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The basic elements of our paper, volume testing and components of variance,
are staples of good practice in the application of ordinary linear models. Table A
gives a simple example. Twenty dice have been seized from a fictitious Las Vegas
casino, on the suspicion that the casino has subtly overweighted the occurrence
of “1” and “6.” The police roll each die 50,000 times, obtaining the results shown.
Is the casino guilty?

Let m; be the number of occurrences observed for the ith die. The total m =

2. m; equals 335,294. If the dice are fair, m is nearly normally distributed with
mean 333,333.3 and standard deviation [10°(%5)(24)]/? = 471.4. The obvious
normal test statistic z = [335,294 — 333,333.3]/471.4 equals 4.16, significance level
2 - 1075, overwhelming proof against the hypothesis of fairness. The multidimen-
sional test statistic

x2= 22 (m; — 16,666.7)2/[50,000(%)(%)] = 687.9

is also overwhelmingly significant when compared to the null distribution x3.
On the other hand, the t-statistic

t = (i — 16,666.7)/[Z(m; — m)2/(19 - 20)]¥2 = 0.70

is not at all significant, with attained level only .246 compared to a ¢, distribution.
Which test should we believe?

The correct answer is the ¢-test. The dice are unfair, as the x? test shows, but
not in the systematic manner of which the casino was accused. The trouble with
the z-test, which is just the ¢-test applied to all 1,000,000 rolls, is that the sample
size in this problem is really 20 and not 1,000,000. This is clear from a components
of variance analysis of the m;, which indicates that the component due to
variation between dice is about 34 times larger than the binomial variation from
50,000 rolls.

All of this is standard statistical practice. The point of bringing it up here is
that the ¢-test, which leads to the correct conclusion, is in fact a volume test.
The centered, renormalized data vector u = (u;, us, ---, u,), where u; =
(m; — 16,666.7)/[T 2, (m; — 16,666.7)*]'/2, is a point on .# %%, the unit sphere in
20 dimensions. The set of vectors U lying as close or closer than u to the point
e=(1,1,-.--,1)/ V20isa spherical cap on .#%,, centered at e. The significance

TABLE A
Number of occurrences of either 1 or 6 in 50,000 rolls each of twenty dice; total number of occurrences
is 335,294 out of 1,000,000 total rolls. Were the dice weighted?

171755 16734 16769 16359 16661 16285 16309
17479 16529 16486 15668 16292 17511 17020
15929 16829 17665 17981 16677 16356
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906 DISCUSSION

level .246 for the t-test is the ratio of the 19-dimensional volumes of the cap
compared to the entire surface of the sphere. See Efron (1969) for a picture, and
Hotelling (1961) for an extensive discussion of the t-test as a volume test. Both
authors show that the volume interpretation gives the ¢-test validity under more
general assumptions than normality. Indeed, the geometric interpretation allows
direct interpretation. The t-test example undoubtedly motivated Hotelling’s
interest in volume testing.

Several of the commentaries question the relevance of the volume test in the
two-way table situation. In fact H,, the hypothesis of uniformity leading to the
volume test, is not particularly interesting in its own right. We have used H, as
a hypothesis of disinterest, which is very much in the spirit of standard null
hypothesis. (That is why we called it Hy). In Table 4 for example, the fact that,
with sample size 160, the distributions of x% under H, and H, are hopelessly
overlapped shows the futility of standard x2 testing in this situation; we can’t
even distinguish H; from the uninteresting hypothesis Hy.

Why did we choose Hy, the uniform distribution, to represent the hypothesis
of disinterest, rather than any other broadly dispersed distribution over .%,(n)?
There are four basic reasons: (1) Mathematical tractability. The significance
level calculations for the volume test can be done reasonably accurately, in some
ways more accurately than those for the usual x 2 test. (Notice that our calcula-
tions are not asymptotic in the usual sense, and in particular make no use of the
central limit theorem. The central limit theorem does appear in the reduced
sample size considerations of Section 5, but only in a saddlepoint form, where it
is applied at the center of the approximated distribution.) The uniform distri-
bution on the sphere %%, which underlies the ¢-test, has many justifications,
but it would certainly not be much used if it weren’t mathematically tractable.

(2) Consonance with the usual x? test. The usual x 2 test measures how far the
observed table p is from the independence surface, compared to a x 3 distribution.
The volume test measures how close p is to the independence surface, compared
to the uniform distribution. It is nice to have “close” and “far” defined in the
same way, according to the natural Mahalanobis distance, and moreover for the
curves of constant distance, e.g., the ellipsoid in Figure 2, to be isopleths of
approximately constant density for both distributions. This last property, which
is also approximately true of the exponential family considered in Sections 4 and
5, makes the Mahalanobis distance a sufficient statistic.

