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Self-consistent estimators for estimating distribution functions from
incomplete data are presented. In many cases these estimators are also
generalized maximum likelihood estimators. In this paper we discuss the
theoretical properties of such estimators: existence, uniform consistency, law
of the iterated logarithm, and weak convergence. Applications to the product
limit estimator for right-censored data and to the estimator proposed by
Turnbull (1974, 1976) for doubly (right- and left-) censored data are also
given.

1. Introduction. The field of nonparametric estimation as yet lacks a uni-
fying principle such as maximum likelihood, which guarantees asymptotic nor-
mality and optimality in a large class of parametric problems. Generalized
maximum likelihood, proposed by Kiefer and Wolfowitz (1956), at least provides
an algorithm for the calculation of estimators, but no general theory exists which
establishes the large sample properties of such estimators. An example of a
generalized maximum likelihood estimator (GMLE) is the product limit estima-
tor of a distribution function in the presence of right-censored data. This was
implicit in the derivation by Kaplan and Meier (1958) and was made explicit by
Johansen (1978). The product limit (PL) estimator is also self-consistent, as
Efron, who defined the concept, showed (1967). This fact provides a clue to a
general asymptotic theory for the GMLE: The self-consistency equation can, in
this case, be cast in terms of the EM algorithm (Dempster, Laird, and Rubin,
1977), which converges to the GMLE. If this relationship holds more widely, an
analogy with the Newton-Raphson algorithm for finding the MLE in parametric
problems suggests that asymptotic results for generalized maximum likelihood
estimators might be derived by considering an appropriate linearization of the
self-consistency equation. In Section 2 we review generalized maximum likeli-
hood, self-consistency, and the EM algorithm, and establish some relationships
between these concepts. Section 3 contains results on the differential of statistical
functions and an implicit function theorem, which will be used in the expansion
of the self-consistency equations. The expansion is used in Section 4 to derive
some large sample properties of self-consistent estimators. The product limit
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estimator is used as an example throughout, to fix ideas; no new results are
obtained for this familiar estimator. However, for the GMLE of a distribution
function in the presence of doubly censored data, proposed by Turnbull (1974,
1976), no proofs of large sample properties exist. We apply our general theory to
this problem in Section 5.

2. Generalized maximum likelihood, self-consistency, and the EM al-
gorithm. We start by defining the GMLE and giving some of its properties.
Kiefer and Wolfowitz (1956) suggested that for a nondominated family of
probability measure £ one can define a generalized maximum likelihood estima-
tor as follows: For P, P, in 2, let f(X; P, P,) = (dP,/d(P; + P,))(X), the
Radon-Nikodym derivative of P, with respect to P, + P,. If X represents the
observed data vector, P is a GMLE if and only if

(2.1) f(X; P, P) > f(X; P, P) forall Pin 2.

A distribution function is said to be a GMLE if the probability measure, which
induces the distribution function, is a GMLE.

The following three properties are direct consequences of the definition:

(i) If the family of probability measures 2 has a dominating measure, then
the GMLE reduces to the usual MLE.

(ii) The empirical cumulative distribution function F(t) = n ' IX; < t)
from a sample of iid random vectors X, is a GMLE. (Here I is the indicator
function and X, < t means every coordinate of X, is less than or equal to the
corresponding coordinate of t.)

(iii) If P gives positive probability to the observation X, then (2.1) is the
same as

(2.2) P(X)>P(X) forall Pin #

[see Johansen (1978)].

The definition of (2.1) involves the usual problem of nonuniqueness of the
choice of density [see Scholz (1980)]. Since the density in the definition (2.2) is
uniquely defined, in the present situation, we will show a GMLE is self-consistent
in the sense of (2.2).

When a set of data contains some observations that are not completely
specified, the EM algorithm [Dempster, Laird, and Rubin (1977)] is often used to
compute maximum likelihood estimators. The original setting of the EM al-
gorithm was for parametric distributions, but in the literature there are also a
few examples of its use in a nonparametric context, such as the self-consistent
estimators proposed by Efron (1967), Turnbull (1974, 1976), and Laird (1978).
Dempster, Laird, and Rubin (1977) did not formulate the EM algorithm ex-
plicitly for the infinite-dimensional case, but, as we now show, the formulation
can easily be extended.

Let X,,...,X, beiid p X 1 random vectors with distribution function F,. Let
Z and % be two sample spaces and let /# = #(X,) be a many-to-one mapping
from 2 to %. The observed data Y, (¢ X 1 vector), i =1,...,n, comprise a
realization from %, while the corresponding X » 1=1,..., n, are observed only
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indirectly through Y; via .#. From the principle of the EM algorithm, an
estimator of F, can be described as follows.

