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ASYMPTOTIC BEHAVIOR OF M ESTIMATORS OF p
REGRESSION PARAMETERS WHEN p? / n IS LARGE;
II. NORMAL APPROXIMATION

By STEPHEN PORTNOY!

University of Illinois

In a general linear model, Y = XpB + R with Y and R n-dimensional, X a
n X p matrix, and B p-dimensional, let 8 be an M estimator of B satisfying
0 =ZXxy(y — x/B). Let p > o such that (plog n)*2/n - 0. Then
max;|x}( B — B)| = p 0, and it is possible to find a uniform normal approxima-
tion for the distribution of 3 under which arbitrary linear combinations
a (B ) are asymptotically normal (when appropriately normalized) and

(B BY(X’X)(B — B) is approximately x2.

1. Introduction. Consider the general linear model
(1.1) ' Y=XB+ R,

where Y and R are n-dimensional random vectors, X is a n X p matrix, B is
p-dimensional, and the coordinates of R are independent and identically distrib-
uted. Let x; denote the (column) vector in R? whose coordinates form the ith
row of X. Let Y: R — R be given and consider the M estimator, B, satisfying the
vector equation

(1.2) 0= Y xy(Y, - xB).

i=1

In a companion paper (Portnoy, 1984a), hereafter called Part I, the author
considered some recent history and some new results on the asymptotic behavior
of B when p tends to infinity with n. Part I considered the analysis of variance
and regression cases of (1.1) separately, providing consistency and asymptotic
normality results in the ANOVA case and norm consistency (|| B-BI%=
0,(p/n)) in the regression case essentially under the condition p(log p)/n — 0.
In Section 3 of the present paper, the following results are presented:

(1) if p3?(log n)/n — 0 then max|x{(B — B)| - p 0;

Q) if (p log n)®2/n - 0 then for any sequence {a,) with a, € R?, a)(B — B)

- p A0, 6%) [where ¢% = a)(X'X) 'a E¢2(R)/(E¢’(R))2], and (under
stronger conditions) a umform normal approximation for the distribution of B
will hold which yields a x? » approximation for ( B - B)(X'XX B - B).

As noted in Part I, asymptotic normality for a( B — B) should hold (under
reasonable conditions) as long as p'*¢/n — 0 for some ¢ > 0. In fact, Portnoy
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1404 S. PORTNOY

(1984c) obtains higher order terms in the expansion of 8 which permits a
weakening of the convergence rate to (p''/%log®n)/n — 0. However, obtaining
this rate requires four new terms (in addition to those of Lemma 3.4), two of
which are fourth-order sums. The excessive complications in the expansions
required to achieve so minor an improvement in rate clearly indicate the dif-
ficulty of typing to obtain rate p'*¢/n — 0. Huber (1981) conjectured that to
obtain this rate may require that ¢ be odd. However, the computations in
Section 3 indicate that antisymmetry is not needed (antisymmetry appears only
in condition P5 which is required only for a uniform normal approximation in
R”). Note that Section 3 also shows that error terms in the chi-square approxi-
mation for (8 — B)(X'X)(B — B) are of order p*2/n, so that improved rates
are not possible in complete generality.

The uniform normal approximation requires a Central Limit Theorem for
Yx,y(R;) in RP. When p%/n — o, known Central Limit Theorems do not
apply. The best present results are discussed in Portnoy (1984b), which gives a
counterexample showing that a general Central Limit Theorem can not hold if
p?/n - + oo. However, if {x;} form a sample from a mixed multivariate normal
distribution [see (4.1)], then an appropriate normal approximation holds condi-
tionally on X for X € B, where P(B,) — 1 (and, hence, also unconditionally).
The results are proved in Portnoy (1984d) and summarized in Section 4. It can
also be shown that the conditions on X needed here hold in probability under
(4.1) (see Portnoy, 1984a and 1984d).

2. The conditions. The results here require conditions of three types: condi-
tions (denoted “N”) on the rate at which p can increase, conditions (denoted
“P”) on the ¢ function and jointly on the distribution of R, and conditions
(denoted “X”) on the design matrix.

For most results the following condition will be necessary:

N1: p3?(logn)/n—>0 asn — oo.

A few results require a slightly stronger condition:
NY: p*2(logn)”?/n >0 asn - .

Several results can be obtained under a weaker condition which will be listed
separately:

N2: p(logn)/n >0 asn — .

