. Now

(F,Fy=0= [ [F3=0
=>F,=0 a.e.
= F is a function of x, alone and F, is a function of x, alone.
Also

2
(F,F) =O=>f[fF1(xl,v)dv] de,=0, F, =0 ae.
Similarly (F, F') = 0 = F, = 0 a.e. and hence (F, F) = 0 = F is constant. But

<F,F>=o=>ij=o

=>F=0 a.e.

Since F is absolutely continuous we have F = 0. For x,y € [0,1] X [0,1] define

do(x) =1,
Q(x,y) = v,h(xy, y1) + vah(%5, %) + vih(xy, Y1) (%5, 32),
where
h(x, y) = min(x, y) = (2 + ) + §(2* + %) + 3.

Then

(1) ¢, € H; Q(x,°) € H forall x,

(2) (¢9,Q(x,+)) =0 forallx,

(3) (F,¢o+ Q(x,+)) = F(x) forall Fe H.

(3) follows easily upon noting that
flh(u, v)dvo=0 forallu
0

and that for any absolutely continuous function
1 d 1
[ () 5-hx, ) dy = v(x) = [$(3) dy.
0 y 0

It follows from (1)—(3) that
(Q(y,+), (%, 7)) = Q(y,%).

For any function F € H we can write

N

F(x) = apg(x) + L b,Q(x,,%) + e(x),

i=1

where
<¢0, e> =0,
(Q(x,,-),e>=0, i=1,2,..., N.
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Hence
F(xz) = <F: ¢0 + Q(xi7 .)>
N
=a+ ) bQ(x;,x;).
j=1
Also

P(F) = o(F,F) — v[/lle(u,v)dudvr
=0 ) bbRA(x,,x;) + v{e,e).

Thus to minimise (3.1) we choose e = 0 and a,b = (b,, by, ..., by) to minimise
(y — al —bQ)'(y — al — bQ) + vb@b’,
where 1 is a vector of ones
= (Q(xi,xj)), i,j=1,2,...,N.

As in Lemma 5.1 of Kimeldorf and Wahba (1971) the minimising values are given
by

a=(1'M"1) My,
b=MI-10M™M) VM ]y,
where M = @ + ol. That this formula also gives the Bayes estimate follows as in
Theorem 1 of Wahba (1978). O

NoTtEes. 1. The form of the roughness penalty indicates how scale changes in
the X-variables can be taken into account by adjusting the smoothing parame-
ters, e.g., if we rescale X; to W, = a + Bx, then adjusting ¢, to ¢,/B8 and ¢, to
¢12/B leaves the roughness penalty unchanged.

2. Let F' = (F(x,), F(x,),... F(xy)). Then 3 a matrix A with

F= Ay
and A is given by
A=1UM) UM+ QM T - 1(vM ) MY
= QM '+ oM U(YM V)T 'UM Y,
where

1=(1,1,...,1Y, Nx1,
M=Q + vl N x N,
= (Q(x,,xj)), N X N.

Evaluation of F therefore involves inverting the N X N matrix M.
3. The completeness of H is left open; the method of proof used in Wahba
(1978) does not depend on it.
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4. Data on a grid in two dimensions. In this section we derive a represen-
tation for the estimator F when observations are taken on a grid in two

dimensions.

THEOREM 4.1. Suppose we have N = mn observations on a grid
{(x25;): 1 <i<m,1<j<n},

where

0<xy <Xpp< - <x, =<1,
0<xg <Xgp< +++ <Xy, <1
Let F,; = F(x,,, x,;) and define
F=(Fy, Fopeoos By Froys Fpyoo oy Fragy ooy Fipy By oo )
and define y similarly. Let
a, = (3(xy +23), 3 (05 — x11), -, 1T — 5%y, + Xim-1))s
by = (3(x5 + %3), 5 (%55 — %a1), 0,1 = 5(%p, + x2n—1)),’

For 1 < i < m define
n
«F, i) = ) a,;F,;.
j=1
For 1 < j < n define
B(F, j) = Z bqur
=1

Then the Bayes estimate ¥ is chosen to minimise

y-Fy-F) +d Y L) — ol i — 1)

1=2

i, 3 [B(F, j) — B(F, j — 1)]?