Let F be an initial estimate of F, and let F{™ denote the current estimate
of F, after m steps of the algorithm. Then the E step of the algorithm estimates
IX; < t) by Egpm(I(X; < t)|Y; = y;). The M step consists in finding the GMLE
based on the estimated data, which gives

F(m0(t) = n~! Z EF;,,.,(I(X,» <t)|Y,=y)

=1

(2.3) .
= Ep;m)[{n"l Y IX; < t)}|Y1 =y5,...,Y, = yn].
i=1
Suppose @, E™, ..., converges to a distribution function ¥, which cannot be

changed by application of (2.3). Such a function would satisty

(2.4) Iﬁxn(t) = Ep» {{n‘l i" I(X; < t)}| Y=y,..,Y,= yn]

for all t, which is just Efron’s (1967) property of self-consistency of an estimator
of F,. Thus if in this context the EM algorithm converges, the convergence is to a
self-consistent estimator. In the remainder of this section we give conditions for
convergence and conditions under which the resulting self-consistent estimator is
a GMLE.

THEOREM 2.1. If the initial estimator F* in the algorithm (2.1) is a step
function with mass at the observed points Y; (and possibly elsewhere), then the
algorithm converges.

ProoF. Under these conditions the algorithm (2.1) is exactly the EM al-
gorithm for incomplete multinomial data. Since the multinomial is a member of
the exponential family, condition (10) of Wu (1983) is satisfied. Therefore,
Theorem 2 of Wu (1983) implies the convergence of this algorithm.

REMARK 2.1. It seems likely that convergence can be established for more
general initial estimators F©, but the conditions of Theorem 2.1 suffice for our
purposes here.

Let 2, be a family of probability measures on the sample space Z'. Let &, be
the corresponding family on the sample space #. For each mapping /#: > %,
there is a corresponding mapping #*: & — %2 such that for any random
vectors X and Y = #(X), #*(P,) is a probability measure of Y where P, is a
probability measure of X.

Let #*(P,) = (PP, =MA*P,), P, € #,} and let P be the empirical prob-
ability measure induced by the empirical distribution F)'(t) = n™'E/_ (Y, < t) of
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the observed values of Y. Then we have the following theorem:

THEOREM 2.2. If P! € M*(Z,) then

(i) Any GMLE of F, based on iid Y,,...,Y, is self-consistent, and

(ii) There exists a self-consistent estimator of F, based on Y,,...,Y, which is
a GMLE.

PrOOF. (i) Define the likelihood function L by L(P,) = P(Y,,...,Y,); P, €
M *(P,). We want to maximize L on A *(2,). The global maximum is attained
on # by P, = P.If P happens to be in .#*(%,) then the set of GMLE:s of P,
is Just the set J/l* ’(P"), hence any P" which satisfies //l*(P") =Pl is a
GMLE.

For any @, € #, and @, = #*(Q,) we have

QX < t) = Eq(I(X < 1))
= Eq( Eq(I(X < 1)Y))

= [Eo(I(X < )Y = 1)Q,(d).
If @, happens to be P’ (the empirical measure), then we have @, = Px” and

PrX <t} = [Ep(I(X < )Y = p) Py (dp)

i w(I(X, < )Y = Y))

1
= E;,n( Z IX, <t))Y=Y,...,Y,|,
i=1
which is the definition of self-consistency.
(ii) Since P! € #*(Z,), there exists a measure Px" such that P = #*( Px"),
which is then self-consistent by the above argument. Since P’ is also a global
maximum in P,

L(-/”*(Qx) <L(P}) = L(#*(Pr)) forall Q, in 2,

ie., P’ is a GMLE.

We have thus established that any convergence of the EM algorithm is to a
self-consistent estimator and have given a condition for convergence. If this
estimator of F, maps into the empirical distribution function F}’, it is also a
GMLE. There are of course other situations in which the GMLE is self-con-
sistent, and to which our general theory for self-consistent estimators will apply.

ExAMPLE. The product limit estimator. Let Xl, , X, be nonnegative ran-
dom variables having distribution function F,. As is common, we work with the
survival function S (t)=1—F(t)=P(X,>t). Let Z,...,Z, be censoring
times, iid random variables independent of X,,..., X, and with common distri-



GENERALIZED MAXIMUM LIKELIHOOD ESTIMATORS 1321

bution function (the random censorship model). The observations Y;,...,Y,
consist of the n pairs (Y}, A)),...,(Y,, A,), where Y, = min(X;, Z;,) and A, =
I(Y; = X,) is an 1ndlcator of uncensored observatlons Kaplan and Meier (1958)
suggested an estimator S " of S,, defined by

A
N 1 '
Sr(¢t) = T T TrY
W=\ 5w
which was shown to be a GMLE by Johansen (1978). Efron (1967) showed that
S is the unique solution to

S(t) = n"Es ¥ (1(X, > 0)]Y))

- e (1-249)8(8)
= Z I(Y > t) +n Et———m——,

which is a special case of (2.4). If the largest observation Y, is censored then
S ¢ () is defined arbitrarily [between S"( (my) and 0] for ¢ > Y. Similarly, a
product limit estimator S”(t) of the survival function of the Z;s can be defined.

