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ASYMPTOTIC SCORE-STATISTIC PROCESSES AND TESTS
FOR CONSTANT HAZARD AGAINST A
CHANGE-POINT ALTERNATIVE

By D. E. MATTHEWS, V. T. FAREWELL AND R. PYKE
University of Waterloo, University of Washington and University of Washington

The problem of testing for a constant failure rate against alternatives
with failure rates involving a single change-point is considered. The asymp-
totic significance level for tests based on maximal score statistics are shown
to involve the solution to a first passage time problem for an Ornstein-
Uhlenbeck process. An example illustrates the methodology.

1. Introduction. Let 7T be a random variable representing the time to some
event, for example, the time-to-relapse after remission induction for patients
with leukemia. Matthews and Farewell (1982) considered a model for the distri-
bution of T specified by the failure rate or hazard function

A if 0st<r~
(1) M“=‘{(1—g)>\,. if t=r

in which the two parameters satisfy 0 < £ < 1 and 7 = 0. Thus, 7 is a change-
point parameter for the hazard rate at which time it changes from the constant
hazard X to (1 — £)A. If £ = 0, then A (¢) is constant for any 7 and the corresponding
failure times are exponential with mean 1/A. In this case, the change-point
parameter is not really part of the model. On the other hand, if £ > 0, then T is
a combination of exponentials with density given by

Ae ™, t<r7
(2) &) = {p?\ exp{—Ar —pA(t—7)}, t=7

where p = 1 — £. In this case of p < 1, questions of inference concerning r are
much more interesting.

Matthews and Farewell (1982) consider the problem of testing the hypothesis
£ = 0, discussing, in particular, the appropriate likelihood ratio test statistic. The
distribution of this statistic was examined there by simulation. More generally,
Davies (1977) discusses the broader issue of hypothesis testing when a nuisance
parameter, sgch as the hazard change-point 7 in model (1) above, is present only
" under the alternative. Davies recommends the use of either the normalized score,
the normalized maximum likelihood estimator for £, or the signed square root of
the generalized likelihood ratio as a test statistic. He establishes that these test
statistics, as functions of the nuisance parameter, converge weakly to Gaussian
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584 MATTHEWS, FAREWELL AND PYKE

processes under suitable regularity conditions. This result can be used to inves-
tigate the asymptotic distribution of the test statistics and thus to obtain upper
bounds on the significance levels of the corresponding tests.

The work of Davies (1977) cannot, however, be used directly to specify a test
of the hypothesis £ = 0 in the model specified by (1) because of the basic
discontinuity present at 7. In this paper, we consider the test statistic which is
the normalized score statistic based on model (1). We then show, in Section 2,
that, for known A, the score process indexed by 7 converges weakly to an Ornstein-
Uhlenbeck (O-U) process which is a stationary Gaussian Markov process with
mean zero and unit variance (c.f., Cox and Miller, 1965, Chapter 5). The
asymptotic significance level of a test for no reduction in the hazard rate is then
shown in Section 3 to be the solution to a first passage time problem for this
O-U process. Section 4 extends these results to the case of A unknown, and the
application of the test to a particular data set is discussed in Section 5.

2. The score-statistic process and the limiting Ornstein-Uhlenbeck
process. In this section we first define the appropriate score statistic as a
process in 7, demonstrate the weak convergence of this process, and then in the
third subsection we identify the limiting process as the Ornstein-Uhlenbeck
process described above.

2.1 The score-statistic process. Let Ty, ..., T, be independent, identically
distributed (iid) random variables with hazard function specified by (1). Under
Hy: £=0, Ty, ---, T, have an exponential distribution with mean 1/\, while
under H;: £ # 0, the probability density function for the T’s is given by (2). The
resulting likelihood function, L, when A is known, yields a normalized score
statistic (9 log L/9¢){E(—d%log L/dt?)} /%, evaluated at £ = 0 for a fixed value of
7, that can be written as

(3) Z,(r) = n72 3 h, (T — 1)\ — BH(T; — 1), 7=0,

where H(x) = 1 or 0 according to whether x = 0 or not. The score-statistic
process defined by {Z,(7); r > 0} has E{Z,(7)} =0, Var{Z,(7)} = 1 and for 7, 7,
= 0, Cov{Z,(r1), Z.(12)} = exp{—YeA|7; — 72|}, where all expectations are
computed under the null hypothesis, £ = 0.

