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THE RIEMANNIAN STRUCTURE OF EUCLIDEAN SHAPE
SPACES: A NOVEL ENVIRONMENT FOR STATISTICS

By HuiLING LE AND Davip G. KENDALL

University of Nottingham and University of Cambridge

The Riemannian metric structure of the shape space 3%, for & labelled
points in R™ was given by Kendall for the atypically simple situations in
which m = 1 or 2 and % > 2. Here we deal with the general case (m > 1,
k > 2) by using the properties of Riemannian submersions and warped
products as studied by O’Neill. The approach is via the associated size-and-
shape space that is the warped product of the shape space and the half-line
R, (carrying size), the warping function being equal to the square of the
size. When combined with parallel studies by Le of the corresponding global
geodesic geometry, the results obtained here determine the environment in
which shape-statistical calculations have to be acted out. Finally three
different applications are discussed that illustrate the theory and its use in
practice.

1. Advice to the reader. A palaeontologist comes into your office with a
bag of fossils and asks you to devise a natural measure of the difference in
shape between any two fossil specimens of a particular genus, with a view to
using this in some data-analytic program such as correspondence analysis or
nonmetric multidimensional scaling.

An archaeologist asks for your help in assessing the significance of observed
“collinearities” of standing stones.

An astronomer trying to match the observed system of cosmic ““voids” with
the cells of a Voronoi tessellation in three dimensions asks you to help him to
classify the sizes and shapes of such cells in sample tessellations generated by
a homogeneous three-dimensional Poisson point process.

All these people are asking questions about shape. It is not appropriate,
however, to think of shapes as points in a Euclidean space. They are odd
creatures, and live in peculiar and quite particular spaces most of which occur
in no other context. Thus what is required is a revised version of multidimen-
sional statistics that takes the nature of the shape space fully into account.

Shape theory was introduced and the very simplest shape spaces fully
identified fifteen years ago (Kendall [24]). The present paper identifies the local
Riemannian metric geometry of all (Euclidean) shape spaces. This is not an
easy task. Obviously it involves differential geometry, and that of the most
modern sort, because it turns out that what are called Riemannian submer-
sions are of fundamental importance in such problems. Riemannian submer-
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sions were so named by O’Neill [54], but are scarcely ever mentioned in the
textbooks, except for O’Neill [56] and Gallot, Hulin and Lafontaine [12]. The
first reference to such objects seem to be in Reinhart [57] and Hermann [17,
18]. Thus, while the operations in this paper are ‘“standard” to a modern
professional, they involve concepts and constructions normally quite unfamil-
iar to a mathematical statistician. Because of this the calculations presented
here are inevitably taxing, but they are necessary and cannot be circumvented.

In Sections 2 and 3 of the paper we present the basic ideas, and thereafter
the pace gets hotter. The reader may reasonably decide to look at those two
sections first, and then to pass on at once to the closing Section 8 in which
several examples are investigated. These will illustrate what the subject is
about, and where it is going.

Further detail can then be sought in the intermediate Sections 4 to 7, where
the basic Theorems 1 to 6 and their corollaries are proved. Some rather tricky
but necessary analysis occupies Section 4, and perhaps only the most dedlcated
will wish to read that in detail.

2. Introductory remarks. ““Shape’ for us means “what is left when the
effects associated with translation, scaling and rotation are filtered away”’
(Kendall [24]). Weaker concepts of shape are also of interest, but will not be
treated here. One such is “affine shape,” studied by Ambartzumian [1].
Another is ‘“‘combinatorial shape,” studied for example by Carne [8] and
Kendall ([21-23, 35]). A classic example involving this is the problem of
recovering the topographical structure of a manorial estate from archival
references to the abuttals of field units.

In the present paper the context will always be a Euclidean space R™ where
the dimension m can be any positive integer, and the shape will be determined
by the locations of labelled points P;, P,, ..., P,, where k > 2. “Size” will be
defined to be the square root of the sum of the squares of the distances of
these points from their centroid, and it is to be scaled to the value 1 when the
size is not of interest and only the shape of the k-plet is being considered.
“Location” has already been lost by the choice of the centroid as origin, and
the effects of ‘“rotation” are to be removed by insisting that this partly
standardized configuration be viewed modulo the rotation group SO(m).

We shall also be concerned with the less severely standardized object called
““size-and-shape.” This is the object obtained when the size-standardisation
step is omitted. It is to be noticed that ‘‘size-and-shape” is meaningful when
k = 1, although ‘“‘shape” is not.

The Euclidean shape space 3% is defined to be the space whose points are
the shapes of such labelled (not totally degenerate) k-ads in R™. These spaces
were introduced at a meeting on stochastic geometry and geometrical probabil-
ity held (in honour of Buffon) on the shores of Lake Sevan in Armenia
(Kendall [24]), but for a long time their metrical structure was known only in
the relatively trivial cases m = 1 (when they are spheres of dimension 2 — 2
with unit radius) and m = 2 [when they are complex projective spaces with
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real dimension 2(% — 2) and complex sectional curvature constant 4], so that,
for instance, 33 is the sphere S(3).