REMARKS. (1) As noted in Part I, conditions “N” can actually be stated
with a factor “log p” instead of “log n” since the conditions with “log p” imply
the conditions listed here. Also note that if N1 holds, then p(log n)?/n — 0 as
n — oo.

(2) In order to show that the “X” conditions hold in probability under (4.1),
the condition p/log n — oo is needed. However, if p/log n — 0, it is not hard to
use classical proofs to obtain the desired normality and consistency results.

The following conditions on ¥ will be used:

Pl: EY(R) =0, EY*(R) = ¢% < + 0;

P2: ¢ is absolutely continuous with d = EYy/(R) > 0;
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P3: For u and v real, define

() = 9(u o)

u

d.

(2.1) Q(u,v) =

Then Q(u, v) is uniformly bounded. Furthermore, y’() is Lebesgue integrable
and the distribution of R has a density, g, with a uniformly bounded first
derivative.

P4: ¢ has three bounded continuous derivatives and y(R) has a finite
moment generating function in a neighborhood of zero.

P5: Y(R) has a finite moment generating function in a neighborhood of zero
and for some constant, d > 0, and for each n there exists a y function, ¢,
satisfying the above part of P5 and condition P5’, such that

22 () = ¥,(w) | = sy
P5’: ¢ is an odd twice differentiable function, and g is an even differentiable
density satisfying
e . g(r)/Y(r) >0 asr— too

for any sufficiently small constant, a. Also,

&(r)
\ y(r)
and (d/dr)(g(r)/y/(r)) has at most M sign changes (where M is a constant not
depending on n).

d’

(2.3) < Bn?" for some constants B and d’,

REMARKS. (1) The results of Section 3 also require the consistency results of
Part I which require that y be nondecreasing; and thus the monotonicity of ¢
will be a tacit assumption in this paper.

(2) The differentiability conditions in P4 can be replaced by differentiability
conditions on the density, g; and, hence, the results of Section 3 can be shown to
hold for commonly suggested Huber- and Hampel-psi functions. In particular, if
the differentiability conditions in P4 are replaced by the condition that g* be
continuous, absolutely bounded and integrable, then it is possible to derive an
expression for the joint density of B which is bounded by a normal density in R?
so that the results of Section 3 hold.

(3) Given ¢ and g, it is generally trivial to construct the function
y, satisfying P5’ (as required in P5). In particular, since E exp{ty(R)} is finite
(for t small), it is clear that as long as neither (r) or g(r) have “spikes,”
g(r)e™” — 0; and it is easy to smooth y so that P5’ holds.

Lastly, we impose the following conditions on the design matrix, X with rows
{x!}. As noted earlier, it can be shown that these conditions hold in probability
under (4.1).

X1: The maximum and minimum eigenvalues of X’X satisfy (for constants B
and b)

(2.4) Ao X'X)<Bn, A (X'X)=bn.
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Note that Z(x/z)? < [|u]|?A u( X X ) s0 that if X1 holds and ||B||2 = 0,( p/n)
(as shown in Part I) then ¥(x/8)? = 0,(p).
X2: {x,} are such that for any B

n

(2.5) sup sup Y (xw)’Q(R,, x/B) = 0,(pnlogn)’?,
lw||=1||Bll<pB/n i=1

where @ is defined in (2.1).

X3: Define
(2.6) y=(X'X)""x, (i=1,2,...,n).
Then uniformlyini=1,...,nand £=1,...,n,
(2.7) ¥y,=0(/plogn /n), fori+¢.
Furthermore, there are values {s;: i =1,..., n} uniformly bounded such that
(uniformly in 2)
: p
(2.8) ol = —r:si + 0(\/1_)log n/n).
X4: With y; defined by (2.6),
2 3/2
p*(logn)
(2.9) LY (HIINXIPI N = 0(T )
it

X5: With y, defined by (2.6) and {a,} a sequence of fixed vectors in R? with
lla,|| bounded, max{|xja,l: i = 1,..., n} = O(;/logn) and

n
(2.10) Y (x5l = 0(plogn)'""”.

i=1

3. The basic results. Some preliminary lemmas will be listed first. A basic
consistency result is given in Theorem 3.1. Normality results for linear combina-
tions a’8 are given in Theorem 3.2, while Theorem 3.3 gives a result providing an
asymptotic x2 approximation for the distribution of 8/(X’X)B.