The asymptotic distribution of Z, cannot be specified using the results of
Davies (1977) because his results require that the asymptotic covariance function
of Z, be twice differentiable with respect to 7, at 7, = 7, = 7. However, it follows
from the classical central limit theorem for iid random variables that, for each
7 > 0, Z, has an asymptotic normal distribution with mean 0 and variance 1.
Moreover, it can also be shown that all of the finite dimensional distributions
are asymptotically normal with covariance exp{—¥\ |7, — 72|} for each fixed
71, T2. This suggests, of course, that the processes Z, converge weakly to an O-U
process.

2.2 The weak convergence of Z,. Let F, be the empirical distribution function
of Ty, ---, T,, independent observations from an exponential distribution F
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with mean 1/X. Then the Z,-process may be rewritten as

(4) Zn(7) = (ne*)? f {(x — 7)\ = 1} dF,(x).

Let UL (x) = n*%{F,(x) — F(x)}, x € R*, denote the empirical process based on n
independent random variables from F. Then, since the integral in (4) is zero if
F, is replaced by the exponential F, (4) may be rewritten in this case as

(5) Z,(r) = e*? f {(x — 7)\ — 1} dU%(x).

(For general F, a nonzero centering function is required.) Thus, the score-statistic
process can be viewed as the exponential empirical process indexed by a particular
family of functions, g,(x) = {exp(eAr)}{(x — 7)A — 1}H(x — 7), 7 = 0. The
unboundedness of these functions necessitates some care in studying the weak
convergence of Z,. Our approach is to use strongly convergent versions of the
empirical processes (for example, c.f., Pyke, 1969) after applying integration by
parts to (5) to represent Z, by

(6) Zn(1) = —e"’ﬂ{}\ f Ur(x) dx — Uf(r)}.

Let U, denote the uniform empirical process, U,(u) = n'*F,(u) — u},
0 < u < 1, based on n independent uniform random variables on [0, 1]. It is
known that possible representations for U% in terms of the uniform empirical
process U, include UX =, U, o F =, U, ° (1 — F) (c.f., Pyke, 1972), since both
FY(U) and F~Y(1 — U) have distribution F if U is uniform on [0, 1]. Without
any loss of generality, define UL = U, ¢ (1 — F) and introduce in (6) the changes
of variable 1 — F(x) = uand 1 — F(r) = t. Then, for Z}(t) := Z,(7), we obtain

(7 Z%(t) = Z,,(— % In t) = t'w{Un(t) - J; u U, (u) du}, O0<t=<1l

Let U = {U(u): 0 < u < 1} be Brownian bridge. It is known that U, — U,
where the convergence in law is with respect to certain weighted supremum
metrics p; on D([0, 1]) (c.f., Pyke and Shorack, 1968; and O’Reilly, 1974).
Specifically, let p(f, g) = supo<u<1|f(u) — g(u) | define the supremum metric on
D([0, 1]) and let p, denote the weighted supremum metric defined by pq(f, g) =
p(f/q, g/q), whenever finite. For our purposes here, it suffices to take the special
case of q(u) = u® for any 0 < 8 < 4, and make use of the fact that as a
consequence of the convergence U, —; U with respect to p,, there exist equivalent
versions of the processes U, and U for which p,(U,, U) —.s. 0. Since for any
tp>0,

J; u YU, (u) — U(u)} du

SUpy=e=1t 2

t
< pg(Us, U)suptostslt'l/zf u™* du
0

= Pq(Un’ U)ﬁ-ltg_(l/z) —%s. 0,
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it follows that for these versions,

Supg<e<1| Z%(t) — Z*(t) | —as. 0,
where

(8) Z*(t) = t'lﬂ{U(t) - J; uU(u) du}.

