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1. Introduction. Diaconis and Freedman (D & F) have made important and
interesting contributions to the problem of determining in which situations
nonparametric Bayes estimates do and do not work. Investigating when statisti-
cal principles and techniques break down is an important enterprise which is not
well enough appreciated. Thus, even though we often experience in life that
nature serves up distributions consistent with Murphy’s Law,? in applied re-
search, there is a tendency to believe that nature provides nice simplistic
distributions and models. Economists are starting to realize that this belief can
lead to large errors in prediction. In other fields, it may take longer to discover
similar problems.

We find it both surprising and interesting that inconsistency can occur when
the prior on the location parameter, the Dirichlet parameter in the law of the
error distribution, and the distribution sampled, are all “nice” and symmetric
about zero. D & F (1986a (hereafter I), Section 3) suggest using the “device of
imaginary results” or the “what if” method to deal with the inconsistency. This
procedure involves modifying the prior after computing the posterior for “imag-
inary data sequences.” In Section 2 below, we discuss the properties of a different
and much simpler (subjectively speaking) approach which amounts to computing
a posterior distribution based on partial information or to presmoothing before
computing the posterior. In Section 3 we show that this “partial posterior” idea
can be linked to partial likelihood.

But first we will focus on the following intriguing D & F statement:

Any of the classical estimators, such as the mean or the median will be
consistent in this situation, so the Bayes estimates do worse than available
frequentist procedures. (D& F I, Remark 4, Section 1. See also D&F
(1986b; hereafter II), Section 1.)

This statement refers to models where the “Bayes” procedure is given the job
of coping with the infinitely dimensional nuisance parameter F as well as location
while the “frequentist” procedure essentially only has to deal with location since
any nuisance parameter difficulties have been removed by assuming symmetry.
Thus we think that a fairer comparison would be the nonparametric Bayes
procedure versus the semiparametric frequentists procedure where the pair (6, F)
is estimated using semiparametric maximum likelihood techniques.

Rather than pursuing this last remark, we claim that the D & F results lead to
the conclusion that what is needed in the nonparametric framework are Bayes
procedures for location that are not distracted by the problem of dealing with an
infinitely dimensional nuisance parameter. Thus we propose using the posterior
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distribution of @ given the trimmed sample mean as the basis for Bayes proce-
dures for location. More generally, we can condition on any estimate T of
location. In a sense, this corresponds to focusing on location and smoothing to get
rid of distributional unpleasantness that distracts from the location problem
before computing the posterior. For instance, for the counterexample density A
(D&F I, Figure 1), X is nearly normal already for n = 12.

In the next section we discuss the consistency, asymptotic normality, and
efficiency of such procedures and find that they have high posterior efficiency.
Moreover, these procedures can be justified on pragmatic grounds. To paraphrase
C. Eisenhart (see Tukey, 1954) “the practical efficiency is the product of the
statistical efficiency of the technique and the probability that the technique will
ever be used.” Our proposed procedure is very simple: #(T|0) is approximately
normal; thus with a normal prior, £(6|T) will approximately be the usual
normal theory posterior. Moreover, £ (6|T) will inherit the robustness properties
of T.

2. Robust and consistent Bayes procedures. Let X, =0 + ¢,1 =
1,..., n, where ¢,,..., ¢, are i.i.d. with fixed distribution function F. Thus given
0, X, has distribution Fy(x) = F(x — ). Let § have bounded and continuous
prior density #(8). We suppose that 7T is a translation invariant estimate of 6,
ie, T(x + c) = T(x) + ¢, c € (— o0, ), and that T — 0 a.s. [ F]. Moreover, we
assume that £(Vn T|0) — 40, 6%(F)).

THEOREM 1. Under the above conditions, the posterior distribution of @
given the partial information provided by T converges to the A (T, n"'6%(F))
distribution. More precisely, if n(6,) > 0, then L(/n (8 — T)|T) - (0, 6*%(F))
a.s.[Fy, 1

The proof will appear in a forthcoming paper by the authors.

Note that F is not assumed to be symmetric. If T is the sample median, the
conditions will be satisfied if F has median zero.