(3) Components of variance arguments. The exponential family of Sections 4
and 5 is a components of variance analogue applicable to two-way tables. As
# — 0 in that family—that is, as the component of variance ¢} — co—the
exponential family approaches the uniform distribution, at least for tables p near
the independence surface. In this sense H, lies at one end of a one-parameter
components of variance family, with the independence hypothesis H; at the other
end.

(4) The Bayesian argument (2.11), (2.14).

Other of the commentaries raise a more fundamental objection to our paper:
perhaps the simple type of analysis we propose, which does not examine the
structure of the table, but only its Mahalanobis distance from the independence
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surface, is misguided; only a structural analysis can yield interesting answers.
The same objection can be raised against components of variance (random
effects) analyses of standard linear models. In the casino data, for example, might
we not do better with a careful linear model analysis which took into account the
size, weight, and color of the individual dice?

The fact is that components of variance analyses are useful in standard
applications precisely because they avoid the specification of detailed structural
models. Structural analyses can be difficult and confusing in their own right, and
when possible it is nice to answer simple questions, e.g., is the casino guilty or
innocent, in a simple way.

The charms of simplicity become particularly obvious when one is faced with
a large amount of work. In Table 2, for example, we can suppose that many more
questions were asked of the Swedish families besides income and number of
children. Perhaps each family answered a census form with 50 main questions.
These days the Swedish statistician would probably receive a fat computer
printout including all () = 1225 two-way tables.

It is wise to take a preliminary look at the data in this way before launching
an ambitious structural analysis, but it is impossible to examine 1225 tables
carefully. A simple summary statistic for each table, like the standard significance
level of x?, helps sort them into categories for deeper investigation. Our paper
proposes two other helpful summaries, the volume test significance level and the
effective sample size, or equivalently .., (4.18).

Even when the statistician intends to do a structural analysis of a particular
table, it is nice to know how much structure there is to analyze. Our nonstructural
analyses of Tables 1 and 2 show that Table 1 is far more nonindependent than
Table 2, 6o = .26 versus d:q = .0051, so that there is a lot more to explain in the
first case. (Here is a more familiar way to say the same thing: let 7, be the table
of constant probabilities, all equal to %6 in Table 1. Then the Kullback-Leibler
distance from the observed table to #, decomposes as I(p, 7o) = I(p, =) +
I(#, 7). The numerical values of the decomposition are .383 = .124 + .254 in
Table 1, compared to .570 = .011 + .559 in Table 2. In other words,
I(p, #)/I(p, 7o), the proportion of the observed table not explained by indepen-
dence, is 32% in Table 1 and only 2% in Table 2.)

In fact, one might prefer to start a structural analysis of Table 1 in terms of
departures from perfect dependence, rather than departures from perfect inde-
pendence. ‘

In summary, our paper tries to extend the benefits of standard random effects
modelling to the two-way table situation. We are by no means the first to make
such an effort, although we have employed somewhat different mathematical
tools than our many predecessors. With these points in mind, the commentaries
comprise a valuable catalog of other approaches and viewpoints. For the most
part they avoid the sneer genre of statistical commentary (“our learned colleagues
seem to have forgotten the correct formula for the normal distribution”), and
concentrate on constructive alternative analyses. Here is a brief guide, critique,
and response.

Professor Pierce. Writing from basically the same point of view as our paper,
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Pierce raises an insightful question: perhaps the Mahalanobis distance, as illus-
trated in Figure 2, is the wrong metric for measuring overall discrepancies from
independence. He perfers the metric which would be appropriate if the individual
cell counts m;; were independent binomials or Poissons, so that var(m;;) was
proportional to 7;; rather than to the ;jth diagonal of the Fisher-Yates matrix.

Pierce is on strong ground in not automatically trusting a fully invariant
approach, which essentially treats all linear combinations of the m;; as being of
equal interest, to properly model the original cell counts m;,. The original counts
are defined in terms of natural names, like “blue” and “two children,” and
perhaps this fact should be given more weight in the analysis. On the other hand,
(i) the counts m;; are not independent binomials, especially when conditioned on
the marginals; (ii) the overdispersion differences shown in Pierce’s Table 1
become a lot less dramatic when expressed in terms of standard deviation instead
of variance; (iii) the differences become smaller still when I and J are bigger, in
particular for min(Z, J) > 2.