In this case, the space = {(X,Z)|X >0,Z >0} = R*X R+ the space ¥ =
{(Y,A4)]Y>0,A=00r1} = R*x{0,1}, and the mapping #: & - ¥ is defined
by A (X)= (min(X, Z), A = I(X < z)). The corresponding survival function
spaces are %, = {S|S(s, t) = S(s,0)S(0, t) = S(0)S,(¢t), where S, and S, are
survival functions in R “}and &, = {S S, is a survival function with domain in
R*x{0,1}}; the corresponding mappmg Vs &, — ¥, is defined for a survival
function S,(¢) by £ *(¥) =

S,(t,8)=P(Y>t,A>9)

S.(¢)S.(¢) if8=0
= {—waz(u)de(u) if 8= 1.

It can readily be verified that .# * maps §x”(s, t) = §x”(s)§z”(t) into the empirical
survival function of (Y}, A,),...,(Y,, A,), so that the condition of Theorem 2.2 is
satisfied.

We now proceed to present some large sample theory for self-consistent
estimators.

3. The differential of statistical functions. Before we describe the main
theorems, we give some background. Very often functions of interest in statistics
can be expressed as an operator 7(F,) of the underlying population distribution
function, in which case a natural sample analogue estimator is provided by
T(F)'), where F is the empirical distribution function of the sample. The
functional representation of statistics was first studied in detail by von Mises
(1947), was-extended by Filippova (1962), and was applied by Boos (1979) to L
estimators. In the problem of “robust” estimation, Hampel (1974) introduced the
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“influence curve” of measuring robustness by exploiting Frechet differentiation.
Later, Reid (1981) studied functions of the product limit estimator by using such
influence curves.

Let %, be the set of g-dimensional distribution functions and 2, be the
linear space generated by differences F, — F, of members of %,. Let 2, be
equipped with a norm || - || 3, and let B, be a normed vector space. Consader a
mapping T of %, into B,.

DEFINITION 3.1. The mapping T is said to be differentiable at a point
F, € #,, if there is a linear mapping T'(F}; -) of 9, into B, that satisfies

31) T(Fz)_T(F1)= T(F1’F2_F1)
8. +o(IF, - Fl\2,) as||F, — Fillg, ~ 0

In such a case, T’(F}; -) is called the differential of T at F.

If T is differentiable with respect to the sup—norm |||, = sup,|A(t)|, then we
can study the estimator T(F ") by using the Kolmogorov-Smirnov distance
|F) — F|l, and (3.1). If F, is a continuous function then n'/?||F —
Op(l), which follows from Kiefer’s (1961) inequality

(3.2) P({n1/2!|F'y" ~F), > A}) < cexp(—(2 — €)A?)

for each ¢, A > 0, where ¢ is a universal constant depending only on ¢ and the
dimension g of Y. We obtain from (3.1), (3.2), and the linearity of T/ that
(3.3) n'*(T(Fr) — T(F,)) = T'(F,; n'/*(F} - F,)) + 0,(1).

y

Note that n'/*(F," — F,) - 5,Y, where Y is a Brownian sheet with E(Y) = 0 and
Cov(Y(s), Y(t)) = F,(s A t) — F(s)F\(t) and where “ — ,” means convergence in
distribution and s A t = (min(sy, ¢,),...,min(s,, t,)). If we assume that T'(F,; -)
is continuous, then from (3.3) and the invariance principle [Breiman (1968)], we
obtain that n'/*(T(F;*) — T(F,)) = pT'(F,; X). Further, by using the fact that a
continuous linear operator is also a bounded operator and by the LIL of F, it
follows that if F, is a continuous function then

|IT(F) = T(F,)| 5, = o(IE" = Fll..) +|T(F; F = E)||
<o(|F®* - F,l,.) + uT'uB,qu" -
= O(IF - F,|l,,)

oo =

Flle

= 0(((loglog n)/n)l/z) a.s.asn — o,

where ||T"|| 5 is the norm of T". Since T(F, -) is continuous if and only if T is
continuous and differentiable at F' by (3.1) [also see Brown and Page (1976), page
265], it would be reasonable to assume T is continuously differentiable at F.

In some situations the function G = T(F,) cannot be expressed explicitly in
terms of the distribution function F,, but only implicitly through an equation
H(F,,G) =0. In this case, a naive estlmator G" of G could be the solution of

H(F " G) = 0. As we now point out, the implicit function theorem gives sufficient
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conditions for the existence, uniqueness and differentiability of local solutions
G = T(F)).