This shows that Z} —; Z* under the supremum metric p when the processes are
restricted to [ty, 1] for any t, > 0. This, in turn, implies that —; holds with
respect to the usual Skorokhod topology of D([t,, 1]). For our purposes, this is
sufficient, although the above approach would also yield convergence results for
Z} over the full interval [0, 1] with respect to weighted supremum metrics. In
this case, the weight functions would have to offset the factor ¢t=/2 which, for the
uniform metric p, is what necessitates the restriction above to an interval [to, 1]
bounded away from 0.

2.3 The identification of Z*. The finite dimensional discussion in subsection
2.1 above suffices to identify the limiting process. However, in view of the above
constructive proof of weak convergence, it is desirable to identify the limit
directly from representation (8). Write

9 W(t) = U(t) — J; u'U(u) du,

so Z*(t) = t™2W (t). Since U is Brownian bridge, it is well known that U can be
represented by {B(t) — tB(1): 0 < t < 1}, where {B(t): t = 0} is standard Brownian
motion. Consequently, (9) may be replaced by

W(t) = B(t) — J; u"'B(u) du.

From this it is clear that W is Gaussian, continuous, has mean 0, and has
independent increments. Furthermore, for 0 < s < ¢, straightforward calculations
yield Cov{W(s), W(t)} = s. It then follows (c.f., Billingsley, 1968, Theorem 19.1)
that W is a standard Brownian motion. Therefore, Z* is a normalization of B
with constant variance, and so Z* is an O-U process when the parameter ¢ is
suitably transformed. In particular, for ¢, < t;, CoviZ*(t,), Z*(t;)} = (t./t:) "2
Thus, since 1 — F(r) = t it follows that the covariance function of Z(r) :=
Z*(e™™) is exp{—% A | 71 — 72|}, which completes the proof of

THEOREM 1. For any 1o < ®, the score-statistic process {Z,(7): 0 < 7 < 74},
based on independent exponential random variables with mean 1/\, converges
weakly to the Ornstein-Uhlenbeck process {Z(7): 0 < 7 < 70} with mean 0 and
covariance exp{—Y A | 71 — 72| }. The convergence is with respect to the Skorokhod

topology on D([0, 1o]).

The proof of this result that we give above is direct and instructive, but other
approaches are, of course, also possible. As mentioned following (5), central limit



TEST FOR CONSTANT HAZARD 587

theorems for function-indexed empirical processes would be applicable (c.f., Giné
and Zinn, 1984). On the other hand, one may calculate the moments of successive
differences to permit the use of tightness results as in Billingsley (1968). For
these exponential cases, a fourth approach is possible using the fact that the
excesses {T; — 7} for those T; > 7 are independent exponentials, independent of
the number, N, () say, of T;s exceeding 7. This permits the partial-sum repre-
sentation

Zn(r) =L V2 A0 X PONT; - 1),

to which similar weak convergence methods can be applied.

3. Testing H: £ =0. If r is confined to an interval [r;, 7,], then paralleling
Davies’ (1977) work, a suitable test of the hypothesis Hp: £ = 0 is one which
rejects for large values of statistics of the form

Mn(Tl’ Tu) = Suan‘rS‘ruZn(T)’

the supremum being taken over the nuisance parameter 7. To obtain the asymp-
totic distribution and asymptotic critical values for this statistic, observe that by
Theorem 1, '

Mn(TI’ Tu) L M(Tl’ Tu) = Suan‘rS‘ruZ(T)y

where Z is the appropriate O-U process. Note that in view of the stationarity of
Z, the distribution of M(r,, 7,) depends only on 7, — 7,. We, therefore, set
7, = 0 and write simply M (r,) for the corresponding statistic.

