1282 CALIBRATION-BASED EMPIRICAL PROBABILITY

yet be the seed from which grows a useful method for comparing and evaluating
forecasters. One step in this direction has been taken by Rubin (1984), but more
work is needed.
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Mark Schervish musters some convincing arguments and examples to back up
his position, outlined in my final paragraph, that the mathematics I have
developed cannot be regarded as establishing the concept of empirical probability
on a firm footing. All in all, I am in agreement with him. The essentially
asymptotic nature of any criteria for empirical validity of probability assign-
ments must mean, quite simply, that these can never be applied to finite
experience in anything other than a nonrigorous and suggestive way. (The
half-baked suggestions of my Section 13.4 clearly attest to this.)

This consideration applies just as much to traditional frequency-based inter-
pretations of probability as to my attempted extension. Indeed, I have considered
elsewhere (Dawid, 1985c) some of the logical difficulties that dog attempts to
understand the probability assignments of the Bernoulli model in terms of
limiting relative frequencies, and reached conclusions similar to Schervish’s,
arguing that an entirely subjective approach to the relationship between prob-
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abilities and empirical frequencies, based on de Finetti’s exchangability concept,
is the only logically satisfying one. That paper considered the construction and
interpretation of models for data still to be observed, rather than, as here, the
empirical validation of proposed models in the light of data. This raises new
problems of applied inductive inference.

Thus consider an observed finite sequence of outcomes of coin tosses that we
are happy to explain as Bernoulli trials with probability ;. We might have looked
at calibration, or applied various familiar statistical tests (but not too many!) to
satisfy ourselves of this. But, however long that sequence may be, we cannot
legislate to Nature that the penny must continue to yield Bernoulli trials, or that
heads and tails should be equally frequent. Based on much accumulated experi-
ence of similar processes we may indeed expect this, but there is no “law of
Nature” which ensures it (any such law could only be tentative, and subject to
revision if Nature decided—why not?—to behave differently). Thus any projec-
tion into the future of the empirical adequacy of probability assignments must
remain speculative.

The subjective and tentative nature of such projection is clearly brought out in
Schervish’s Example 4.3: While it is logically possible that the bum’s coin does
forecast the weather perfectly, our background experience would suggest a strong
belief in the contrary (this is my interpretation of the phrase “ Nature assures us
that the bum is just lucky”). Consequently, even if he has forecast correctly, for a
very long period, we might still have doubts about projecting this ability into the
future. However, our doubts would probably not be so strong if the same
forecasts had been produced, instead, by an experienced weather forecaster.

If now the bum’s success continued for an exceedingly long time, we might
eventually feel obliged to take it seriously. But, having done so (and so having, in
effect, postulated a new “law of Nature” connecting the bum’s coin with the
weather), how can we be sure that we might not then be rewarded by a complete
breakdown of the connection at some later point? The same essential nonprojec-
tability holds if the bum is spinning a pointer to provide well-calibrated probabil-
ity forecasts, rather than categorical ones, and continues to hold if we consider
instead the performance of an experienced forecaster. All this is simply to agree
with Schervish that (as I pointed out in Dawid, 1985b), it is impossible to
guarantee good forecasting performance, even though past data indicate it.

If I am inclined to agree with Schervish’s criticisms of empirical probability,
what can I rescue from my work? The mathematics still stands, of course, but
Schervish points to the lack of any logical implications for the practice of
Statistics. While this is so, there are, I think, some important lessons that,
although not logically mandatory, should guide us in that practice.

First, it does make sense to reject (even though only tentatively) a probability
model in the light of data: One should not forever doggedly hold onto an
empirically invalid model. This implies, in particular, that a Bayesian might have
to reconsider an initially proposed subjective distribution for all the data, in the
light of partial data. Likewise a classical statistician may need to reject his
statistical model, without having an alternative.
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Second, this informal but very real testability of forecasts against outcomes
strongly supports the meaningfulness, and hence the practical value, of formulat-
ing statistical inferences in terms of such sequential forecasts [the “prequential
approach” of Dawid (1984)], rather than in terms of forever unobservable
parameters. We should not be afraid of making our inferences testable.

Third, it surely makes sense to consider, ahead of getting data, the likely
extent of empirical validity of our future forecasts. What will happen if Nature
will generate outcomes from a distribution @ [i.e., so that forecasts (g;) from @
will be empirically valid], but we use forecasts ( p;) constructed from P? Can,
perhaps, a single P be expected to do well for each @ € 2, some postulated
statistical family of possible distributions for the data? What we would want here
is p; — q; — 0 with probability 1 for each @ € 2, where the ( p;) are fixed but the
(q,) depend on Q. This is the property of prequential consistency, which can
indeed be achieved for parametric, and many nonparametric, families 2. (Refine-
ments relating to the speed of convergence of p;, — q; to 0 are also available, and
form the subject of prequential efficiency.) To the extent that much of traditional
statistical theory is content to work within the ambit of a family 2 of possible
distributions, it should be granted that considerations of expected empirical
validity within this restricted ambit could be of interest and value.

Another advantage of restricting in advance the ways in which Nature is
considered able to behave, by assuming she will use some @ € 2, is that many of
the general problems of projectability of past forecasting performance, to which
Schervish draws attention, disappear. In such a restricted (but still very broad)
context, where we are imposing on Nature our (subjective) beliefs that she will
behave herself by using a common model for both past and future, model-based
forecasts that have performed well for a long time can be expected to continue to
do so. Thus one of Schervish’s “tricks of infinity” can be brought under control
by working within the standard statistical framework.

This restriction of scope does not solve the problems of deciding when we are
close enough to infinity for asymptotic results to apply, but these are not
essentially new. For example, Schervish’s Example 2.1 is no different in principle
from the asymptotic behaviour of Bayesian posterior distributions in a regular
parametric problem (Walker, 1969). Given enough data, any two Bayesians with
mutually absolutely continuous prior distributions will come into close agreement
over the posterior distribution (a normal distribution centered on the maximum
likelihood estimate). However, for any fixed quantity of data, we can always find
two Bayesians whose priors were so far apart that their posteriors are still in
wide disagreement. (Similar considerations apply to the asymptotic sampling
distribution of the maximum likelihood estimator conditional on various possible
choices of an asymptotically ancillary statistic.) This nonuniformity of conver-
gence does not, however, mean that considerations of asymptotic posterior
distributions, free of the prior (or of sampling distributions, free of ancillaries) are
completely useless. In just the same way “asymptotically unique” valid probabil-
ity forecasts are not completely useless, and I dispute Schervish’s conclusions
from his Example 2.1. I do, however, agree with him that more careful study of
the use to be made of such asymptotic animals must involve subjective considera-
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tions, broadly comparable to the analysis by Edwards et al. (1963) of the effect
on the posterior distribution of prior inputs.

In summary, I am extremely grateful to Mark Schervish for his penetrating
commentary on my work, which greatly helps in clarifying its practical implica-
tions and limitations.

Additional Reference
Dawip, A. P. (1985c). Probability, symmetry and frequency, Brit. JJ. Phil. Sci. 36, 107-128.

DEPT. OF STATISTICAL SCIENCE
UNIVERSITY COLLEGE LONDON
LonpoN WC1E 6BT

ENGLAND