Jj=2

Xy — X141

Xoj — Xoj-1

2
+d f: i (Fij+Fi—1j—1_F’zj—1 _E—lj)
12,=2 j=2 (x1i‘xu—1)(x2j_ x2j—1)

b

where
d, = v/(v, + 012b,1Q2b1)’
dy = v/(vy + v,,8/Q,8,),

dig = v/0y9,



NONPARAMETRIC BAYESIAN REGRESSION 943

where
Q= (h(xli’xlj))7 i, j=1,2,...,m,
Q2=(h(x2nx2j)), i,j=1,2,...,n,
h(x, y) = min(x, y) = (2 +y) + 3(x® +5°) + 5.
ProoF. For j=2,3,...,m let a; be a m X 1 vector of zeroes with 1 in the

Jth place and —1 in the (7 — 1)st place. For j = 2,3,..., n define n X 1 vectors
b; similarly. Define

vV, = (a, bj)'F.
For the prior as specified in Section 2 it can be checked that

@) Cov[V;;,V, ]=0if i#ror j#s;
(i) Var{V},] > v,
(iii) Var[V;] = (xy; — 21;,_1)(vy + 01b1@5by), i > 2;
(iv) Var[V;] = (x5; — x5, 1)(vy + v,21@Q2,), J > 25
v) Var[Vij] = (xy; — X3 )(Xg; — Xg;_1)019, i, j=2
Using these facts we may rewrite the log posterior density and the result

follows upon noting that
V,=a(F,i) —a(F,i — 1),
Vi, =B(F,j) - B(F,j—-1),
V,=F;+F_,, ,—F_,,—F; a

The following corollary is easily shown.

COROLLARY 4.2. For the special case where
x,=(2i-1)/2m, Xy, =(27-1)/2n,

the estimate ¥ is chosen to minimise

V-Fy-F+ay L

=2 % T ¥

= = 2 2
n (F.—F . m n (F.+F_,. ,—F_,.—F,_
+d22 ( .J .J 1) +d122 Z ( J 1;-1 1j J 1)
=2 %¥2; ~ Xg2;1 i=2 j=2 (x,, — xli—l)(x2j - x2j—1)

This demonstrates how the two-dimensional technique may be regarded as a
form of analysis of variance incorporating smoothness assumptions on the un-
derlying regression process or alternatively as generalised variance components
analysis.
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5. Asymptotics: the general case. Define
A 1 X 9
R(F’F) =_N- Z(F(xz) —F(xl)) .
1=1

Taking expectation with respect to the error distribution gives

R 1 v
ER(F,F)=—=F(I-A)’F + — 2
R(F, F) N (I-A)°F+ Ntrace(A ),
where F = (F(x,), F(x,),..., F(xy)) and A is the N X N matrix such that

= Ay.
THEOREM 5.1. For F € H we have that

N ¢ il 1 2
ER(F, F) SNI/O [fOFl(xl,u)do] dx,

+%Ll[/()1F'2(u,x2) durdvc2 + %/0

1

lelZ(u, v)? dudo
0

+ .
N ¢ ¢ cp
Proor. By Lemma 4.1 of Craven and Wahba (1979)
2
F/(I - A)’F < clfl[lel(xl, v) dv] dx,
ol
1

[ 1 2 1
+c2[) [LF2(u,x2)du] dx2+cl2f0j‘;Fl22(u,v)dudv.

Hence we need only consider bounding trace(A?). From the remarks after
Theorem 3.1 we have that

A=A,+E,
where
A= QM1 E=oM UM '/I'M™ 1
with
Q= (Q(x,x,), M=@Q+nl,
for
Q(x,y) = v,h(x,, 31) + vah(xy, 3) + vh(x1, 1) h(%4, 32),

where

h(x, y) = min(x, y) = (x +y) + 3(2° + %) + 5.
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For matrices A and B we write A < B to mean that the eigenvalues of A are
smaller than the corresponding eigenvalues of B. Clearly 0 < A, < I. We have
that

I-A=oM'-E
= oM VI - M VAVM V2 /UM 1} M1/,
Since M~ /211’"M /2 > 0 and tracel M~ /211'M~1/2/1’M 1] = 1 we have

O<M VUM V2/I'M 1 <1
=>]-A>0=>A<I=E<]I.

Hence
trace( A?) = tr(A2) + 2tr(A E) + tr(E?)
<tr(A2) +3
since rank(A E) < rank(E) = 1. Also
trace( A2) = tr[@M]?

