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Diaconis and Efron’s (henceforth DE) goal in this paper is a laudable one—to
help interpret the classical chi-square statistic used to test for independence in
two-way contingency tables in cases where independence clearly does not hold.
Their mathematical statistics results are impressive, their theorems are seemingly
impeccable, and their writing style is lucid. Yet, even after several readings, I
came away from the paper with a feeling of disquiet, and a belief that they had
failed to achieve their goal for most practical purposes. This comment provides
some explanations for my disquiet and raises questions about the immediate
utility of DE’s results. The claim here is not so much that DE’s results will not
be of use to someone in the future (for their elegant results and geometrical
interpretations will surely be put to good use), but rather that they will not be
useful for the purpose originally proposed.

The statistical model for the counts in a two-way contingency table has two
components: (1) a sampling model for the generation of the counts given a set of
cell probabilities or expected values; (2) a structural model (corresponding to a
curved manifold in the simplex) for the cell probabilities that is typically tied to
the relationship between the categorical variables underlying the rows and
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columns (e.g., see Bishop, Fienberg and Holland, 1975, for an elaboration of these
two components). As lucid as their style is, DE gloss over the distinction between
these components, and, in doing so, they lead the unwary reader down the curve
of a one-dimensional exponential family of distributions to the limiting case of
the “uniform” distribution and the volume test. DE’s original null hypothesis,
H,, assumes a multinomial sampling model and the structural model of indepen-
dence. The usual alternative hypothesis, H4, changes the structural model but
not the sampling model. Sometimes this alternative model for the cell probabil-
ities is unrestricted, as in the classical chi-square test for independence, and
other times it is an alternative curved manifold of the same or higher dimension,
e.g., Goodman’s (1979) uniform association model provides a class of alternatives
to independence, indexed by a single parameter, for cross-classifications having
ordered categories. DE’s original alternative hypothesis, Hy, in effect changes
both the sampling model and the structural model. The volume test then
computes the probability content, under Hy, of the rejection region of the chi-
square test (see Fienberg and Gilbert, 1970).

I am not sure that the volume test or DE’s one-parameter exponential family
have any direct practical interest for contingency table analysis. In most sub-
stantive problems, we know what the sampling model is. When we take a simple
random sample from a population, the sampling model is multinomial for infinite
populations (and approximately so for finite populations). It is hard to envision
under exactly what circumstances the sampling model of H, would be of interest.
The entire DE approach involves first the use of the chi-square test, then the
volume test, and finally the estimation of 6, or equivalently a reduced sample
size. I would be somewhat happier with this package were I able to identify and
interpret the sampling and structural model components for specific values of 9,
in cases other than # = 0. Perhaps DE have some insights into this aspect of
their family of alternative models.

The interpretation of the volume test does not have a truly Bayesian flavor,
despite what one might infer from a reading of Section 2 of DE. They begin by
giving the vector of cell probabilities, w, a Dy;(1;;) distribution and then they
note that the marginal distribution for the vector of observed proportions, p, is
uniform over the lattice points of the simplex. But it seems to me that if we are
to put on our Bayesian boots (habiliment I am more than happy to wear) we
need to put them onto both feet. This means that we must come to grips with
priors for the cell probability under H;, e.g., by putting independent priors
(possibly uniform) on the margins of w. Then I guess we could get a marginal
distribution for p. Of course, we might begin by putting a nonuniform Dirichlet
prior on =, and then integrate over = to get a new sampling distribution for p,
e.g., as Brier (1980) does to represent cluster sampling. But then the structural
model needs to be imposed on the probability vector parameter of the Dirichlet
prior, e.g., independence for H; and unrestricted for H,.

Preferable to DE’s non-Bayesian approach, in my view, is the calculation of
the Bayes factor (see Good, 1976). For example, with uniform priors on the
margins of = under independence and a hypergeometric sampling distribution
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(which conditions on the sample margins, i.e., of p), the Bayes factor is

n! H mij! x 1
I m! I my! " NP, e)’

Perhaps I am missing something, but I do not see a clear link to the volume test
here. Good discusses several calculations considered by DE, but they are used for
different purposes in his paper. The seemingly Bayesian random effects approach
of Section 4 of DE is based on analogy and, in the end, I failed to find a Bayesian
interpretation to go with the one-parameter exponential family of alternative in
Section 5 (except in the limit when 6 = 1).

Despite the fact that I have not yet been won over to DE’s program for the
analysis of two-way contingency tables, I do believe that elegant results, such as
those described in their paper, will inspire unimagined uses. Thus I would like to
end this comment with a set of queries. More often than not, the statistician
working on a substantive categorical data problem will be faced with several
variables, not just two. Have the authors given any thought to the extensions of
their approach to chi-square tests for log-linear and logit models in multi-way
contingency tables? As the dimension of the table increases, the number of simple
null models involving some form of complete and/or conditional independence
grows extremely rapidly (e.g., see the discussion in Bishop, Fienberg and Holland,
1975; or Good, 1976). Would the authors choose to begin with the generalization
of the volume test for multi-way tables, and if so, how would they index the
exponential families of alternative distributions? Would they have a different
exponential family for each null model? Would there be a heuristic Bayesian
interpretation for the indexing parameters? Answers to these questions not only
may be of interest in their own right, but they may also shed some light on the
utility of DE’s approach to the interpretation of the chi-square statistic in the
analysis of two-way tables.
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