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Professor Huber presents a most interesting paper reviewing the broad area
within multivariate data analysis now encompassed by the term “projection
pursuit.” My own comments relate to recent research in this field undertaken at
the University of Bath, UK, by myself and Professor Robin Sibson. Our work
focussed on the basic projection pursuit algorithm thought of as an exploratory
tool applied to point clouds—as a method for finding “interesting” low-dimen-
sional “views” of a multivariate data set—in the spirit of Friedman and Tukey
(1974); as such, these comments are most relevant to Section II of the current
paper.

Initially, we had access only to Friedman and Tukey’s pioneering paper and
during much of the course of our work remained unaware of the more recent
work by Professors Huber, Friedman and others. Bearing this in mind, the close
agreement between many of Professor Huber’s ideas and our own, which are
outlined below, seems quite remarkable.

_The particular implementation of the projection pursuit method described by
Friedman and Tukey allowed considerable scope for improvement on both
theoretical and practical grounds. Consequently our aim was to provide a new
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version of the algorithm which was based on firmer mathematical foundations
(like the “abstract” version of projection pursuit in the current paper) and was
more efficient computationally, remembering the needs of many potential users
with rather limited computational resources.

On the theoretical (abstract) side, many of our ideas coincide with those in
Professor Huber’s paper. Our initial step was to ensure that the data were
sphered—in the sense of zero mean and unit covariance matrix—hence bypassing
the need to worry about affine invariance of our chosen projection index (Profes-
sor Huber’s “Class III” functionals). We first noticed that Friedman and Tukey’s
original projection index was essentially an estimate of [ f* (see Section 5 of the
current paper) and, as such, is a monotone function of order-2 entropy (for a
definition of order-a entropy see Rényi (1961)) which is minimised, over densities
with given mean and variance, by a parabolic density; it was a natural step to
divert attention to the more usual (order-1) Shannon entropy, the negative of
which is minimised by the normal density. In this way, we independently decided
to focus on projection indices which, in some sense, measured nonnormality of
projections of the data; by doing so, we replaced the ad hoc notion of seeking out
clusters (as used by Friedman and Tukey) by the device of searching for projec-
tions which looked least like the normal distribution. Further agreement between
ourselves and the current paper lies in the use of higher order cumulants in
alternative projection indices measuring nonnormality. Indeed, a heuristic argu-
ment due to Professor Sibson links entropy with a quantity involving the (squares
of) third- and fourth-order cumulants; the corresponding projection index has
considerable computational advantages in certain circumstances and has proved
to work well in practice (albeit with the expected marked preference for projec-
tions indicating possible outlying observations).

These ideas have been incorporated into a new implementation of the method.
To obtain sample versions of those projection indices which are functionals of
the (marginal) density of a projection, kernel density estimates have been
employed (as alluded to by Professor Huber). At least for one-dimensional
projection pursuit (i.e. B = 1 in the notation of this paper), much use has been
made of an efficient algorithm for computing such density estimates on a grid of
points, due to Silverman (1982); this takes a time virtually independent of the
number of data points and hence is almost equally applicable to large as well as
small data sets. Of course, use of kernel density estimates requires the user to
choose a sensible value for the smoothing parameter, or window-width. Appro-
priate choice of window-width is a matter for considerable investigation; however,
empirical evidence suggests that such choice is not as critical as in many other
contexts since there appears to be a broad band of values for which the method
behaves in much the same manner. For projections onto k = 2 dimensions, indices
based on higher order cumulants come into their own because all computations
may be based on a set of summary statistics which is calculated once and for all
(namely the appropriate multivariate higher order cumulants), rather than using
the entire data set at each step.

Each of the projection indices under consideration varies smoothly as the
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projection axis or plane varies. Derivatives of the indices are available at little
extra computational cost and may be employed to great advantage in the course
of the numerical optimisation of the chosen index. As Professor Huber points
out in a slightly different context “it does not matter very much if a particular
direction ... is determined inaccurately”, so a conceptually simple and compu-
tationally efficient steepest ascent algorithm has been used to good effect.

If we were to take issue with any of Professor Huber’s remarks, it would only
be to doubt the usefulness of three-dimensional projections in this exploratory
setting, particularly bearing in mind the additional computational burden such
projections would impose. Representation of three-dimensional data in a single
informative picture (on two-dimensional paper!) is not readily achieved in an
immediately meaningful way. Two-dimensional projections, via scatter plots or
bivariate density estimates, are readily interpretable, however, and, as Professor
Huber points out, may often show interesting features of the data which are not
apparent in any one-dimensional projection. For these reasons, we have restricted
our attention to both one- and two-dimensional projection pursuit, even, on
occasion, for application to three-dimensional data.

Finally, practical experience with the resulting version of the projection pursuit
algorithm has proved to be most encouraging. Considerable discussion of the
practical advantages and limitations of the technique, together with many further
details of the work outlined briefly above, may be found in the thesis of Jones
(1983) and in a forthcoming paper to be written jointly with Professor Sibson.
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In 1976 Dr. Gerald Reaven and I, with the assistance of M. A. Fisherkeller,
successfully applied projection pursuit to some diabetes data. The data consisted
of the (1) relative weight, (2) fasting plasma glucose, (3) area under the plasma
glucose curve for the three-hour glucose tolerance test (OGTT), (4) area under
the plasma insulin curve for the OGTT, and (5) steady state plasma glucose
response (SSPG) for 145 subjects at the Stanford Clinical Research Center, who
volunteered for a study of the etiology of diabetes. The goal of the study was to