~ 4v

(@] as( x )2 x

< tr——
4v x+v

1
< E[Nv1 + Nv, + Noy, |

as Q(x,y) < v, + v, + v;,. Hence the result. O

Hence ER(F; F) — 0 provided

(i) ¢; = o0, ¢y = 00, €}y = 0.
@) ¢;,/N = 0, ¢3/N = 0, ¢;5/N - 0.

Expressed in terms of the variances of the prior these requirements become

(i) v; =0, v, = 0, v;, = 0.
(ii)’ Nv, = oo, Nv, = 00, Nv;, — 0.

Hence as N increases the prior must be tighter [due to (i)’], but not too tight
[due to (ii)’].

6. Asymptotics: the grid case. In this section we bound ER(F, F) for
data on a grid in two dimensions

THEOREM 6.1. Suppose we have N = mn observations on a grid

{(xy,25;): 1 <i<m,1<j<n}.
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Thus, for F € H
. 1 B,/(v,+v 172
ER(F,F) < < P(F) + 0[(—1—(1,1—‘2)) ]

+0[( By(0, + 0y3)

1/2
f” ) } + O[(B1B12012)1/210g(BIB2012)]’

where

B, = max(x,; — x,,_,), B, = max(x,; — x5,_,),

and P(F) is as in Section 3.

ProoF. From Theorem 4.1 we have that
F= Ay,
where
A = [I+d,(G, xbb)) + dy(a,a; X Gy) + d1o(G, X Gy)] 7',
where G, = (g;,) is an m X m symmetric tri-diagonal matrix with
o= (X —x) "+ (-2, ), 2<i<m-1,
&u = (x,— xu)_l,
Emm = (X1 = X1pr)
o= —(x,—x,.)"", 2<i<m.

G, is a similarly defined n X n symmetric tri-diagonal matrix, a,,b,, d,, d,, d,,
are as in Theorem 4.1 and A X B denotes the Kronecker product of A and B
[see Bellman (1970)]. As in Section 5

n 1 ’ 2 v 2
ER(F, F) = ZF(I - A)'F + - ti(4?)
and
F(I- A)°F < P(F).
We proceed to bound tr(A?).

The following lemma will be proved later.

LeEMMA 6.2
A < [T+ 8,(H, X dy) + 8(J; X Hy) + 8,5(H, x Hy)] ™',
where
8, =d,/n’B,, 8, = dy/m?B,, 8, = d,3/B,B,.

J\(Jy) is an m X m(n X n) matrix of ones. H(H,) is an m X m(n X n) matrix
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with
h;= 2, 1=J, 1<i<m,
1, =], i=1,m,
-1, i=j+1 or j=i+1,
0, otherwise.
Noting that

(i) HyJ, = J\H,, Hyd, = J,H,,
(ii) the first eigenvalue of J(J;) is m(n) and the rest zeroes,
(iii) the eigenvalues of H, are

ar
2(1—cos(—)), r=0,1,...,m-—1,
m

and similarly for H,, we have that
tr(A%) <1+ 8, + S, + Sy,

where
m—1 1
Sl = ar 2?
r=1 [1 + 2n81(1 - cos(—))]
m
n—1 1
S, = ary\]2’
r=1 [1 + 2m82(1 - cos(—))]
n
and
m—1n-1 1

Sip = Z Z

r=1 s [1 + 4312(1 - cos(%r)(l B COS(%S))F

The terms S,, S,, and S,, can be bounded as follows:
Choose M > 0 such that

Mx? < 2(1 — cos(x)) for x in [0, 7 ].
Then

947
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=0|———5; | =0|mn ,
i (m8, )"* md, | |

m—-1n-—1 1
Smszz ar\2(/ ws\2]2
[1 N 812M2(;) (7)

Similarly,

< —m—nfﬂfﬂ dxdy

0’ (1 + 812M2x2y2)2

|
Q
R
S
—
Q
oQ
—_
—
]
~
—_—

B,B,\? BB,
=0|mn log .
dy, dy,
Since all the elements of a, are positive and the largest element of @, is less than
or equal to one we have

ajQa, < ajJa,
=1.
Hence 1/d, = O[v, + v,,]. Similarly, 1/d, = O[v, + v,,]. Hence the theorem
follows. O
ProorF oF LEMMA 6.2. (i) We show
a,a) > J,/m?.
Both a,a) and J, have only one nonzero eigenvalue and
tr(a, a)) = tr(a)a,)

= %(Zau)z

1
m
1

tr( ).
2 1
Similarly, b,b; > J,/n?