DEFINITION 3.2. Let B,, i = 1,2,3 be normed vector spaces and let H be a
mapping from B, X B, to B;. The mapping H is said to be partially differentia-
ble with respect to the first variable at the point (F,, F,), iff g(F) = H(F, F,) is
differentiable at F). In this case we write g(F}; -) = H{(F,, F,; -) and call H/
the partial differential of H with respect to the first variable. Similar definitions
can be made for the partial differential with respect to the second variable.

ProposITION 3.1 (Implicit function theorem). Let H be a continuously dif-
ferentiable mapping of a nonempty open set A of B, X B, into B;, where B, and
B, are complete normed spaces. Suppose that, for some point (F,, F,) € A,
H(F,, F,) = 0, and the partial differential H)(F,, F; -) has an inverse. Then
there is a positive real number b and a continuously differentiable mapping T of
the open ball N, = {G € B,: |G — F}||5 < b} into B, such that

(@) (G, T(G)) € A forall G € N,

(b) F, = T(F)) and H(G,T(G)) = 0 for all G € N, and,

(¢) T is continuously differentiable and,

T/(F;-) = —(Hy(F, T(F,); H{(F,, T(F); ) '

See Brown and Page (1976, pages 291 293) for a proof of this proposition.

If H(F,,G) =0, H(F, n G") =0, and G" is a consistent estimator of G, then
by the 1mphclt functlon theorem, there exists a continuously dlfferentlable
mapping T such that G = T(F,) and G" = T(F. )') for large enough n; therefore,
arguing as before, weak convergence and the LIL for G also hold.

4. Asymptotic properties of self-consistent estimators. We have seen
that a self-consistent estimator satisfies

Er) = Eﬁ;[{n“ Y IX; < t)}lYl =y, Y, =y,

=1

n
=n') Ep(I(X; <)Y, =y,)

i=1

= [Ex(IX < O)Y = ) dFy(n).

Similarly,
F(t) = E(I(X < t)) = E(E(I(X < t)|Y))

- fE(I(X < t)|]Y = p) dF,(p).

Write H(F,, G(t)) = —Gt) + [Eq(IX < t)|Y = p) dF,(p). Then we have the
following lemma and theorem:
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LEMMA 4.1. If for every e, there exists a left-continuous step function s(p,t)
such that sup,|s(p,t) — Eg(I(X < t)|Y = p)| < & for every t, then |H(F,G,) —
H(F,, G|, — 0 almost surely as n — oo for every distribution function G,,

provided ||F" — F ||, = 0 almost surely as n — oo.

PRrOOF. Since Eg(I(X < t)|Y = p) < 1forall p and t then S(p, t) is bounded
for every p and t. The rest of proof is a multivariate generalization of the proof in
Lemma 6.1 of Aalen (1976).

THEOREM 4.1. Suppose the condition of Lemma 4.1 is satisfied. If F, is the
unique solution of H(F,,G,) = 0 and there exists an integer m such that for
every sample of size n > m, H(F}, G,) = 0 has a solution F." (which need not be
unique), then ||F" — F,||,, = 0 almost surely as n — oo for every sequence of
solutions F" of H(F;",G,) = 0.

PrOOF. Since the solution to H(F,,, G,) = 0 is unique, it follows that for any
F* not in the neighborhood N, = {G: |G — F|i,, < ¢}, ||H(F,, £*)|,, > 0. By
Lemma 4.1, |H(F}, F*) — H(F,, F*)||,, > 0 almost surely as n — co. There-
fore, for almost all realizations, there exists an m’ > m (depending on the
realization) such that for all n > m’, ||H(F, F.*)||,, > 0. Thus any solution to
H(F,G,) = 0isin N, As ¢ is arbitrary, we have that | F," — F||,, — 0 almost
surely for any sequence of solutions of H(F", G,) = 0.

REMARK 4.1. If there is a neighborhood of F, for which H(G,, G,) = 0 has a
solution for any G, in the neighborhood, then there exists a sequence of solutions
F of H(F, G,)= 0 such that |F" — F||,, = 0 almost surely as n — co. This
can be seen from the above argument.

REMARK 4.2. The uniqueness assumption of the solution to H(F,, G,) = 0 in
Theorem 4.1 is associated with an identifiability condition. If there is more than
one solution, then there are two or more different distribution functions which
will produce the same F, under the mapping ./#: Z — %. That means F, cannot
be identified through F, for the observations Y,,...,Y,. We have implicitly
assumed that E(I(X; =< t)|Y},...,Y,) is a function of F, and Y,,...,Y, only.
Otherwise, there will not likely be a unique solution. For example, if in the
censored data case the random variables X; and Z; are not independent, then
E(I(X; < t)|Y,, A,) may be a function of the joint distribution of X; and Z;, and
the solution is not unique. In this case the distribution of the observable random
vector (Y, A) does not identify F, uniquely (Tsiatis, 1978).