Professors Breslow and Moore. Also writing from a components of variance
viewpoint, Breslow and Moore start off in the same direction as Pierce, but wind
up preferring a different model of overdispersion for the cell counts, based on
Wedderburn-Nelder-McCullagh quasi-likelihood calculations. This is a nice ap-
proach, having both the virtues and defects of Pierce’s method. There is no
reason that their analysis, in terms of the parameter 7, should agree with ours in
terms of o, since the two parameters measure overdispersion on different scales.
Nevertheless it is disturbing that the Breslow-Moore method does not cleanly
separate two situations which seem as different as Tables 1 and 2.

With Professor Nelder’s considerable help, we were able to see the close
connection of quasi-likelihood theory with the results in Section 5, as suggested
by Breslow and Moore. The connection is not so much with the original Nelder-
Wedderburn theory, as with the “extended quasi-likelihood” of Nelder and
Pregibon, described briefly on page 212 of the McCullagh-Nelder monograph.

Consider (5.6), with dimension D = 1, sample size n = 1, so

log fo(x) = —0I(x, 8;) + log ¢(0) + log g.(x).

Here I(x, 1) = T(x, 81)/2 is the Kullback-Leibler distance, and we have used
(5.3). Now make the following approximations: log g,(x) = ¥ log[2~ var,(X)],
(central limit theorem) and log ¢ () = % log 6, (5.7). Then the expression above
becomes

log fy(x) = —0I(x, B1) + % log 6 — % log[2 var,(X)],

which is exactly the extended quasi-likelihood family (11.2) of McCullagh-Nelder.

This close relationship may make our approach more palatable to those familiar
with generalized linear models. It may also be of some interpretive value in using
the Nelder-Pregibon theory. For example, if a logistic regression is fit by extended
quasi-likelihood with 6 = 14, then the fitting is essentially the same as ordinary
logistic regression, except with the sample size at each covariate value reduced
by factor Y.

We are grateful to Professors Dickey, Fienberg, Leonard, and Good for explor-
ing the connections between our paper and a variety of Bayesian analyses. In
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thinking about such things, we have found the following simple example instruc-
tive. Consider n tosses of a coin. The (5%) volume test for p = 1 rejects if the
number of heads does not fall among the central n/20 points.

Let us begin by comparing this to the usual (5%) frequentist test: reject if the
number of heads does not fall among the central 2vn points. Here, asymptotics
can be misleading, suggesting asymptotically huge acceptance regions for the
volume test, O(n) compared to O(vn). In fact, for n = 99, the volume test rejects
outside the interval [48, 52] while the standard test rejects outside [40, 60]. The
volume test acceptance region exceeds the frequentist region only for n > 1600(!).

One can give a naive Bayesian interpretation to the volume test by imagining
a Bayesian with uniform prior. Then the central n/20 points have prior mass Yzo.
So this Bayesian is reasonably certain that the number of heads will fall outside
the central interval.

Following Jeffreys, a modern Bayesian might formulate the testing problem as
follows: put mass P(0) on Hy: * = Y%, and mass P(1) on H;: 7 ~ Uniform. Let a
loss function be specified by L(0, 0) = L(1, 1) = 0, L(0, 1), L(1, 0) > 0; the Bayes
rule rejects H, for

P(1]x)/P(0]x) > L(0, 1)/L(1, 0),

where P(i|x) = P@)P(x|i)/[P(0)P(x|0) + P(1)P(x|1)]. When P(0) = P(1)
and L(0, 1) = L(1, 0) the rejection region is

1 n\1
-—>1.]=.
n <]) 2"

Asymptotically, this is not very different from the frequentist test, rejecting
outside an interval of length proportional to vn(log n)?, (when n = 99 the Bayes
test rejects outside [39, 61]).

When would a Bayesian use the volume test for the simple problem? In the
framework above, it turns out that the volume test is approximately the Bayes
test when either P(0) > P(1) or L(0, 1) > L(1, 0).

While the above asymptotics are suggestive, they also underscore the fact that
there need not be a reasonable correspondence between observed significance
levels and posterior probabilities. Berger and Sellke (1985) contains some striking
further examples. The volume test is not intended as a substitute for a full
Bayesian analysis, any more than as a substitute for a structural analysis.

Of course, a Bayesian analysis must also confront the same problems: with a
huge sample size, small deviations from a null hypothesis will result in huge
posterior odds. Can we meaningfully distinguish between varities in such situa-
tions? One could contemplate a Bayesian analysis which tests for “closeness.”
So far as we know, such tests have not been worked out.

Here are some more specific responses.

Professor Dickey. When the null hypothesis is not simple, one must put a prior
on the surface of independence as well. We are grateful to Professor Dickey for
demonstrating the difficulties this can cause, and presenting his way through the
maze. We particularly appreciate his numerical results for the two tables. They
underscore the fundamental problem: just like the classical analysis, the Bayesian
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analysis rejects Hy, more strongly for Table 2. This misses the point that Table
2 is far closer to the null hypothesis than Table 1.