Shape space theory for m = 1 and 2 was expounded in full detail in Kendall
[26]. (His paper [27] gives a less technical presentation.) Here our first purpose
is to give a comprehensive account of the local Riemannian geometry for all
values of k and m. ‘

For a complete understanding of the structure of these spaces we also need
global information. Le [49] has recently given a detailed account of the global
geodesic geometry of 3%, with a specification of the cut-locus phenomena (e.g.,
the “focussing” properties of the geodesic sprays) and of the behaviour of
geodesics near to the singularities (which we shall find are always present
when the ambient dimension m exceeds 2 and % exceeds 3), while Kendall [36]
has found the Z, and rational homologies and Barden [3] the integral homol-
ogy. The description of the Euclidean shape spaces "3k is thus approaching
completion, although some further information concerning their structure as
CW-complexes and their homotopy types may shortly be forthcoming.

Le’s article [49] was followed by Le [50], which deals with global questions
such as the construction of geodesics that start out from a given point and
subsequently cut a given submanifold of the shape space orthogonally. This
will be recognised at once as a key step in the transfer of classical linear
multivariate ideas to a shape-theoretic context. An account of its use in a
practical problem will be given in Section 8.

A basic feature of our approach will be to start with the size-and-shape
space S3* , and then to construct the shape space 3}, by quotienting out the
size. That is easy enough to visualise when the ambient dimension m = 1, for
then, as we shall see, the size-and-shape space is R*~* and the shape space is
the unit sphere of dimension & — 2 with centre at the origin.

As an introduction to the later arguments we now describe the construction
of 3* in more detail. Let the given configuration of points be (x7, %3, . .., x)
with centroid x*, and let us standardize for location by writing y, = x¥ —xk,
so that Ty; = 0. To standardize also for size we then have to restrict attention
to the intersection of that (¢ — 1)-dimensional hyperplane with the unit
sphere centred at the origin in y-space, and obviously this intersection is the
unit sphere S*~%(1), which therefore is 3% up to isometry. Note, in particular,
that 32 is the point-pair {—1,1}. (This is the only shape space that is not
connected.)

The corresponding size-and-shape space S3* is obtained if we relax the size
restriction, so that it is the whole Euclidean space R*~!, and we can think of
this as an (unwarped) cone with spherical cross section S*~2(r) at distance r
along the generators. In particular S32 is just R! viewed as a one-dimensional
cone with the point {—1, 1} as the cross section at distance r = 1. The absence
of warping is a way of saying that the radial size of the spherical cross section
is everywhere equal to the corresponding radial distance from the vertex.

+But now observe what happens when the ambient dimension m > 2. The
size-and-shape space is then difficult to visualise, although its structure is still
basically very simple. Thus when the ambient dimension m is equal to 2 then
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the size-and-shape space is a cone with the shape space %% of the k-point
configuration as the cross section at r = 1. However, 23 is the (metric) sphere
S2%(3) (for the simplest proof of this see Kendall [27]). Try to visualise a cone
whose cross section at distance r from the vertex is a two-sphere of radius 1r!
This illustrates a peculiarity of the size-and-shape spaces S3% and that
phenomenon is the norm—it is the case m = 1 that is the exception. In what
follows we shall often prefer to say, for example, that the size-and-shape space
S33 is the warped cone with cross section S%(1) and with warping function
372, where r is the distance along the axis from the vertex of the cone. To
illustrate the terminology we observe that R? with metric dr? + r2 d6? can be
described as the warped product of a half line and a unit circle with warping
function r2. (See O’Neill’s book [56] for other examples of warping.)

We have now dealt exhaustively with the size-and-shape and shape spaces
when m = 1, and we have shown by an example the peculiarities that are
encountered when m > 2. In particular, as remarked above (see also Kendall
[26]), the shape space 3% is that version of complex projective space CP*~2
whose linear scale is such that the (constant) sectional curvature is equal to 4.
The reader who does not already know that 33 = S%(3) is urged to look at the
elementary but rather lengthy proof of this fact in Kendall [27], and perhaps
also at the (yet longer) proof that 3% = CP*~2%(4) in Kendall [26]. It is an
important fact that all of the shape spaces 2% and 3% are compact and are free
from singularities.

But when we proceed to the shape spaces %% with m > 3 a new phe-
nomenon appears. For k > m each shape space now contains singularities at
the differential level. This is a striking new phenomenon because when m is
equal to 1 or 2 then each shape space has a transitive group of isometries, so
that there ‘““all points are alike’ and such shape spaces are then necessarily
nonsingular. Thus the jump in ambient dimension from 1 to 2 introduces the
peculiar warping of the size-and-shape space, while the jump from 2 to 3 and
beyond introduces the differential singularities.