THEOREM 4.2. The equation H(F}", G,) = 0 has a solution FA;”.

Proor. By Theorem 2.1 the EM algorithm (2.1) converges if the initial
estimator is a step function, and the convergence is to a function satisfying

Er(t) = [Ep(IX < )Y = ) dF)(p).
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Thus R
0=-Fr+ /Eﬁ;(l(x < t)|Y = p) dF

= H(F}, FY).

EXAMPLE. Recall that the product limit estimator S of a survival function
S, =1— F, is based on data given by pairs (Y;, A;), i =1,..., n, where Y, =
min(X;, Z;,) and A, = I(Y, = X,). Efron (1967) showed that the product limit
estimator is the unique solution [for ¢ < Y,,,] to the self-consistency equation,
which in this case reduces to

o L« (@=4,)8(2)
S(t)=n i§1I(Yi>t)+n g_;,t-——s(x)

¢ S
= S7(t) + SA(t) _/()S((Tt')) dsS’(y),
where
Sit)=n LIV > t,8,=1)

and l:I
| Sh(t)=n' L I(Y, > ¢t, A, = 0).

i=1
Let S(¢)=P(Y;>¢tA;=1), S(¢)=P(Y,> ¢4, =0), S(t)=S,t)+S(2),
and S§(¢) = SJ(t) + SZ(t). Define H(S,, S,, S)(t) to be —S(t) + S,(¢) + S(¢t) —
14S(t)/S(y7)) dS(y). Then we have

LEMMA 4.2. If the survival function S, and the censoring distribution func-
tion have no common discontinuities, then for any U < oo such that S(U) > 0,
the equation H(S,, S, S)(t) = 0 has unique solution S (t) for t < U.

Proor. To see that S(¢) satisfies H(S,, S,, S,)(¢) = 0, write
S.(t)=E(E(I(X > t)|Y,,...,Y,))
= E(E(I(X, > t)|Y,, A))

—/OOOE(I(X,- > 1)|Y; =y, 4; = 1) dS(»)

_/0°°E(1(Xi > t)|Y;=y,A;=0)dS(y)

—jo“’I(Xi > t) dS,(y) —/0°°E<I<Xi > t)|Y, = y, A, = 0) dS,( )

—fOtE(I(Xi > t)|Y,=y,A,=0)dS(y)

S0+ 800 - [ as ().

Uniqueness of the solution, for ¢ < U, follows from the fact that for any & > 0,
and step functions S; and S; having no common discontinuities such that
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supy ., < ylSi(¢) — S (t)| < e and sup, _ , . y|S:(¢) — S(¢)| < ¢, the result of Efron
(1967) implies that there is a unique solution of H(S;, S7, S) (1) = 0,for t < U. It
can also be proved that

sup |H(S;, S:, S)(¢t) — H(S,,S.,S)(t)| >0 as sup |Si(t) —S,(¢)|-0

0<t<U 0<t<U

and sup, _, . y|S&(t) — S(t)| = 0. Therefore, the unique solution of H(S;, S¢, S)
= 0 implies the unique solution of H(S,, S., S) = 0. [For a direct proof see Tsai
(1986).]

This gives us:

THEOREM 4.3. Under the conditions of Lemma 4.2, the product limit estima-
tor

A 1
an(t) = n I —
S W A%
j=1

converges almost surely to S,(t), uniformly (fort < U) as n — oo.
‘PROOF. Apply Lemma 4.2 and Theorem 4.1.

REMARK 4.3. Theorem 4.3 can be extended to cover the case where the
censoring times are fixed arbitrary constants provided the empirical subsurvival
functions S} and S converge uniformly to the functions S (¢) = (1/n)L]_ | P(X;
>t,A,=1)and S(¢t)= (1/n)L’ P(X; > t, A, = 0), respectively. It also seems
likely that the theorem can be extended to cover convergence on the entire half
line if there is no U < oo such that S(U) = 0, but this is less important in
practice. We return to the general theory, and present results on weak conver-
gence and the law of the iterated logarithm.

THEOREM 4.4. Let ﬁ;" be a solution of H(F}, ﬁ;") = 0. If H satisfies the
conditions of the implicit function theorem and Theorem 4.1 (or the Remark 4.1),
then

(a) nV2(E1(t) — F(t)) - ,T *(F,, F; Y), where Y is a Brownian sheet with
(4.2) E(Y)=0 and Cov(Y(s),Y(t)) = F(s A t) — F(s)F,(t)
and

-1
T*(F,, F;Y) = ~(Hy(F,, F; H{(F,, F;Y))) .