Professor Fienberg raises the following reasonable objection: Bayesian models
of overdispersion, like Professor Leonard’s, begin wtih a one-parameter family
of prior distributions {4 for 7, then generate the observed table p in two steps,
£9 — m — p. The last step is by ordinary multinomial sampling as in (2.12). OQur
one-parameter family (5.6) goes directly from 6 to the marginal density f,(p),
without saying what the family of priors £, is.

In fact, we have not found priors £, which yield as margins the family f,(p),
(5.6) (except for the uniform density f,(p) which comes from (2.11)). Instead we
have followed a quasi-Bayesian strategy for interpreting f,(p): the effective
sample size, originally defined as v = n#, is converted to a variance component
0% via definition (4.10), with Bayesian interpretation (4.15). This leads to state-
ments like 65 = .0243 or 6,4 = .26, which estimate the dispersion of £, about the
central point 7, without ever saying what £, is. As Breslow and Moore point out,
this is quite similar in spirit to a quasi-likelihood approach, which makes use of
convenient exponential family properties without displaying the exponential
family itself.

We also think the mathematical results have application outside our analysis.
Indeed, the set of points in the IJ simplex with prescribed margins is called a
transportation polytype in the operations research literature. Bolker (1972, 1976)
shows that this set is the intersection of I standard J — 1 simplices, reciprocally
oriented in J-dimensional space. For example, the set of 2 X 3 tables with
prescribed margins is the intersection of 2 reciprocally oriented equilateral
triangles. Such a region can have 3, 4, 5 or 6 vertices. Compare the drawing below
with Figure 2.

For 2 X 4 tables we get the intersection of 2 tetrahedra. We have thus given a
formula for the volume of such objects for 2 X I and 3 X I.

We are currently working with Karel Reisz from Stanford’s Operations Re-
search Department trying to use OR techniques to find volumes for other cases.
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Our approach involves computing a simplicial decomposition of the set of tables
with given margins, and using standard formulas for the volume of a simplex.
Even for 5 X 7 tables, a full simplicial decomposition is prohibitively time
consuming. We are working at a “greedy” algorithm, approximating the region
with large simplices.

Professor Leonard’s 1977 paper introduces another components of variance
model, which is similar but not identical to our model (5.6). In situation (5.15),
where x ~ Bi(20, 8)/20, Leonard induces overdisperison of x about .5 with the
beta prior density 38(1 — 8)8. (The exponent 8 gives effective sample size n/2 =
10 in his equation (2.3).) The marginal density for x is numerically close to but
not identical with our f; in (5.15).

There are, in fact, many technically different one-parameter models of over-
dispersion which lead to the asymptotic scaling property (4.12). There are four
justifications for the particular choice (5.6):

(i) It exactly preserves the contours of equal likelihood ratio, as stated

following (5.24).

(i1) It can be defined for general exponential families, not just the multinomial.

(iii) It is simple to calculate with, as in (5.7), using the central limit theorem
approximations only in saddlepoint form, as in (5.10).

(iv) The effective sample size interpretation of 8, » = n#, can be interpreted in
terms of the corresponding phenomena for standard linear models
(4.1)-(4.10).

Probably none of these advantages make a great deal of difference in applications.
What does, or at least could, make a difference is Pierce’s point: models that
scale as in (4.12) agree with the Fisher-Yates dispersion matrix, and not with the
familiar models of cell-by-cell binomial variation.

Professor Leonard’s Bayesian analysis of the Marine Corps data is pleasing
and informative. The table has n = 5698, x% = 1018.28 (not 456.93 as stated),
and D = 77. The unconditional volume test significance level is very small
1.3 . 1077, estimated effective sample size # = 431, with 90% confidence interval
v € [323, 551]. This indicates departures from independence smaller than Table
1 but bigger than Table 2, o, € [.061, .082]. In other words, we might expect to
find some interesting deviations from independence, but not of enormous mag-
nitude, which is what Leonard’s analysis nicely reveals. (Incidentally, 50% of the
x? statistic comes from school G, with 40% from the entry “169” alone. Why
doesn’t its residual from independence look significant in Leonard’s last table?).

Professor Good. Good and Crook had to work hard and cleverly to produce
priors which agree with Fisher’s conditional inference. They were aiming for a
general-purpose test. Examples like Table 2 suggest that such universal priors
are a lot to ask for. The papers by Good, and Crook, are of considerable interest
to both Bayesian and non-Bayesian readers.