Another discontinuity of behaviour occurs when m increases from &2 — 1 to
k. What happens there and for all higher values of m is that the shape spaces
acquire boundaries. Thus, for example, 33 is a two-sphere of radius 3, but 23
is homeomorphic with a two-ball, and this is also true of 33 for all higher
values of m. This phenomenon is typical; for each % it sets in at m = k. (In
the degenerate case k = 2, 32 is the point-pair {—1, + 1} while 32, is a single
point for all m > 2.)

After reading an earlier draft of this paper a referee suggested that it might
help the reader if each new increase in ambient dimension were explicated by
reference to the lower ambient dimensions, but that is not in fact a helpful
procedure. As so often in geometry, a rise in dimension may (and here in many
ways does) lead to totally new types of behaviour. However, there is one partial
simplification for high ambient dimensions: 3 is isometric with % for all
m > k. Also the reader might here like to glance ahead to the second remark in
Section 5, and note the useful nesting principle established there.
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TaBLE 1
m = 1 2 3 4 5 6 7 8
k=2 * 32 % 32 32 32 3 32 3 %2
k=3 33 * 33 * ] 33 b3 38 3 33
k=4 34 34 * 34 34 3 b3 P 34
k=5 38 P P * 38 pX 32 3 33
k=6 38 P 38 38 * 3,8 % 38 8 ]
k=17 37 37 P4 pXA 3 * 3% x 37 b
k=8 38 38 ] %8 5 38 * 38 % p3H]
k=9 39 pi 39 39 33 39 27 * 23 %

We now set out in a two-dimensional array the first few shape spaces,
arranged so that the ambient dimension m increases as we move to the right
from column to column, while the number % of points increases as we go down
the columns. This will bring out more clearly some of the variations of
structure on an (m, k)-basis.

Table 1 indicates by colons and asterisks the locations of the spheres
Sk — §*=2(1), the complex projective spaces X% = CP*~*(4), and the (for
m > 3 nonmetric) spheres 3™*! to the right of which are situated balls (for
m > 3 also nonmetric) all with dimension 1k(%2 — 1) — 1. Notice especially
that each space in the row k2 = 2 is a point or a point-pair, while all the spaces
in the second row are metric spheres or hemispheres. In the quadrant lying
below the second row and to the right of the second column (i.e., when both
k> 4 and m > 3) each shape space possesses singularities at the differential
level. The fact that every shape space on the diagonal £ = m + 1 is a fopologi-
cal sphere was discovered in 1976 by A. J. Casson (unpublished). A later and
different proof of that fact given in Le [49] will be outlined here in Section 3.

A thorough familiarity with the above diagram will be very helpful to the
reader intending to work through the following arguments, and indeed it is
also necessary for a proper understanding of the applications.

An early draft of the present paper was used by Kendall as the basis of his
Rietz Lecture to the Institute of Mathematical Statistics at its Annual Meeting
in Washington, DC, in 1989. That lecture was largely concerned with the
applicable aspects, and indeed much of the detailed metrical theory presented
in the present paper was not fully worked out until somewhat later by Le.

Some of what follows may at first sight seem remote from statistics, but it is
statistically motivated, and it is the indispensable preliminary to any general
approach to shape statistics.

Already (as will be seen in the closing Section 8) the metrical theory
developed in the Sections 3 to 7 has found statistical applications, and one
cannot doubt that more will follow, especially in the light of recent work by
Goodall and Mardia [13-15].

As its title indicates, the present paper deals only with what we call the
Euclidean shape spaces concerned with the shapes of labelled sets of points in
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Euclidean spaces R™. The reader is however reminded that there is a compan-
ion theory, that of spherical shape spaces (Le [45-47]), in which the % labelled
points lie on the surface of a two-sphere. This has applications in astronomy. A
further extension to shape theory on an m-sphere will be found in Carne [7].
For a gentle initiation into spherical shape-space theory see Kendall [34].

We say nothing in this paper about shape distributions because that topic
has been covered already in considerable detail. For shape distributions gener-
ated by & iid-uniform points in compact convex polygons see Le [43, 44] and
Kendall and Le [38, 39], and for those generated by k-point multivariate
Gaussian distributions see Mardia and Dryden ([52, 53] and subsequent pa-
pers). It is often convenient to present such shape distributions as densities
relative to the natural differential-geometric measure on the shape space, and
here the second part of Corollary 1 in Section -5 provides an appropriate
starting point. Similarly Corollary 3 in the same section links the present
paper with Bru [6], W. S. Kendall [40, 41] and Le [51] on shape diffusions.
Notice that diffusion theory can be used to obtain some of the Gaussian-based
shape-densities. For this see Kendall [32] and Le [48].