LEmMA 3.1. Assume conditions N2, X1, P1, and P2, and suppose that
Lemma 3.2 holds. Let Y be defined by (2.6) and let B be the M estimator
satisfying (1.2). Define P € R" to have coordinates P, = y(R;) and let @ be a
diagonal n X n matrix with diagonal elements

_ V(R;) - ‘P(Ri - x{,@) _
- xip

where d = EY'(R) and Q; is defined to be zero if x{,@ = 0. Then for any
k=12,...,

(3‘1) Qi d’

k- ¢
(X’X)_1/2( Zl(— %Y'QY) )Y’P+ er

=0

S

(3.2) B
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where
D k+1 &
(39 leat? = 6 (2] togm)*).
ProoF. Rewrite (1.2) [using (3.1)]:
n n n n

(3.4) 0= ) xY(R; - xfﬁ) = 2 xY(R;) - Z xi(xfB)Qi -d) xx(B.

i=1 i=1 i=1 i=1

Writing (3.4) in matrix form, multiplying by (X’X) '/, and using the definition
of Y and P yields

0=YP-(X'X)"(XQX+dX'X)B

’ Y v /24
(35) —YP- d( QY+I)(XX) B,

- (X'x) Y1+ L yQy _1Y’P
By Lemma 3.2, we have the expansion
1 -1 1 ¢
I+-YQY = -—-YQY
|1+ gver] - L[-grey)
and, hence, (3.2) holds with
1 -1/2 el 1 ‘
e,=—=(X'X) Z(——Y’QY) Y'P.
d —p\ d
Therefore (with A, ., denoting the maximum eigenvalue),
1 4
(36) Ilek“2 - d2 max(X,X 1)( Z Amax( Y,QY) )”Yv,'P“2
=k
Now

ElYPI= Y ¥ f 22w BV (R)W(R,)

J=1li=1/¢=
= Y. YL ¥3EV*(R) = pEY*(R),
Jj=1i=1
and, hence, ||[Y'P|> = 0,(p). By condition X1, A, (X'X) ' =
(Amm(X 'X))~' = 0(1/n). Lastly, by Lemma 3.2, there is a constant B such that,
in probability,

S (YQY)'<BY (
=k

logn\? logn\* logn\~!
g)=B(pg)(1_Pg)

n n n

(plogn
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Therefore, from (3.6),

1
llek“2 = 01)(;:) : 0})

(plzgn)k~@p(p)=0p((%)k+l(logn)k)~ =

LEMMA 3.2. Let Y be defined by (2.6) and let @ be defined by (3.1). Assume
conditions X1, X2, and P2 [it can be shown that X2 will hold in probability
under conditions P1, P2, P3, N2, and (4.1)]. Suppose that ||B||* = O0,(p/n) (see
Theorem 3.2 of Part I). Then the maximum eigenvalue of Y'QY satisfies

log n\1/2
Amu(Y'QY)=(9p(p g ) :

ProoF. By the condition on ||3||% and definition, for some B > 0,

AMax(YQY) < sup  sup w(Y'QY)u
18112 < Bp/n llull=1

n
,\2
= sup  sup Y (yu)'Q
1BlI2<Bp/n llull=1 i=1

Let w = (X’X) Y2u/A . (X’X) /2. Then ||w||*> < ||lu||*> = 1, and (by condition
X1) for some B, > 0,

B
(5£0)" = ()" A X'X) ™" £ 2 (x100)"
Therefore, Lemma 3.2 follows directly from condition X2. O

LeEMMA 3.3. Assume conditions P1l, X3, and N2, and suppose that J(R)
has a finite moment generating function in a neighborhood of the origin. Then

n I
S () 9(R,) = 0,,(” 8"
/=1

1/2
) uniformlyini=1,2,...,n.

Proor. First note that by P1 and the hypothesis on ¢, there are constants
b > 0 and ¢ > 0 such that

(3.7) Ee® < bt

thus, if ¢ > 0 (depending on n) is chosen so that ¢ max,|y/y,| < ¢ the Markov
inequality yields

| PHEAMERE ca] < expl~tc,)- Bexp]s é(y;y(w(m)}

* for |t| < e.