For ¢ > 0, introduce the first passage times, T'(c) = inf{r = 0: Z(7) = c}.
Clearly, M(r,) = c if and only if T'(c) < 7,; therefore,

PriM(r,) = ¢} = Pr{T(c) < 7.}.

Mandl (1962) provides formulae and tables for calculating such probabilities. In
his notation, P(t, A) denotes the probability that a stationary O-U process with
correlation function exp(—8| t|) and initial distribution equal to the stationary
distribution does not exceed the value A during an interval of length t. He obtains
the approximation

P(t, A) ~ Ze ™™

where the values of no = no(A) and Z = Z(A) may be obtained from Mandl
(1962, Table 1). The rows in his table are indexed by @ = (A — u)/s, where u is
the mean and o2 the variance of the stationary distribution.

In our context, we have a stationary O-U process, Z(7), with 8 = %4\ so that

PriM(r,) = ¢} = Pr{T(c) = 7.} = 1 — P(7y, c).

Thus, it follows that the results of Mandl (1962) can be used to approximate the
asymptotic significance levels for this test of Ho: £ = 0.

Although Mandl (1962) is ideally suited for the problem under consideration
here, it is worthwhile to mention the tables of Keilson and Ross (1975). Their
tables differ from Mandl’s in that they provide probabilities for first passage
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times, conditional on initial values of an O-U process. These tables could be used
to approximate the asymptotic significance levels required here although Mandl’s
table is more directly utilized. In other applications, however, the tables of
Keilson and Ross may be quite useful.

4. The case of A unknown. If )\ is unknown, the normalized score-statistic
Z,(7) specified by (3) is no longer appropriate for testing Hy: £ = 0. Instead, it is
appropriate to standardize 9 log L/d¢ by

[6%log L/d&% — {(8%log L/9tAN)2/8%log L/aN2)]
to generate the partial score-statistic process (Lawless, 1982, page 524)
Za(7) = {ne™(1 — ™)} V2{9 log L/0t} |t=op=A,
= (1 = e™)™2Z,(7, \) |r=h,

in which A, = (n/3%, T;) is the maximum likelihood estimator of A under the
null hypothesis, and Z,(r, \)= Z,(r) is as in (3)-(6), but the new notation
emphasizes the presence of the unknown parameter A in its functional form.

As in (4)-(6), write

(10)

f {(x - T)xn - 1} an(x)
= f f(x — 7)A — 1} dFn(x) + (\n — \) f (x — 7) dF,(x)
= (ne)™Y2Z,(r, \) + A.(1 — F(r)) fo n"Y2UE (x) dx

- (A=) f n~2U%(x) dx,
using n'2(A\;* — \7Y) = — [ UZ(x) dx. Consequently,

Z,,('r) =(1- e-‘,,f)—l/zel/z(i,, - Nr
(11) . ® .
. {Z,,(r, A) + e V2 f UE(x) dx + (Ao = NN U Zn(7, \) — el/”’Uf(r))}.
0

Set ZX(t) := Z,(r) with the changes of variables t = 1 — F(r) = e and
u =1 — F(x), and then apply (8) and (9) to (11) to obtain that, for the same
strongly convergent versions of Section 2.3, Z} converges uniformly over [¢, t;],
0 <ty =< t; < 1, with probability one to

Z2%(t) == (l—t)‘l/z{Z*(t)+Ji J; uU(u) du}

=(1—t)'1/2t"1/2{U(t)—J; u‘lU(u)du+tJ;
= (W(t) —tW(1)/{t(1 — £)}3,

1

(12)
uU(u) du}
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where W, defined in (9), is standard Brownian motion. This suffices to show that
Z¥ —1 Z* with respect to the Skorokhod topology on D([to, t;]), although the
above representation would, as before, yield suitable convergence results over the
full interval [0, 1] with respect to weighted supremum metrics.