3. Size and shape. We now embark on the determination of the local
Riemannian geometry for all 2 and all m. As remarked above, by the ‘“shape”
of a set of & labelled points in R™ we always mean ‘‘what is left when the
effects associated with translation, rescaling and rotation are filtered away.”

We map the ith point x* of a given set of % labelled points in R™ to
x¥ — x¥ in order to eliminate the effects of translation, where x* denotes the
centroid of the % points. This converts the original m X k data matrix X* to
a matrix with zero row-sums. If we multiply this new matrix on the right by
@, where @ is any fixed ‘“‘cosmetic’’ element of O(%k) such that

Q(1,0,...,0) = (1,1,...,1) /VE,

then the zero-row-sum property will be replaced by that of having a zero first
column. We can then delete that column to get an m X (k — 1) matrix X that
will be called the presize-and-shape of the k labelled points specified by X*.
The space of all such matrices will be identified with R™*~1. Then

r=Vu(XX) = V(X&) =/ Thi - 22

is a natural measure for the size of the set of k& points. Accordingly the
size-standardized version X = X/r of X will be called the preshape of X*.
Note that presize-and-shape (but not preshape) is well defined when the points
are totally coincident, that is, when r = 0. It is clear that the preshape space is
the sphere S™*~1D~1(1). [Here and elsewhere the prefix “pre” indicates that
the quotient by SO(m) has not yet been formed.]

. The “cosmetic’’ matrix @ is not unique, but it is to be fixed in the following
analysis. We shall see that neither the multiplication by @ nor the deletion of
the zero first column when forming X will have any effect on our final results,

because those will be expressed in terms of the eigenvalues of XX’ This
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feature of the method therefore spares us the trouble of working with m X &
matrices having an artificial rank-deficiency as a consequence of the centring
procedure.

Quotienting out the left action of SO(m) on R™*~D and on S™*-D-1(1)
gives the size-and-shape space S3* and the shape space 3%, respectlvely
Note in particular that S32, is R for m =1, and R, for m > 2. Also 3%
S;e %(1) for k£ > 2, and 3} is CP*~2(4) for k>3 [Note also that CP1(4)
S%(3).]

Left multiplication by diag(l, . —1) on the presize-and-shape space
induces an action of Z, on S3%, (cf Kendall [26]). (Matrix-wise it switches the
algebraic signs in the mth row) For m > k, S3* and 3% are isometric with
the quotient S3% ,/Z, and 3F_,/Z,, respectively. [It is this Z,-quotient
operation that converts the topological spheres on the diagonal of the (k, m)-
diagram to the topological balls lying to the right of them.] Therefore in the
following calculations we can and often will assume that k > m + 1.

It will now be convenient to quote from Dieudonné [9] some definitions and
theorems concerning the action of a Lie group G acting smoothly on a
differential manifold M. (See also Helgason [16].)

(@ (Vol. I, XII.10, Problem 1) The action of G on M is said to be
“proper”’ when, for all compact sets K and L, the set {g: (gK) N L # @} is
compact. The action will always be proper if G is itself compact. In our
application that condition will hold because G will be SO(m).

(i) (Vol. II, XII.10) The action of G on M is said to be “free” when every
g that is distinct from the unit element e leaves no x in M unmoved.

@iii) (Vol. III, XVI.10, Theorem 3 and Problem 1) The orbit manifold M /G
exists as a differentiable manifold if the action of G is both proper and free.
When it is proper but not everywhere free then M /G exists as a differentiable
manifold with singularities at just those x in M at which the action is not
free, so that the singularities in the orbit manifold are precisely located at the
images of those x such that gx = x for some g other than the identity.

Now in our problem M will be the preshape space X, and G will be the
compact Lie group SO(m). Thus (i) always holds, and (ii) will also hold if the
ambient dimension m is equal to 1 or 2, so that 3% and 3% are smooth
manifolds for all k > 3. We do not need to worry about the rather trivial cases
in which k = 2, because we already known that 3% is either a point or a
point-pair.

When m > 3, however, singularities always exist, and we can identify them
quite easily: They correspond to the preshape matrices of rank m — 2 or less.
This is because, if X has at most m — 2 linearly independent rows, then a
nontrivial element of the form

R!, diag(I,,_,, Ry, R,

w1th Rz(se I,) € SO(2) and R,, € SO(m) can always be found that leaves X
invariant. Away from such smgularltles the action will be both proper and
free, but the quotient by SO(m) will be a noncompact smooth manifold 3%
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whose singularities are determined precisely by the nonfree action of SO(m).
So if we leave aside the cases where k& = 2, we can conclude that 3% and 3%
are always smooth, while X% (for m > 3) is smooth save for just those
singularities noted above.