< exp{ —tc, + bt® ! 2}
(3.8) { El(y y/)
= exp{ —tc, + bt’|| 5%}
< exp{ —tc, + b*tzg},
n

where b* is a constant and the fact that Y’Y = I and condition X3 are used.
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Now, let ¢, = B(plogn/n)'/? and let t = §(nlog n/p)/?. Then by condi-
tions X3 and N2 (uniformly in i)

nlogn\'? log n\/2
tmgXIy{yfI=0( pg) -0(£)=0(p g) - 0.

n n

Therefore, § may be chosen so that ¢ max,|y/y,| < e and (3.8) holds. Also choose
8 (perhaps smaller) so that 8b* < 1. Then from (3.8),

plogn

n 1/2
P{ Y (¥y,)¥(R,) = B( ) } < exp{ —8Blogn + b*8%log n}
=1

= exp{ —8Blogn(l — b*§/B)}
< exp{—68Blogn(l - 1/B)}.

Thus, if B is chosen greater than 3 and 8B > 3, the above probability is bounded
above by exp{ —3logn(2/3)} = 1/n? (uniformly in i). Thus,

1 1

log n\/2
{Z(y,y()xlz(R)>B(p g ) forsomei}sn~ﬁ=;l-—>0.

The proposition follows since the same argument works for the reverse inequality
in (3.8). O

Although Part I provided norm consistency for { B}, the following alternative
form of consistency will also be needed here:

THEOREM 3.1. Assume the conditions for Lemmas 3.1, 3.2, and 3.3 and
suppose also that N1 holds and that

(3.9) max{|lx|I*: i=1,2,...,n} = 0(p).
[ Note that (3.9) follows directly from conditions X1 and X3.] Then
max{|x/Bl: i = 1,2,...,n} - , 0.

Proor. By Lemma 3.1 with £ =1,
1
xB= gx,-(X'X)_l/ZY’P + xle.

Now, using (3.3) and (3.9),

pilogn\'/?
|x:e1|s||x,-n||e1n=0,,(¢5 ¢logn) 5,0,

n

uniformly in i = 1,2,..., n. Furthermore,
x(X'X)*YP=yYP= Y (53,)¥(R,).
=1

This term converges to zero uniformly in i = 1,2,..., n in probability by Lemma
3.3, and the theorem follows. O
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To obtain asymptotic normality it will be necessary to use the error term e,
and to consider the second term in (3.2). This requires a Taylor series expansion
and, hence, somewhat stronger conditions.

LEMMA 3.4. Assume conditions P1, P2, P4, X1, X2, X3, X4, and N1'. Let
0?2 = EY*(R), d = EY/(R) and define

d R
b=—(xX)"B.

o

Then

1
. b= = W+
(3.10) W+ A+6d2A (2d)AW e,
where |le||> = 0,(p>(log n)*?/n?); W, A, and A in R? and A* a p X p matrix
are defined by

n

1
W, =— E }’ik‘l/(Ri)

i _i yij(yi'yz)‘P(R/)(‘V(Ri) - d)

i=1¢=

—

(3.11) Yo
Afk = Z Z yijyik()’i’yz)ﬁb(Rz)ll’"(Ri)
4= 5 X (i) UR )7 (S)

for some S; between R; and R; — (x!B). Furthermore, we have
(312) 14)° = 0,(p*(logn)*”*/n),  IAI* = 6,( p"*(log n)"*/n?),
and
|A*| = 0,(plogn/n)"?,
where |A*| = sup{uwA*u: ||u| = 1}.
ProoF. From Lemma 3.1,
(313) 6=w+ %(Y’QY)Y’P + e, where |le)||* = 0,( p’log’n/n?).

Expanding (3.1) in a Taylor series and noting that x/ B = (o/d) y,-'é yields

= (‘V(Ri) - d) - % 2(}’{9)4"'(3;‘) + %(%)2(3’{9)2‘V"(Sz‘)a
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where S; is between R; and R, — (o/d ) y{@ ). Substituting in (3.13) gives

. 6= + A——A*0+ — A+
(3.14) w 5d 6d2 e,

or

1 n 1
T+—A*|0=W+-A+-—4A+
( 2d ) o d2 ‘1
Now, using condition P4, Lemma 3.3, the fact that I(y/u)® = ||u||>, and
condition N1,

|A*| = sup

llell®=1

X L (i) ROV (R, )[

i

(3.15) <B sup Y. (yu)

2 ”
fluf®=1 1

logn \/2

!y/)‘P(Rz)

n

Therefore, \

R -1 1 o .
=1+ —a* +-A+—A+
(1) o)

1
3. _ +—A+ it Laac
(3.16) w 6d2 2d 20d 12d3

A*A
——A + Y AW+ A+
2d” ! ,;2 (W At
Now bound the norms of the vectors W, A, and A:

EIWI? = EX ZO0)¢(R)V(R) = o Kl = 0(p); - W= 0,(Vp).