(b) Assume also that F, is a continuous function. Then B — EJ. =

O(((loglog n)/n)'/?) almost surely as n — oo.

ProOF. By applying the implicit function theorem and the fact that ||F" —
F.||,, = 0 almost surely as n — oo, which follows from Theorem 4.1, there exists
a continuously differentiable mapping T, such that Fl" =T(F), F. = T(F),
and T'(F,;-)= T*(F, F,; -). Thus the results follow from the arguments in
Section 3.
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COROLLARY 4.1. Under the same conditions of Theorem 4.4,
n'*(H{(F,, F; F?) = H(F,, F;; F,)) > , - H{(F,, F; ),

yr txr tx

where Y is defined in (4.2).

Proor. By the invariance principle and Theorem 4.4, we obtain
n'/*(Hy(F,, F,; E*) — H)(F,, F,; F,)) = Hy(F,, F,; n'/*(F - F,))

y, X7
- yHj(F,, F;T*(F, F;Y))
= —H{(F, F;Y).

REMARK 4.4. In order to guarantee some asymptotic properties in the para-
metric setting, some smooth conditions are required either on the likelihood
function or on the normal equation. (4.1) serves as a normal equation for
self-consistent estimators (or for GMLEs, if the GMLE is a self-consistent
estimator). The smooth conditions in Theorem 4.4 can be viewed as an analog to
the smooth conditions for the MLE, guaranteeing certain asymptotic results. And
Corollary 4.1 can be viewed as an analog to the asymptotic relationship between
the MLE and the score statistics (cf. Theorem 5f.2(ii) in Rao, 1974, page 365). For
the product limit estimator .§x” these results take the following form:

LEMMA 4.3. Under the conditions of Lemma 4.2, the function

H(S,,S., S)(t) = =S(t) + 5,(t) + 5(t) - fs(() ds,(y)

has the following properties:
(a) H is continuously differentiable at (S,, S,, S,) and

(S S, S Sy — Su)(t)= (Sn_s )(t)’

H(S, 8,83 87 = 8)(0) = (87 8)(0) - [ 52 s s = S)(),
and
H; (Su’Sc’S S )(t): _( t(s )(t) dSc(y)

+'/(;th(t)(Sx - Sx)(y) ds‘(y)

S(y7)
(b) H; has an inverse. Furthermore

—(H{(S,,S., S; H{(S,, 8., 8, S7 — S,) + H)(S,,S..S,; 87 = 8,))) '(¢)
= =80~ [1/(8,+ S)(y ) (8] = 8,)(»)

+ (8= 8)(3)/(8,+ 8)'(y7) d8,(9)
+ [(82 = SIS, + 87 ) dS ().
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PROOF. See the appendix.
By integration by parts and the relation S, = S, + S, we have

n'/2(H{(S,, S., S Hi(S,, S, 85 81 = 8,) + Hi(S,, 8. S, S2 = 5.))) ' (2)

1/2 n 1/2 ( ) Su(x)
- —sx(t>{—n/ (87 = 8)(0)/8,(0) = [[n =g 5 ds e )

t | ,S0(x) = 8,(x) .
+f0n/-——sy2(x_) dS,(x)

which is S, (¢) times the terms (A, + B,) in (7.9) of Breslow and Crowley (1974).
Since Lemma 4.3 implies that H satisfies the conditions of the implicit function
theorem, by Theorem 4.4 and Lemma 4.2, we have the following theorem:

THEOREM 4.5. Under the conditions of Lemma 4.2, for any U such that
S(U) > 0,

(a) nV/ 2(S" S.)(t) converges weakly to a Gaussian process Z(t) for t in
[0,U] with E(Z) = 0 and Cov(Z(s), Z(t)) = S(s)S, (t)fOS“S ds,,

(b) sup, -, yIS" — S,| = O(((loglog n)/n)"/?) almost surely asn — .

Weak convergence of the product limit estimator has been studied by Breslow
and Crowley (1974) under the random censorship model, by Meier (1977) under
the fixed censorship model, and by Aalen (1976, 1978) under a competing risks
model using counting process approach. The above authors either assume that
both S, and G are continuous in the random censorship model or S, is continu-
ous in the fixed censorship model to establish the weak convergence of S" Under
this continuity assumption and the random censorship model, Féldes and Rejto
(1981) proved the uniform (sup norm) consistency of the product limit estimator
with rate factor O(((log n)/n)'/?), while Burke, Csorgd, and Harvath (1981)
proved uniform consistency with rate O(((loglog n)/n)'/?). Gill (1983) recently
extended some of these results to the entire half-line.