Moreover in the situation considered here it is known that the quotient
mapping 7 from the preshape space to the shape space is a Riemannian
submersion and enjoys all the properties of such a mapping away from just
those singularities that we have found. We here remind the reader that in
general a “submersion” is a smooth mapping from a manifold M; onto
another smooth manifold M, such that the rank of the Jacobian is everywhere
equal to dim M,. That we have a submersion in our application follows
immediately from (iii) above. However it is the much more special Rieman-
nian submersions that play a fundamental role in shape theory. We now give
the definition and list some properties of these objects.

First we must introduce the concept of vertical and horizontal tangent
vectors in the “top’ space M, (for us, the preshape space). A tangent vector at
x in the top space is said to be vertical if it is tangent to the fibre through x.
[The fibre is the set 7= (m(x)) of all the preimages of m(x).] Tangent vectors
at x in the top space that are orthogonal to all the vertical tangent vectors at x
are said to be horizontal. Thus the tangent space at x in the top space splits
into a direct sum: “horizontal tangent vectors @ vertical tangent vectors.”

The definition of a Riemannian submersion can now be given. A submer-
sion from the (“top’’) Riemannian manifold M, onto the ‘“bottom” Rieman-
nian manifold M, is said to be Riemannian when each pair of horizontal
tangent vectors (k,, h,) at any x € M; maps under d to a pair of tangent
vectors at m(x) € M, that have the same inner product. It is just this metrical
condition that makes the theory work.

It is now easy to define a Riemannian metric on the shape space (away from
the singularities) in such a way that we do have a Riemannian submersion.
Anticipating here a systematic notation to be introduced in Section 4 we write
UAV for the singular-values decomposition of a preshape X, so that U €
SO(m), Ve SO(k — 1) and A is an m X (k — 1)-matrix whose first m
columns are diag(Ay,Ag,...,A,,_1,A,) Where A; > -+ >4, ;>IA,| and
whose remaining columns (if there are any) are zero.

The vertical tangent vectors (tangents to the fibre) at this point will then be
represented by the matrices $UAV where $ is a general (m X m) skew-sym-
metric matrix, and so a tangent vector W at the same point will be horizontal
if and only if

tr(W$UAV) = 0

for every choice of $, that is, if and only if UA\VW' is symmetric.

Now consider two such horizontal tangent vectors UAVW{ and UAVWj at
the given point of the top space. Their inner product is tr(UAVWW,V‘A'U°),
and in this expression the first and last factors within the brackets cancel, so
that the inner product is just tr(AVW}W,V‘A"), and this no longer depends on
the location (indicated by U) on the fibre. This argument therefore establishes
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the Riemannian nature of the submersion and so allows us to make use of
O’Neill’s theorems [54-56].

One of these tells us that locally (i.e., away from the singularities if there
are any) the geodesics in the bottom space are the m-images of the horizontal
geodesics in the top space, and further that a geodesic in the top space that is
horizontal at a point x will remain horizontal (i.e., have a horizontal tangent
vector) everywhere along its length until and if it hits a singularity. Thus the
geodesic field in the bottom (here shape) space can be calculated from the
horizontal geodesic field in the top (here preshape) space.

The paper by Le [49] carries out exactly that programme. She obtains a
complete description of the cut-locus phenomena in 3%, determining for each
geodesic the point at which the cut-locus is first hit, and using this to study the
metrical shape-space architecture on a global basis. In particular she obtains a
new proof of Casson’s theorem that asserts the (in general only topological)
spherical nature of X7™*! Because of its intrinsic interest we give a brief
nontechnical outline of her argument. Consider first the special shape (“‘the
north pole”) associated with the diagonal matrix each of whose m diagonal
entries is equal to 1/ Vm . If one follows each one of the geodesics emerging
from that point, one can show that it remains minimal and does not hit the cut
locus of the north pole at least until the “‘equator’ is reached, and that every
point on the equator (regular or not) is so reached. (By ‘“the equator” we here
mean the locus of shapes for which the associated m X m matrix has a zero
determinant.) Thus the whole “spray’ of geodesics emerging from the north
pole determines a (topological) ball “centered”” at the north pole and having
the equator as its boundary. Moreover the whole of the equator is in the
boundary of this ball.

We can now carry out the same construction starting from the ‘“south pole”
(the shape representing the matrix diag(1/Vm,...,1/ Vm, —1/vVm)), and
we obtain a second “ball”’ having the same boundary as the first ball.
Identification of the two boundaries yields a topological sphere, and that last
step essentially concludes the proof. (Casson’s argument finishes in the same
way, but starts differently, creating the balls by an algebraic rather than a
geometric construction.) Of course both arguments work perfectly well when
m = 2, but the situation there is much simpler because of the absence of
singularities.