E|A|? = EZZZ(y,]yl2)(y,ly,l)(y,zy,z)Exp( 4 )V (R,,)

Lyl 4 4

(¥(R,) -d)(¥(R;,) - d)

A+e)

B (Be(R)(M(R,) - d))"’{ EX G I 1A + ZZ/(y;y/)a}
+Ey*(R)E(V(R) - d)iZ[uyiuz(y;y/)Q

+EY*(R)(¥(R) — d) Elln®

Using condition X3 and X4 (for the first term), it is straightforward to show
that E||A||2 = 0( p*(log n)*>2/n). Thus ||A||* has this same order in probability.
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Lastly,

1AI2 =X X X X (52,3 )y )W (R, ) ¥(R,)

W iy 4 4
(yt,lé)2‘l/ m(Sil)(yi,29)2lp,,/(si2)
< BY Y135, 1(50)(56)"| 2 (5 5.)¥(R,)
4

UN

;()’i;y/z,)‘l’(Rzz) .

Thus, using Lemma 3.3, (2.7), and (from Theorem 3.2 of Part I and X1) the fact
that

~ L) = B(XX)B < Al XXIBI” = 0,(p),

it follows that the sum over i, # i, contributes a term of order

0 (‘/plogn ‘ 2‘plogn
P

n n

) = 0p( p"*(log n)3/2/n2).
Similarly, [using (2.8)], the sum over i, = i, is bounded by

n pilogn p’logn
2 (56 )4@p( n? ) < p( n? max,| y/6/?,
i=1

which has even smaller order (by Theorem 3.1). Hence, ||A||? has the required
order.

Thus, (3.12) holds, and it remains to bound the last four terms in (3.16). The
above computations show that the second factor in each summand (in the last
term) is (DP(‘/E ). Thus, using (3.15) and the argument in Lemma 3.1, this infinite
sum is O,(( p log n/n)\/z—) ) (in norm) and can be included in the error. Similarly,

|A*A|I” < |A*%|A)? = 0,

plogn p*(logn)™”?
n n

P 2

p*(logn) ™*
n

|A*A||12 = 0, i = 5

plogn p"?(logn) 2 p’(log n) KN
=0,| ——
n n

pilog?n
n '

| A*e || = o,,(l)@p( —

Thus, the last four terms in (3.16) are of the required order for error, and the
lemma is proven. O

THEOREM 3.2. Suppose the hypotheses of Lemma 3.4 hold and assume
condition X5. Then for any sequence of vectors {a,} with a, € R? and | a,||
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bounded,
A d
. P EPACRY
where
(3.18) ®=ay(X'X)"!

PrOOF. Let b, = Vn(X’X) '%a,. Then

2= |1b,lI1%/ d 'B(d) bif
v =0,]|°/n and a;p|—]|= .
116,

vo
Thus, it suffices to show that if ||b,|| = 1, b,’,@ - ;5 A#7(0,1). So assume ||b,|| = 1
and apply Lemma 3.4:
. 1
’ ’ ’ — e M AX ‘o
(3.19) b= bW+ — bA+bd2bA dbAW+b
Now using (3.11), bW = (1/0)Z% (%/8,)¥(R,).
Since max;| y/b,| — 0 (by conditions X3 or X5) and X(y/b,)* = ||b,||? = 1, the
Central Limit Theorem implies that b,W — ,, #7(0,1). So it remains to consider

the remainder terms in (3.19). .
First, by (3.11),

biA =33 (¥b,)(¥y)¥(R)(V(R,) - d).
i ¢
As in (3.17), for appropriate constants ¢,, c,, and c;

E(b,4)" = o TE (55) ()10 + ZE (38, (328,)(502.)’)

(3‘20) i#f i#¢
+0222Z(y ) (03)" + cax(yb )iyl

By definition of b,, (y/b,) = B(x!a,)/ Vn (for some constant B). Thus, the first

term in (3.20) is (S(x/a,)l|¥l1/ Vr)? — Z(xb,)21%l1* which is 0(/(p/n)log’n )
by condition X5. Similarly X5 and X3 show that the second and third terms are

logn plogn log®n
o ploan) _(pbn)
n
and the last term is 0(||b,||% - p2/n?). Therefore, E(b,A)? - 0 and b,A — p 0.
Next, by (3.11) again
bA = ZZ(y, )3 )9 (R)(58)° 47 (S).