Regarding the asymmetry of our approximation (7.6), we have tried a symme-
trized version: the square root of the product of the two approximations. The
version recommended seemed (very slightly) more accurate in the examples we
tried. We recommend choosing the direction that involves a mixture (as in (7.2))
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with the smoother of {r;}, {c;}. This allows an approximation of as nice a function
as possible.

Professor Sundberg. We agree that Martin-Lof’s redundancy statistic is a
useful overall measure of departure from independence, and warmly recommend
his 1974 paper to the reader. Redundancy’s definition in terms of Shannon
information leads to nice mathematical properties, but also to difficulties of
interpretation for statisticians. For Tables 1 and 2 the redundancy measure
equals .046 and .005, respectively, interpreted as the relative decrease in the
number of binary units needed to specify the entries in the table when we take
into account the regularities in the exact test.

Martin-Lof also offers a rough scale (his Table 5). On this scale, Table 1 falls
between a very bad fit and bad fit while Table 2 falls between a bad fit and good
fit. We agree with this, but only as a very rough summary.

For a 2 X 2 table, the slice 7' (r, ¢) in Figure 2 is a straight line segment. In
this case o, (4.18), is just the random effects component of standard deviation
divided by the length of the segment. If o, = .07, for instance, then the true
table = deviates from the point # on the segment by an expected root-mean-
square amount 7% of its maximum range of deviation. Sundberg objects to o
as unconvincing, but it certainly has geometry on its side.

Sundberg’s objection to the effective sample size » is based on an incorrect
extension of v to three-way tables. The normal theory motivation for »,
(4.1)-(4.10), does not depend on the dimension D, and neither would its proper
extension to three-way tables. Such an extension is always possible according to
the theory of Section 5, but, to answer Professor Fienberg, we have not attempted
it. In any case, . is preferred to v as a descriptive statistic because of its easier
geometric interpretation.

(We are grateful to Professor Sundberg for catching an error in our original
manuscript.)

Professor Goodman gives the best argument for structural models, a successful
analysis for each of our two tables. How good is the fit obtained? Consider his
model H' for Table 1. In terms of our Figure 2, the Mahalanobis squared distance
from p to = in the g-dimensional space, 7 (r, c¢) is 138.29/n, n = 592. If =’
represents the table fitted under the two-parameter model H’, its Mahalanobis
squared distance from = is (138.29 — 10.48)/n.

If H’ is a fixed two-dimensional linear subspace of 7°(r, ¢), passing through
w, then the correct test statistic for goodpess of fit is

(13829 — 10.48)/2
B 10.48/7 = 427,

which is compared with a standard F, ; distribution. This comparison is a direct
analogue of the t-test in the casino example. Having once decided that p is too
far away from 7 to have arisen from multinomial sampling (2.12), it is necessary
to compare the amount of explanation, 138.29 — 10.48, with the amount to be
explained, 138.29, rather than making theoretical comparisons based on (2.12).
Another way to say the same thing is that the comparison can be made in terms
of (2.12), but with n replaced by the effective sample size .

F
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In the case at hand, F = 42.7 is highly significant compared to the .05 critical
value F§% = 4.17.

Professor Plackett. Most of the calculations in our paper were done on a hand
calculator too! The methods we propose are not computationally difficult or
sophisticated. Plackett’s rough and ready structural analysis of Table 2 is fine,
but what about Table 1, or Leonard’s Marine Corps data, or any other table that
might arise? Plackett’s argument works equally well against any systematic
method of analysis, not just our paper.

Drs. McCullagh and Pregibon. We are sorry that McCullagh and Pregibon,
who have a lot to say about this problem, have chosen to be so contentious here
(which is especially strange given the close connection with their own work, see
the Breslow-Moore remarks above). Besides some legitimate differences of opin-
ion, of the type discussed earlier, there are several outright misstatements of
fact: # does not depend on the sample size; sample size does not necessarily
decrease when there are many tables to consider (think of the Swedish statisti-
cian); the most powerful test of uniformity does not depend only on the marginal
totals; our calculations are not highly asymptotic. This type of careless commen-
tary can be accepted in praise, but is unforgiveable in criticism.

In summary, the usual chi-square test for I X J tables seems easy to misuse
and misinterpret. Over the past 10 years a number of now highly developed
approaches have evolved. These often have considerable overlap, and no one
(including the present authors) seems to have them all in focus. We have learned
a lot from the commentaries. In particular, we leave the discussion with a healthy
respect for the simple direct interpretation of Hotelling’s volume test.

Finally, our thanks to the Editor for his considerable efforts in assembling this
discussion.
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