For two posterior distributions .#(8|T)) and £(0|T), it is natural to define
the Bayes asymptotic relative efficiency (BARE) as the ratio epy(T},T,) =
07(F)/of(F) of the posterior variances in Theorem 1. For instance, if 7| is the
normal scores estimate (Hodges and Lehmann, 1963) and T, = X, then ey(T), T;)
> 1 for all F symmetric about zero. Thus, in terms of BARE, the normal scores
Bayes procedure is uniformly more efficient than the familiar Bayes procedure
based on .#(0|X). Similarly, let T; be an adaptive estimate of § when F is
symmetric (Stein, 1956; Stone, 1975). Then modulo proving strong consistency of
T,, £(0|T,) is an adaptive Bayes posterior with asymptotic posterior variance
0Z(F) = 1/nI(F), where I(F) is the Fisher information. Thus, from the point of
view of asymptotic Bayes theory for the location of a symmetric distribution,
conditioning on an adaptive estimate may make more sense than putting a prior
on F.

REMARK 2.1. For the above model, Lo (1984) has shown that E(6|X) — 6,
as.[F, ]and £(0|X) — 8, as.[Fp ]in the undominated case, where §,_ is point
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masé at 0,. The results of D&F show that these results fail to hold if Fy is
replaced by their counterexample distribution H (D & F I, Figure 1).

Next we turn to the model where F is also random with a Dirichlet distribu-
tion 2(a). We want to illustrate that by using a posterior based on partial
information, we can get consistency. To this end, let 7' denote the sample median.
Since a/a(R) and the counterexample distribution H (D&F I, Figure 1) both
have median zero, then T — 0 a.s. [a/a(R)] and T — 0 as. [H]. Let ay(t) =
a((— o0, ¢t — 0])/a(R) and Hy(t) = H(t — 0), then T > §, as. [ay ] and T — 6,
a.s. [Hy, ]. These results can be used to show:

THEOREM 2. With the above conventions, if m(6,) > 0, then ZL(0|T') — &,
a.s.[Hy ]. If 0m(0) is bounded, then E(0|T) - 0, a.s.[Hy, ]

The proof will appear in a forthcoming paper by the authors.

We think that the results of this section in conjunction with those of D&F
give compelling reasons for flexible Bayesians who desire robust procedures to
consider posterior distributions based on partial information. It is a matter of
giving a little (give up Bayes efficiency for some idealized model) in order to gain
a lot (high Bayes efficiency and consistency over a wide class of models including
the D & F counterexample distribution). How much is gained (and lost) should be
the focus of research of pragmatic Bayesians everywhere.

REMARK 2.2. In the D&F spirit of “true confessions” (D&F I, Section 3),
what are we anyway? The answer is: Statisticians! Beyond that, one of us is a
Bayesian, but he will no doubt be excommunicated as a heretic after the above
remarks.

3. The history of partial information. Cox (1972,1975) introduced the
idea of partial likelihood. Kalbfleisch and Prentice (1973) showed that in many
interesting cases, the partial likelihood coincides with the marginal likelihood and
the rank likelihood. The latter is the probability distribution of the rank vector
considered as a function of the parameters and had been used earlier by
Hoeffding (1950) to generate optimal rank procedures. Savage and Saxena (Savage,
1969) proposed using the posterior distribution given the ranks in a nonparamet-
ric Bayesian context. This is also a form of smoothing before computing the
posterior: The ranks map the data set —150,6, —2,3 into —4,3, —1,2. In fact,
for a sample from the D&F counterexample distribution H, the signed ranks
have a uniform distribution over the space of possible signed ranks (e.g., Bickel
and Doksum, 1977, page 360). Recently, Pettitt (1983) has proposed useful
approximations to the posterior given the ranks.
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It is generally acknowledged that it is hard to think about priors in high (but
finite) dimensional spaces. Subjective Bayesians know that it is hard to elicit a
prior from an individual when the dimension is 3 or 4. Diaconis and Freedman’s
interesting results on an inconsistent Bayes rule involving a reasonably natural
prior show how far off our intuition can be when we pass to an infinite
dimensional setting. In this discussion, we present other peculiarities, in addition
to the inconsistent behavior, that arise when one uses the symmetrized Dirichlet
prior. The discussion concludes with a few remarks on an alternative way of
constructing priors on c.d.f.’s.

1. The symmetrized Dirichlet priors. The setup considered by Diaconis
and Freedman is the following:

X;=0+e¢g, i1=1,2,...,n, g areiid.~ F.

The parameters 6 and F are independent, § having a density f, and F being
distributed according to 9,, with a absolutely continuous.

Let 6,;, = 3(X;+ X;), and let #(6;;) denote the number of distinct pairs
(X}, X;) such that }(X, + X;) = 0. (The pairs (X,, X,) and (X,, X,) are called
distinct if the sets {X,, X;} and {X,, X,} are distinct.) The number #(;;) will
be called the multiplicity of 6;;. The posterior distribution of # given X,,..., X
is denoted ,.

n