(i) G, = (1/B))H,. Let d, = (x, — x,,_,)" ", i =2,3,..., m. Then, for any
vector s = (S5, Sg5.-+5 8p)s

S'Gs = dy(sy — 31)2 + dy(s5 - 32)2 + oo +d, (s, - 3m—1)2

> (55— 8" + (s3— 85)* + -+ +(8, = 8.1)°] /By
= s'H;s/B,.
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Similarly, G, > (1/B,)H,. Hence the lemma follows. O

COROLLARY 6.3. If B, = O(1/m) and B, = O(1/n), then for
=R N3, =R,NV? and v,,=R;,N 3(logN)"~
where R,, R,, and R12 are constants, we have
ER(F, F) < O[ N-**(log N)*?|.
The above bound is much tighter than that obtained in Section 5.

2/3

7. Wahba’s technique. Wahba (1979) has considered the use of “thin plate”
splines to smooth surfaces in higher dimensions. In two dimensions the simplest
form of such splines involves choosing F' to minimise

(7.1) Z (yi - F(xli’ xzz))2 + cf_ f_ F121 + 2F122 + Fz%’

where F,; = 82F/¢9x 0x ;.
Wahba (1979) states that the solution F has a representation

ﬁ‘c(x) =d,+ dx, + dyx, + Z b,E(x,x;),
j=1

where

1
E(x,y) = g—Ix — y|*logix — y|
T
with
2 2
x — ylz (%, = 3)" + (x5 — 3)".

It is shown in Wahba and Wendelberger (1980) that the Bayesian procedure
corresponding to this technique is to assume that

= F(x,) + e, i=1,2,...,n
with {e;} iid N(0, v) and to put a prior on F which is the same as the stochastic
process
oy + ax; + ayx, + 0V2Z(x),
where
a=(ay,a,a,) ~N0O,0,I), vy,— o0,
v, =v/c,

and Z(x) is a mean zero Gaussian process with covariance function

3
Q(x,y) = E(x,y) - ¥ B(x)E(S,y)

Jj=1

3 3 3
- LRWESx) + X T REB(E(S,S)
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where S, S,, S; are chosen so that

3
> @;9i(S,) =0 fork=1,2,3,

Jj=1
=a;=0 forj=1,2,3

for any basis {¢,, ¢,, ¢} of the space of polynomials of total degree 1 or 0 and P,
is such that P(S,) = §,.

Two criticisms of this technique can be made. First, only one smoothing
parameter is used, suggesting that the function to be estimated is equally smooth
in all directions. This is rarely true. Second, the equivalent Bayesian formulation
involves the use of a complicated covariance function seemingly unrelated to that
used in 1-d. Wahba (1981) suggests a possible answer to the first criticism. In 2-d
her suggestion corresponds to a roughness penalty of the form

(7.2) c f FZ, +20F2, +0°F2,.
R

The technique of 2 was originally proposed to address the second criticism but
has resulted in a technique which also overcomes (at least theoretically) the first
criticism.

The roughness penalty (7.1) is invariant under rotation of the x, and x, axes;
the penalty (7.2) is not. Likewise the Bayesian technique of this paper is not
invariant under rotation of the axes.

The roughness penalty (7.1) is the closest to the Bayesian technique in the
sense that the infinitely smoothed estimate is the least-squares plane while for
the Bayesian technique the infinitely smoothed estimate is a constant. Wahba
(1979) considers roughness penalties involving higher derivatives leading to
higher-order “thin plate” splines. The roughness penalty involving derivatives of
order 3 is

(7.3) C[ Fiiy+ Fifa + 3Ffy + 3F,

where
7 °F
vk 9x, 0x; 9xy,

Barry (1983) describes models for incorporating stronger smoothness assumptions
in the Bayesian framework of this paper.