Thus, using Lemma 3.3, condltlon X5, the boundedness of y”, and the fact that
Sy =0 (D),

- logn plogn p3?logn
"b"A|=0p(\/ n \/ n P =0”(—n— ~e0

by condition N1.
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For the third remainder term, (3.11) yields
b AW =2 2 Y (50, ¥y ) (R (Y)W (R,)V(R,).
i £ v

As in (3.20), E(b,A*W)? can be calculated as a six-fold sum over i,, iy, £,, £, 7,
and », in which these indices must be equal at least in pairs. Straightforward
though tedious computations using condition X3 show that all terms are ¢( p/n)
except for the following two terms where {i, = ¢, =i, i,=¢,=¢,and v, = v, =
v} (or related terms) and {i; = ¢, = v, =iand i, = £, = v, = ¢}:
xla N
22 Y ( I ) (¥ {f )uy,u 21533 3%3,)

i£ L+

(3.21)

=— ZE(x D@ )PP (v ) = U + 1A1%) () }

i+

and (Z,((x/a,)/ V)| 3|*)?. Using X3 and X5, the first term in (3.21) is

1 logn p?> plogn p*?(logn)**
0—-n2.——-——-——— -0l ————|,
n
and the second term is clearly @( p*log n/n?). Thus, E(b,A*W)? - 0 (by N1)
and b,A*W — ,, 0. Lastly, |b.e| < ||b,| |lell = p 0, and the proof is complete. O

REMARK. In the classical situation it would be possible to use Theorem 3.2 to

obtam asymptotic normality of b'0 for a sequence of constants {b,} by choosing

= yn(X'X)~'/?b,. This will not work here because condition X5 requires

that a, depend on nelther X nor R. To obtain normality for b’0 would require a
condltlon of the form

logn
X5 m:;lX(yi'a)2 = 0(7), Y (ya)yl®— o
i

for a constant vector, a. It is possible but much more difficult to show that X5’
holds in probability under (4.1).

Lastly, a wide variety of asymptotic distribution results can be obtained by
combining Lemma 3.4 and Theorem 4.1, which provides a uniform normal
approximation for the distribution of W in R”. For example, the following result
provides a chi-square approximation for the distribution of ||3||? (for large p) by
showing that (||6]|> — p)/2p — , #(0,1) (if p > o0).

THEOREM 3.3. Assume the hypotheses of Lemma 3.4, suppose p — oo, and
suppose that Theorem 4.1 holds. Then

1612 — p

Zp

-, #(0,1).
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As a consequence, for any sequence of reals, {x,},

d? ., .
P{?B’(X’X),Bsxn} —P{xf,sx,,} -0 asn — oo.

PRrROOF. From (3.10) (see Lemma 3.4),
B —p _WIP-p 1
V2p V2p Vo
where e* consists of the sum of squared norms of the last four (error) terms in
(3.10) plus the sum of all pairwise inner products of the five terms in (3.10). By

Theorem 4.1, (|[W|®> — p)//2p — ,, #7(0,1); and, hence, it remains to show
that each term in e* is op(\/]—) ). From (3.12), using N1’ and the fact that

Wl = 0,/p),
IA)2 = 0,,(@ (

=op(‘/;)’

p**(log n)*”*
n

p*(logn)™”

‘/’_’(—,ﬂ— ) = 2,(Vp),

14i1% = o,

plogn p**logn
||A*W||“’s|A*|2||W||2=0,,( " -p)=0p(¢5-—n— =(VP).