Whereas, when A was known, the limiting process was an O-U process, which
is a Brownian motion normalized to give constant variance, in this case of
unknown ) it is Brownian bridge (c.f., (12)) that is norplalized to have a constant
variance. To apply a test statistic such as sup,<,<,, Z(7) to test H: £ = 0, one
may transform this tied-down case to fit the context of Mandl (1962). The
asymptotic significance level of such a test would be given by

(13) Pr{sup, <<, 2 () = c}.
Under the transformation ¢t = 1 — F(7), and in view of (12), (13) equals
(14) Pr{sup,,<:<,, [t (1 — )] 72U () = ¢},

withty=1— F(7,) and t;, = 1 — F(r;). If Doob’s transformation is used, this can,
in turn, be shown to equal 1 — Pr{Z(s) <c¢; 0 = s < In[t;(1 — &)/(1 — t;)t0]} for
appropriate ¢, where Z is the O-U process of Section 3.

It should be noted that Kendall and Kendall (1980) propose the test given by
(14) for a problem that arises in the context of deriving a satisfactory method for
testing whether a collection of n points in the plane contains too many triads
that are approximately collinear. They assume that a Poisson process with
intensity specified by (1), restricted to the finite section [7¢, 7,] containing 7, is
a suitable random mechanism for the generation of the angles determined by
triads of points in the plane. They then develop a test of the null hypothesis of
p = 1 against the alternative, p < 1, which asymptotically is based on the
supremum of the same tied-down O-U process described above.

5. An example. Table 1 gives times from diagnosis to death for 31 individ-
uals with advanced non-Hodgkin’s lymphoma and presenting with clinical symp-
toms. Since 11 of the times are censored, because the patients were alive at the
last time of follow-up, the results of the previous sections are not directly
applicable. However, Matthews and Farewell (1982) show that moderate censor-
ing has little impact on the distribution of the likelihood ratio statistic for testing
¢ = 0 in model (1). For illustration, therefore, we assume that the results of
Section 4 are similarly applicable if the likelihood function (3) is allowed to
incorporate contributions

exp[—J; A= ANH(u— 1)} du]

for individuals censored at a time ¢. A
For the particular data set described above, the observed supremum of Z,(7)
is 6.35. If we arbitrarily fix the bounds for 7 at 7, = 10 and 7, = 35 and use
X = 0.02441 to estimate A in the transformation ¢ = e, which is required to
convert the tied-down case to fit the context of Mandl (1962), then the corre-
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TABLE 1
Survival times, in months, for 31 lymphoma patients

2.5,4.1,4.6,64,6.7, 74, 7.6, 7.7, 1.8, 8.8, 13.3, 13.4, 18.3, 19.7, 21.9, 24.7, 27.5, 29.7, 30.1%, 32.9, 33.5,
35.4*%, 37.7%, 40.9%, 42.6*, 45.4*, 48.5%, 48.9%, 60.4*, 64.4*, 66.4*

* indicates a censored observation.

TABLE 2
Values of 1 — P(1.5854, c¢) derived from Mandl (1962)
c 2.0 2.5 3.0 3.5 4.0 45 5.0
1 — P(1.5854, ¢) 0.13 0.05 0.01 0.003 0.0005 0.0001 0.00001

sponding values of t, = e™™ and t; = e™*" are e %34 = (0.4256 and e %%
= 0.7834, respectively. Therefore, the asymptotic significance level of the data is
1 — P(1.5854, 6.35).

Since the set of values of ¢ is limited to the cases ¢ = 2.00(0.05)5.00, the results
of Mandl (1962) do not directly provide the value of P(1.5854, 6.35). However,
Table 2 which gives the values of 1 — P(1.5854, ¢) for ¢ = 2.00(0.50)5.00 indicates
that the value we require is quite small.

The asymptotic significance levels suggested above should be sufficiently
accurate for practical applications. Simulations in Matthews and Farewell (1982)
and Kendall and Kendall (1980) indicate the applicability of asymptotic distri-
butions even for small sample sizes.
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