8. Simulation study. A simulation study was carried out to compare
Wahba’s techniques using roughness penalties (7.1) and (7.3) with the Bayesian
technique of Section 2. For each of four underlying regression functions data were
generated on the grid

(2, %5;): {1 £i<10,1 <j<10},
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where
x,, = (2i — 1) /20, xy,= (27— 1)/20,
by setting
Vi = Fxy, x45) + e,
where {e,;} are iid N(0, v). The four underlying regression functions used were:
F,: 6144(xy)°(1 — xy)’;
F,: 1.5sin(12x)sin(12 y);
Fy: (L(x) + 3L(y) + L(x)L(y))/8,

where
L(x) = 8, 0<x<0.25,
=2 — 8(x — 0.25), 0:25 <x < 0.5,
= 6(x — 0.5), 0.5 < x <0.75,

=15—6(x —0.75), 0.756 <x < 1.0;
F,: 1.5Z(x)Zy(y), where Z, and Z, are independent Brownian motions.

F,, F,, and F; each have maximum value 1.5. F] is slowly changing and infinitely
differentiable; F, changes quickly, but is also infinitely differentiable; F; is
continuous, but only piecewise differentiable, while F, is a sample path from a
stochastic process which has continuous, nowhere differentiable sample paths.
Three values for v were used: v = 0.01, 0.0625, and 0.25 (corresponding to
standard deviations of 0.1, 0.25, and 0.5, respectively).

For each combination of regression function and error variance v, 50 repe-
titions were carried out and the average mean squared error obtained using the
three techniques is recorded in Table 1. In all cases the smoothing parameters

TABLE 1
Average mean squared residual using (i) Bayesian technique,
(ii) Wahba [roughness penalty (7.1)], and (iii) Wahba [roughness penalty (7.3)]

function v = 0.01 v = 0.0625 v =025
F, 0.00654 0.0273 0.0725
0.00575 0.0195 0.0526
0.00390 0.0175 0.0553
F, 0.00886 0.0541 0.1629
0.00983 0.0627 0.1791
0.00914 0.0429 0.1252
F, 0.00336 0.0159 0.0495
0.00775 0.0239 0.0559
0.00605 0.0230 0.0568
F, 0.01034 0.0626 0.2140
0.01034 0.0648 0.2284

0.01034 0.0775 0.2865
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were chosen by generalised cross validation as described in Craven and Wahba
(1979).

The comparison is not clearcut. A general observation would be that the
Bayesian technique is best for rougher functions. For the smoothest function F,
Wahba’s techniques do far better than the Bayesian technique. However, as the
roughness of the underlying regression function increases the Bayesian technique
becomes more competitive and does best for F; and F,.

The comparison is a little clouded for v = 0.01. Here the Bayesian technique
does best for F, and all techniques are equivalent for F,—in fact they all opt to
do no smoothing at all.

The design of a simulation study to compare different smoothing techniques is
difficult since the choice of test functions seems crucial. The above study, using
four quite different functions, suggests that the Bayesian technique works well
when the underlying regression function has limited smoothness properties.
However, the decision as to which technique to use in a particular situation seems
very difficult and needs further study.

9. Regression in higher dimensions. The two-dimensional technique was
based on a decomposition of the regression function F into four parts analogous
to a decomposition widely used in the parameterisation of two-way analysis of
variance: overall mean, row effects, column effects, and interaction terms. Con-
tinuing the analogy into higher dimensions leads in a straightforward manner to
the appropriate generalisation of the two-dimensional case.

In three dimensions, for example, we use the decomposition

F(xy, x5, x5) = p + ay(x,) + ay(x,) + ag(x3) + ajp(xy, x4)

+a23(x2, xs) + 0‘13(-"71’ x3) + "‘123(-"71, Xy, X3),

ﬂ=f//F(u,v’w),

a(x) = [ [Flay, 0,w) = p

where

[a,, a; similarly],

ap(x,,%y) = [Flxy, %y,0) = [ [Flx,, 0,w)

—//F(u,xQ,w) +fffF(u,v,w)

[aqs, a5 similarly], and

a93( %1, X9, x3) = F(xy, x4, x3) —fF(xl,x2,w) - fF(“’xZaxs)
—fF(xl,u,x3) +ffF(xl,u,w) +/fF(u,x2,w)

+ffF(u,v,x3) —ffF(u,v,w),
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where all integrals are from 0 to 1. Appropriately adjusted Brownian sheet priors
can be placed on each term and Bayes theorem applied to get F.

The extension to higher dimensions is described in detail in Barry (1983) where
consistency results are also demonstrated. As the number of dimensions increases
the number of prior parameters increases and it may be necessary to include
higher-order interaction terms in the error term as is often done in multi-way
ANOVA.
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