It will be convenient to say a few words here about the singularity set. We
have already indicated earlier in this section that singularities in the shape
space arise when and only when we are considering a shape that is the image
of a preshape at which the Lie group [here SO(m)] fails to act freely. If we
consider the left action of SO(m) on the preshapes, viewed as m X (k — 1)
real matrices with the squares of the elements summing to unity, it will be
apparent that the action of SO(m) will fail to be free precisely when the
m X (k — 1) matrix has rank m — 2 or less. (Notice that this cannot happen
when m is equal to 1 or 2.) Now the rank is itself a well-defined function of
shape, and so we can classify all the shapes in a shape space 3% according to
the rank of any one ‘representing matrix.”” Consider those shapes in 3% that
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have rank r less than or equal to a fixed value p, where 1 < p < m — 2. Each
of these shapes will be singular, from what has been said above. Also the set of
shapes for which the rank is p or less (for a given p that satisfies 1 <p <
m — 2) can be identified with a “projectivised” version of E,f associated with
the p X (& — 1) preshape matrices that [modulo O(p)] can be arranged to have
a nonnegative element terminating every one of the p rows.

In this rather limited sense we have a ‘“nesting principle” that up to such
projectivisation allows us to recognise ‘“‘earlier’” shape spaces with m =p
inside “‘later”” shape spaces with m > p. We shall meet this ‘“nesting principle”
again in Section 5, where we write X% /7, for the thus projectivised version. In
fact the corresponding result described in the remark at the end of Section 5
appears to be stronger than that claimed here, but this is because the
projectivisation leaves the structure of small neighbourhoods unchanged, and
so it cannot be detected at the level of the metric tensor alone.

A final and very important theorem of O’Neill [54, 55] tells us how to
compute the curvature characteristics of the bottom (shape) space from those
of the top (preshape) space. Because the preshape space is a sphere (and as
such has trivial curvature properties) this will spare us a huge amount of
detailed calculation.

It is important to notice that singularities cannot occur at all in the shape
space 3 when k£ > 3 and m is equal to 1 or 2, because if there are no more
than two rows in a matrix representing a preshape then obviously its rows
cannot be SO(2)-rotated so as to yield two empty rows. This explains why the
shape spaces 3% (all spheres) and 3% (all complex projective spaces) are
complete manifolds free of singularities when £ > 3.

Note finally that the diagram

X - X
l l
m(X) - w(X)

is commutative, where the horizontal arrows indicate standardizgtion for size,
the vertical arrows indicate the submersive action, and #(X) denotes a
size-and-shape and 7(X) the corresponding shape.

4. Coordinates, differential forms and vector fields. In this section
of the paper we introduce appropriate coordinates for both size-and-shapes and
shapes, and develop a number of ideas that will be important later. In
particular, we establish a “continuity principle’” that will enable us to ignore
irrelevant (but otherwise bothersome) degeneracies.

One can set up coordinates for size and shape in various ways. For example
the set of coordinates devised and used by W. S. Kendall [40, 41] in his study of
‘shape diffusion is the complete set of interpoint distances, and by using these
he obtained an expression for the Riemannian metric structure via the
quadratic component of the submersed Laplacian. That system of coordinates
is superabundant when %2 > m + 1, but it was used by him to good effect in a
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computer-algebra context where overall symmetries supply a vital tool for
controlling and ordering the calculation.

Here we describe, in terms of singular-values decompositions of m X (k¢ — 1)
matrices, a local representation for presize-and-shape that can be well defined
away from a set of measure zero. This representation will also induce a local

~ representation for the associated size-and-shape space and the shape space.
While it is useful to have these coordinates, we will be forced to concentrate on
the differential forms and associated vector fields that are needed in the
metric, curvature and other tensorial calculations. An old-fashioned “coordi-
nate”’ approach would be possible but very complicated and inelegant, and out
of tune with the general theory of Riemannian submersions on which we will
have to call.

It has to be pointed out that there is a limit to the extent to which the
higher dimensional calculations can be explicated in terms of those available
for small values of m. Once the “elementary”” cases m = 1 and m = 2 have
been fully worked out, we have to proceed immediately to the general case. It
is at this point that the reader may well prefer to jump ahead to the examples
in Section 8 (at any rate in a first reading). In a second reading it will probably
prove most convenient to pay particular attention to the special case 33 (in
which singularities first make their appearance). This might be descrlbed as
the first “typical’” shape space, and as the associated analysis involves nothing

. worse than 3 X 3 matrices it is not unduly difficult to comprehend.

In the following calculations we can without loss assume that £ > m + 1
and m > 3, because the other cases are either already fully understood, or
follow easily from these. We can write the presize-and-shape in the form

X=U(A 0)V,
with U € SO(m), V € SO(k — 1) and A = diag(A,, Ag, ..., A,,) such that:
) /\1>/\2 o>, =0,

(i) A, >0if £ >m + 1 and sign(A,,) = sign(det(X)) if £ = m + 1.

From the point of view of shape theory U is uninteresting, and the important
information is held in A and V. We need however to keep track of U because
that provides the coordinates describing position on the fibre.