Also |le||? = 0,(1) = op(‘/}—) ); so it remains to consider the 10 inner product terms.
Again using (3.12) as above,

9/4 3/2
- . p”*(log n)
|AA| < ||A|| || 4] = 0,,(/7» ~ T)

3/2 5/4
p**(log n)
|A'A*W| < || Al| |A*||W|| = 0,,(—*’1 :

5| =),

N - p**(logn)”*
[AAW| < |AIA* W = 6| ——7—— VP | =2,(yP)-

Furthermore, for W'e, A’e, A’e, and (A*W)’e, the first factor has norm 01,(‘/17 )
and |le|| = o,(1); so these terms can be discarded. Thus, it remains to consider
W'A, WA, and W/A*W. Now from (3.11),

WA =33 Y (55)6(R,)(¥y:)¥(R,)(V(R,) - d),
[
and, as before, it is not difficult to show that the dominating term in E(W'A)? is
[since ¥, (a’y,)(b'y,) = a’b]
C XX XA (v ) (3:3,) = E LU 3:30).-
v [

[
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By condition X4, this term is O( p*(log n)>/?/n). Thus,

log n)**
(WAl = 0,( p(logn)”"/Vn) = wp(ﬁ A —p(gT) ) = o(VP).

Next by (3.11) again,
WA = Z E Z(yilyv)‘P(Ry)(yi,y(’)‘P(R(’)(yi’é)2‘Pm(si)'
i £ v

Thus, using Lemma 3.3 and the fact that £(/8)? = 0,(p),

~ Ao 2 1 3/2]
\WA|<BY.(¥9) (Z{;()’{%)‘P(Rz)) =0,,(p~ i Zgn) = 0,,(‘/5 : p—o_gﬁ)

Lastly, from (3.11)
WAW = 33 3 Y (53 (R )W (R (52 ) (R)V(R,).

[ A TR

Again, computing E(W/A*W)?, the eight subscripts must be equal at least in
pairs, and it is not difficult to show that the dominating term is

LT X ZInlPIyA*(%3) (%) = X Z{nyin“ny,,u“ = (Zuyiu“)

i op v i

2

Therefore, by condition X3,

WA*W| = 0p(zij||yi||4) - 0p(n~ —Ié) - 0,,(@ : pm) —o(yp). O

n

To obtain a convergence result for [|§]|2> under a condition weaker than N1
would require that ||A||%/ ‘/17 — p 0 (under the weaker condition). However, from
(3.17) (using the third and fourth terms), it is clear that

E|AI® 2 bY|lyll* = b'p®/n
l

(for some constants b and &’). Thus, ||A||>/ /p should not be 2,( p>?/n), and,
hence, it would seem that N1 is essentially necessary for a uniform normal
approximation in R? (whether or not ¢ is antisymmetric).

4. The CLT for W in R?. Normal convergence results like those in Theo-
rem 3.3 require a Central Limit Theorem for W = Ly,y(R;) in R” when p®/n
may be large. Unfortunately, as shown in Portnoy (1984b), a general result may
not hold if p?/n does not converge to zero (even in symmetric situations). Thus,
strong assumptions and use of special features of W are required. Portnoy
(1984d) provides an appropriate normal approximation result by assuming that
{x;} form a random sample of size n in R” and by making use of the fact that W
depends on a one-dimensional function of R;. The model for the rows, x;, of the



ASYMPTOTIC BEHAVIOR OF M ESTIMATORS 1417

design matrix is as follows:

(4.1) Let (sy,--., s,) beii.d. according to a distribution with compact support in
(0, ); and given (sy,..., s,), let (x,,..., x,,) be independent with x;, ~ A7(0, s,I).
Assume Es; = 1 (without loss of generality by rescaling the original model).

THEOREM 4.1. Assume conditions N1 and P5 and let W be defined by (3.11).
Let P(-|x,) denote the conditional distribution of (R,,..., R,) given the design
matrix, X = (x,,...,x,). Let ¢, = 0(1/n?) for some d > 0 and let A, C R” be
a sequence of sets such that with Z ~ #(0, I),

(4.2) P{(ZeA,(e,)—A,} >0 asn— oo,

where A,(¢) is the e-neighborhood of A,. Then there are sets B, C R”" such that
under (4.1),

(4.3) , P(Xe€B,} >0 asn— o,
and if (x,,...,x,) € B, then
(4.4) - |P(WeA,x,) —P{(Z€A,})| >0 asn— oo.

This result is proved in Portnoy (1984d). It should be noted that if N1 and P1
hold, more tedious computations will provide the result of Theorem 4.1 even if
is not odd function. Also note that (4.3) is sufficient to obtain unconditional
convergence; for (4.3) and (4.4) provide convergence in probability for the condi-
tional probabilities, which suffice to apply the dominated convergence theorem
(see Pratt, 1960). Lastly, note that the arguments in Portnoy (1984a) and (1984d)
can be extended to show that conditions X1,..., X5 hold in probability under
(4.1).
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