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Professors Martin and Yohai are to be complimented for their topical,
thoughtful paper. In the paper they have emphasized population aspects of the
material. In my discussion I will emphasize the data side. The two sides are both
complementary and intersecting.

There is a circle of interrelated ideas: influence, sensitivity, deletion, resis-
tance, leverage, robustness, and jackknifing. Work appears to progress on all of
these fronts more or less simultaneously with algorithmic and computing ad-
vances often providing exogenous impetus. I will present a data analysis made
possible by some contemporary time series methodology and easy availability of
minicomputers.

The concern of Professors Martin and Yohai is to extend the concepts and
methods of “influence” to the time series case. They proceed by examining the
effects of contaminating the data, by studying for example gross-error sensitivity.
In the i.i.d. case an immediate way to study the influence of a possibly incorrect
data point is to delete it and to carry through the inference procedure for both
the full and depleted data sets. Because of the invariance of the structure under
permutations of the data, in the i.i.d. case ways forward are clear; however, as
Professors Martin and Yohai emphasize, the permutation invariance is not
generally present in the time series case. There is, however, a way to retain the
full time series structure and still do deletion /jackknife type studies.

A long time ago (Brillinger, 1966) I suggested that a way to develop jackknife
procedures for complex situations was to apply a missing-value technique. Briefly,
on deleting the observation one is to act as if the data then consist of what it is
but that that observation is missing. Luckily, nowadays we have many concep-
tual and methodological means for handling data with missing values. A way
forward for studying the influence of individual observations in a variety of time
series situations is now clear. In that connection it may be remarked that the
procedure is a form of sensitivity analysis. Namely one is studying the effect of
altering an observation to its “best” estimate based on the remaining data in
some sense.

Resulting from the work of Ansley and Kohn (1984), Harvey and McKenzie
(1984), Jones (1984), and Shumway (1984) there are a variety of methods to fit
finite parameter (ARMA) models to discrete time series data having some missing
values. In the calculations to be presented, the method of Jones (1980) was
employed. Figure 1 is a graph of the logarithm of the Mackenzie River series of
annual Canadian lynx trappings for the years 1821-1934. These data are studied,
and much discussed, in Campbell and Walker (1977) and Tong (1977) for
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example. Taking note of Tong’s fit of an ARMA(3, 3) model to this series, that
was the principal model that I worked with. The method of fit was maximum
likelihood, assuming the process to be Gaussian. Figure 2 gives the residuals
(difference between observed and predicted) for the ARMA(S,3). There are
indications of lack of fit (indeed Tong (1983) goes on to fit nonlinear models);
however, this model has sopped up a lot of the variation.

The ARMA(3,3) model was next fitted to the data, by maximizing the
likelihood, dropping out each of the 114 observations in turn. Six coefficients and

Residuals from ARMA(3,3)
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the innovation variance were estimated each time. (A program for fitting ARMA'’s
with missing data was run each time. It is clear that an algorithm could be
developed to reduce the computations involved, as is the situation in the i.i.d.
case.) The coefficient estimates obtained were highly correlated. Rather than
presenting six pictures of them, a principal component analysis of them was
carried out. Figure 3 provides an (index) plot of the first principal component
value versus the year of the deleted observation. A number of cases are seen to
stand out, i.e., be apparently influential. In part these cases seem to correspond to
“kinks” in the original series.

Professors Martin and Yohai have discussed bounding the influence of individ-
ual cases. This is a natural next step in the lynx data analysis, so I end by asking
the authors how they would recommend fitting an ARMA in a bounded influence
manner for the individual point case?
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This paper by Martin and Yohai will stimulate much future research. The
authors are to be congratulated for that and for the presentation of the paper,
which stresses statistical intuition and avoids technical detail, where possible.

The central point of their approach to the generalisation of the concept of
influence function to a time series setting is the explicit dependence of that
function on the arc along which the measure of the observed process approaches
that of the nominal process. This emphasis on a specific model for the contamina-
tion is necessary because of the great range of possibilities for contamination in a
time series setting. However, one can, consequently, ask how strongly the conclu-
sions with respect to robustness and relative performance drawn from this
influence function depend on the contamination model. The model (2.2) is very
general but the major part of the paper and the examples in Section 5, in
particular, deal only with 2} given by (2.4). Consider, for example

k—1
(1) Y=x;tmn, n; = Z Bjsi—j,
0

where the ¢; are i.i.d. with distribution (1 — p)d, + pH. Here the contamination
is generated by impulses which excite a linear system whose effect is imposed on
the nominal process. The model (1) is included in the general model (2.2) and
both (1) and (2.4) could generate similar patterns of outlier patches so that it
would be difficult to distinguish between them from the data. Of course it can be
hoped that conclusions from the influence function, based on (2.4), will not differ
substantially from those that would have been derived via (1), for example, since
essential aspects of the influence function, such as gross error sensitivities, are
essentially qualitative in nature and small numerical differences will be of no
consequence. However, basically different types of outlier, e.g., isolated outliers
compared to those occurring in patches, appear to lead to large differences, as