5. The self-consistent estimator of doubly censored data. Let X|,..., X,
be iid random variables, having S.(t) = P(X, > t) as their common survival
function. Let (L, R)),...,(L,, R,), where L, < R, for all i=1,...,n, can
either be iid random vectors with common survival function or be fixed constant
censoring times, though we will cover only the former case here. The observations

are the n pairs (Y, D)),...,(Y,, D,), where Y; = max(min(X;, R,), L;) and

0 Y=L,
D=1 ifY, =X,
2 ifY,=R,

Turnbull (1974, 1976) proposed a self-consistent estimator .§x" of S, that satisfies
8r(t) = Su(t) + 57(t) + Sp(¢) + X I(D, = 2)87(¢) /SX(Y,)

Y.<t

- L I(D,=0)(1 - 8/(2)) /(1 - 8x(Y))),

Y<t

(5.1)
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where S (t)= P(Y;>t,D,=1), S(t)= P(Y;>t, D,=0), and S(¢t)= P, >
t, D;=2) and S}, S/, and S are the empirical subsurvival functions of S,, S,,
and S,, respectively. Turnbull studied the uniqueness, consistency, and weak
convergence of S" with grouped data. The consistency and weak convergence of
S with ungrouped data are established in this section. In fact, the proofs of the
followmg corollaries all essentially follow the lines of the proofs in the last
section, so we omit the proofs here.

COROLLARY 5.1. For any real numbers L and R with 0 < L < R < o such

that S(R) > 0 and S(L) <1, and ((L,, R,),...,(L,, R,)) iid with distribution
function having no common dzscontmuztzes then

S.(t) = Si(6) + 8,(6) + 5,(¢6) = ['S.()/S.(») dS ()
0= 8.0)/(1 = 8(57)) dSi( ).

Let S=(S,, S, S, S,) and
H*(Su’Sl’ r x)(t) _Sx(t) +Sl(t) +Sr(t) +Su(t)

—fO’Sx(t)/Sx(y)dSr(y‘)
+ft°°(1 —S,(¢))/(1 = S(y7)) dS,(y).

COROLLARY 5.2. Under the conditions of Corollary 5.1, H*(S,, S;, S,,G,) = 0
has a unique solution G (t) = S(t) for L <t < R.

COROLLARY 5.3. Under the conditions of Corollary 5.1, sup; _,. RlS (t) —
S.(t)| = 0 almost surely as n — oo, where S" is defined in (5.1).

COROLLARY 54. Under the conditions of Corollary 5.1, H* is continuously
differentiable at S and H*'(S; S} — S,)= S} - S,

Hy(8; 87 = 8,)(8) = (87 - s»(t)
+f (1= 8(2))/(1 = Sy7)) d(S/' = S)( ),
Hj(S; 8" = 8,)(¢) = (87 - S,)(¢) + f S.()/S.(¥) (S = S,)(¥)
H{(8, 87 = 8.)(1) = = (87 = S.)(¢) = [(S = 8.)(1)/5.(7) dS()
+[S0)(87 = S)(3)/82() dS(5)
= [7(8r = 8)(0)/(1 = SU») dSi(5)
+ 7= S(0)(87 - 8)(3)/(1 - 8(5)) dS( ).
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COROLLARY 5.5. If the conditions of Corollary 5.1 hold and H}' has an
inverse mapping, then

(a) n'/4(Sr — S, )X(t) converges weakly to a Gaussian process Z for L < t < R,

(b) sup; ., rlSL8) — S.(8)| = O(((loglog n)/n)"/?) almost surely as n — oo.

We have not been able to prove the existence of an inverse mapping of H ;'
Even if (H;*’) ! exists, we do not have an explicit form for (H;*’) !, therefore the
covariance structure Z cannot be obtained directly. The following approach may
prove helpful in such cases.

Let Z = T*(F,, F; Y), where T'* is defined in (4.2), with covariance structure
V(s, t) = Cov(Z(s), Z(t)). By Corollary 4.1, we have HJ'(F,, F; Z) =
—H*(F,, F,;Y). Since the covariance structure of Y is a function of F,, the
covariance structure of H*(F,, F;Y) is a function of K and F,. Let
G(F,, F,)(s,t) = Cov(H*(F,, F,; YXs), H*(F,, F,; Y)(t)), which can be derived
from (4.2), and H *. Furthermore, the covariance structure of Hy*'(F,, F,; Z) is a
function of F,, F,, and V, say y(F,, F,V)s,t). Thus we have an implicit
functional equation for V,

¥(F,, F.,V)(s,t) = Cov(Hy(F,, F,

yr fxo y X3

Z)(s), Hy'(F,, F; Z)(t))

X

(5.2) = Cov(H*(F,, F,

y x>

= G(F,, F,)(s,t).

yr fx

Y)(s), H¥(F,, F; Y)(t))

X

The function V can bei solved frorrl (5.2). An estimator %4 Qf V would be the
solution of W(F, F."; V) = G(F)", F"). The consistency of V can be established

yortxo

by showing that ¥(F/,F" V)- ¥(F,, F, V), and G(F/, F') > G(F,, F,).

yorLxo

The conditions needed to prove consistency in general are currently under
investigation.