In the above “singular-values decomposition” the IA;|’s are the m ordered
nonnegative square roots of the eigenvalues of XXt and so A is uniquely
determined by 7(X). In particular A% = r2, where r is the size. Hence
s™*-D-1(1) consists of points that are the m x (k — 1) matrices X, and 3%
consists of points that are the m(X) with £A2 = 1. Moreover, the s1ngular1t1es
assomated with the nonfree action of SO(m) occur precisely when A, _, =

= 0.

The matrix U can be naturally regarded as a rotation that rearranges the
points on the “ fibre”’ lying above w(X). However, because the columns of U
aré eigenvectors of XX and the rows of V are eigenvectors of XX [arranged
in the same order as the corresponding eigenvalues (1,)?], neither U nor V is
uniquely determined by X.
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We now define two sets involving sharp inequality signs:

{X’e R™E-DR > oo > X > lf\ml}, ifk=m+1,
X =

m,k - -~ -
{XeR”‘<k‘1’IA1> >/\m>0}, ifk>m+1,
and
— {xeR™x, > -+ >x,_,>x,l}, ifb=m+1,
{xeR™x, > -+ >x, >0}, ife>m+ 1.

Note that X, , and E™ have natural differential structures as open subsets of
their respective spaces, and that m(X,, 1) is an open.and dense submanifold of
the nonsingular part of S3% .

We embed SO(m) x SO(k — 1 —m)in SO(k — 1) by mapping (W,, W,) to
W,eWw,= (Vg‘ vg , and we denote by [V'] the projection of V € SO(k — 1)
in the Stiefel manifold

SO(k - 1)
{I,} xSO(k—-1-m)

of orthonormal m-frames in R*~!. If we think of R*~! as the space of row )
vectors, the frame [V] consists of the first m rows of V—these being left
unchanged by {I,,} X SO(k — 1 — m) acting on the left. We shall also use [V]
to denote the corresponding m X (¢ — 1) submatrix of V.

We next write A for the (maximal abelian) subgroup of diagonal rotations in
SO(m). That is, the elements of A are the matrices of the form D =
diag(&l, ..,8,) with each §; = +1 and det(D) = 1, so that the number of
minus s1gns is even. Now A acts freely and properly discontinuously on V, _ Lm
from the left, so that the quotient map from V, _ 1m0V, 1,m/ A is a normal
coverlng Hence for any [V] €V, _, ,, there is an open set in V, _ 1,m contain-
ing [V] on which the restriction of this quotient map is injective. We denote
any such set by ;. We now have the following:

\/k—l,m =

LEMMA. For any X, € X, x With a singular-values decomposition X, =
Uy(A, OWV,, the map fz[V] from 8O(m) X E™ X Fy,, to X,, , defined by

(U, (x1,--+,%,),[V]) = U(diag(x,, ...,x,) 0)V

is a diffeomorphism onto an open subset of X,, & containing X It induces a
diffeomorphism of E™ X Fiv,; onto an open nelghbourhood of 7T(XO

ProoF. Since (A 0XI® W)V=(A 0V for any W in SOk — 1 — m), it
follows that h[V 1 is well defined. It is clearly continuous, and its image is open
and contains X,.

For X X, z» U will be determined up to a right diagonal factor D € A
and the first m rows of V will be determined up to a left diagonal factor
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D' € A. That is, X determines the right coset UA of U and the left coset
(A X SO(k — 1 — m))V of V. Hence, if UA 0O)V=U'(A 0OV =XeX,
with [V], [V'] € Fy, ), then U'=UD and (D& I, ,_, V' = W)V for
some W in SO(k — 1 —m), so that D=1, U =U and [V]=[V']. This
implies that ﬁ[V  is injective. It now suffices, by the inverse function theorem,
to show that the derivative dh[V] is an isomorphism at each point of the
domain.

To do this, we begin by considering the map H from SO(m) X E™ X
SO(%k — 1) to X, , defined by

(U, (%y,...,%,),V) » X = U(diag(x,, ..., x,,) 0)V.

This map H is differentiable, and locally H = h[V]o(l X 1 X ), where
denotes the projection V — [V] of SO(k — DonV,_, .

To proceed further we need to turn to the study of the differential forms
and associated vector fields that will in any case play a leading role in the later
metric and curvature calculations.

We define the matrices ¥ = (;;) and ® = (¢, ;) of one-forms given by

=dU'U and &, =dVV!

which are both skew-symmetric, where U = (u,;) € SO(m), V = (v, ) E
SO(k — 1) and d denotes the exterior derivative. Here T is left 1nvar1ant
relative to SO(m), and ® is right invariant relative to SO(% — 1). The
elements of ¥, above the diagonal form a basis of 7;(SO(m)) and those in
®,, form a basis of J(SO(k — 1)). Thus, in particular, the dual vector fields
(¢, =LeZiv;0/0u, 11 <i<j<k—1} of {$;/1<i<j<k—1} are inde-
pendent and right invariant relative to SO(%2 — 1).