APPENDIX
Proor oF LEMMA 4.3. By using the formula
t
f‘F(w) dG(u) = F(u‘)G(u)‘ - f’G(u) dF(u-),
0 o Yo

we find

t

[ d(S2(5) = 8.5)) =

A Sx(,}") (S:(y) - Sc(y))

S(y7)

0

¢ 1

Define
(&)= sup [f(2)].

O<t<U
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Now

,(Sc"(y) -S.(y)
SZ(y)

X

[(82() =83 d

sl

and this gives

| ['80(0)/80(57) d82() - ['8.0)/8.(57) dS(9)]

,(s;(t)) ( t)) )‘ ,S()
o\ $M(y) S{(¥7)

<1182 = ScllL/S2I + 187 = ScllIL/Sll + 188 = Sl
HIS1182(0) = S(0) [+ S 1L /Sll 118" = Sll.

Since S(U) > 0 implies S(U) > 0, we have ||1/S |=1/S(U) < oo, and ||S,|| =
S.(0) = 1 Therefore ||H(S}, S” Sy — H(S s S S|l = 0 as max(||S;) — S, |, IS”

d(SMy) - S{»))

u’ e x
- S, ||S" — S,|) = 0, for every subsurvival function S7, S, S?, and S, and for
every survival function Sx", S,. This proves H is a contlnuous mapping. Slnce H
is linear in its first and second variables, the derivation of the first and second
partial derivatives is straightforward, and

|H(S,, S., 87) — H(S,, S., S,) — Hi(S,,S., 8" = S.)|

)(¢ ! ds
“f( 7o~ 567 S

-8 )(») 1 1
S{y7) Sr(y)  S{y) ) d54)

<187 = SUIIL/82 = 1/8,0 + IS IS = Sl IL/S Il ILl/Se = 1/8,]

+s(t)/

= o(|IS; — SI)-
Since (S,, S, S,) = H{(S,,S,,S;; ) and (S,, S, S;) = HyS,, S,, S,; ) are con-

tinuous mappings and all partial derivatives exist, Theorem 7.4.3 of Brown and
Page (1976, pages 284-285) implies H is differentiable. Therefore, (a) is proved.

(b) In order to prove that H; has an inverse mapping, we have to show that
H(S,,— S., S;; &)(t) = 0 has a unique solution g(¢) = 0. But H{(S,, S, S,; 8) =
0 implies the following integral equation:

S(t)g(y™)
1+ fo‘ﬁ dSc(u))

which is the Homogeneous Volterra Equation and is known to have exactly one
solution g(t) = 0. Therefore H; has an inverse mapping [see proof of Theorem 6

0=g(t)+

A ds(y),
SX(y™)
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of Hochstadt (1973, page 33)]. Since

(A1) 0= —S,(t) +S(t) + S,(t) — S.(¢) /O
we have
0- —dS(t)+dsc<t>+dsu<t>—(dsx(t»/o‘s(ly) ) - ds0)

_dS (1) ‘ ( )

_S()( )+dSu(t).
Thus

1 B 1

(A2) s =578 ds,,

which has been established for the random censoring model. To prove the rest of
(b), we have

’ (S —8)(y7)
—-H;|S,,S,,S,; -5 ———-——2 — dS,
- ( ° (t)f +8)%0) (y))
¢ (S8 — ¢ S(t)(SF—8.)(s7)
- _S — - dS,(s) dS
x(t)j(‘) (S S ) ( _) ( ) ff S (y_)(su + SC)2(S_) u( ) c(y)

Cpr S(E)(SE = 8.)(s7)
iy S(y*)(s T s)e) )AL

- S)(y7)
S.(t )/ .15y BTy S
fz S.(t)(8k = S)(y7) fny(y‘)
(8, +5.)(y7)S(y7) %o Ss7)
B _fz S()(S = S)(y7)
0 S(>¥y)(S, +8)(y7)
_ _fth(t)(Sc"— S)(y7)
0 SX(y7)
= é(SM,SC,Sx; Scn_Sc)'
Similarly,

dS(s) dS,(y)

dsS,(y) by (A1)

dS(y) by (A2)

—H?:(su,sc,sx;S( [[22 :)(y)dsuu)

+f ——————( ARG Su>(y)})
= H{(S,, S0» S5 S = 5.)-
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