The subspace of 7,(SO(k — 1)) along the fibre #= 7y (7 y(V)) = ({I,,} x
SO(k — 1 — m))V is the set of (¢ — 1) X (£ — 1) matrices {(0,, ® AVIA! =
—A} with respect to the basis {9/dv, ;|11 < i, j <k — 1}, or equivalently, it is
the set of (A — 1) X (k — 1) matrlces {0,, ® A|A" = — A} with respect to the
basis {§ 11 <i, j <k — 1}. If we write the matrix ®,, as

P(V)  D(V)
—@y(V)" @y(V)

then the elements of ®,(V') together with those above the diagonal in ®,(V)
will form a basis of Im(7§), which is the same as the annihilator J3(#) of
Ty(P) in T (SO0(k — 1)), while the subspace of ZF(SO(k — 1)) spanned by
the elements above the diagonal in ®4(U) is a direct complement of Im().

Now the linear map H* that is the dual of the derivative dH maps the form
U'dXV' to —WA + dA + A[®]. This shows that

Im(H*) c 7F(SO(m)) & I H(E™) @ T (P)°,

(I1 ----- x
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and, after some calculation, we find that H* maps the (m X (k2 — 1))-form
I—[,'-'Lll_[f;ll dx;; to

{ Il (Xg'_xzi) I ;\Iﬁ_l_m} IT w; IT dx;, T1 o

l<i<j<m l<i<m l<i<j<m l<i<m l<i<m
i<j<k-1

Also
[T (2-2) IT % m=o0

l<i<j<m l<i<m
for X in X . 1, 80 we get rank(H*) = dim(Z¢(X,, ,)) and
Im(H*) = 957(S0(m)) ® I . (E™) @& Tv(P)° =Im(1 X 1 X 7¥).

,,,,,,

The facts that H* = (1 X 1 X 75)e fz’["VO] and that H* is injective imply
that hly | is injective and hence (because its domain and image have the same
dimension) an isomorphism. Then so too is dﬁ[VO].

With SO(m) acting on the left of SO(m) X E™ X Fy,, by composition in the
first factor, fz[VO] is equivariant, and hence it induces the injection Ay from
E™ X Fry,; to m(X,, ;) defined by

((x1,...,%,),[V]) » =((diag(xy,...,%,) 0)V).

Because 7 is a submersion on X,, ,, it follows that Ay, is a diffeomorphism

onto an open neighbourhood of m( XO). This completes the proof of the lemma.
O

RemARK. Similarly, for X, in S™*~D=1 0 X, . the restriction of Ay, to
SO(m) X (S™~ 1N E™) X Fiv,; is a diffeomorphism onto an open subset of
Sm* b=l N X,, , containing X,, and the restriction of Ay, to (S™~' N
E™) X Fy,, is a diffeomorphism onto an open subset of 3% N wéXm, )

REMARK (The continuity principle). The lemma implies that any point
m(X) of m(X,, ;) can be represented by (A,[V]. Such coordinates can behave
disastrously at the points in the complement of 7(X,, ,) where two or more of
the absolute values of the A;’s coincide. But if a function on the size-and-shape
space that interests us is continuous, then this difficulty can be overcome by
taking limits of its values along sequences of points in 7(X,, ,) to evaluate the
function on the complement of 7(X,, ). This continuity. principle will enable
us to use (A,[V]) as coordinates whenever there is no need to insist on a global
coordinate system.

In passing we remark that if the points x}, xJ,..., x} diffuse as indepen-
dent standard Brownian motions in R™, where m > 2 and £ > m + 1, it has
been shown by Bru [6] and by W. S. Kendall [40, 41] that the singular values A ;
will almost surely remain noncoincident for all ¢ > 0 if they start non-coinci-
dent. In particular this implies that with probability 1 the process induced on



RIEMANNIAN STRUCTURE OF SHAPE SPACES 1239

Ss% will stay in 7(X,, ,) and will forever avoid the singularity set, if it starts
in 7T( Xm, k)'

5. The Riemannian metrics of SX* and X%. We are now ready to
derive explicit formulae for the Riemannian metric on every size-and-shape
space and shape space. The forms of the main results [at (1) and (4) below] owe
their elegance to a prudent choice of basic covector and vector fields naturally
related to the submersive structure and its Riemannian character. We use
these to obtain, as corollaries, (i) the Riemannian volume elements (that will
serve as reference measures in the construction of probability densities and
distributions of shape statistics), and (ii) the generator of the diffusion on the
shape space induced by the Brownian motion on the preshape sphere. Finally
in this section we establish a structurally important spectral ‘‘nesting princi-
ple” that relates each 3%, m <k — 2, to a metric subspace of 3f_,.

The linear map 7§ of the last section is an isomorphism from I3V, _; ,,)
to Ty (LY for any V' in &, and J,(L) is spanned by the elements of
®,(V’) together with those above the diagonal in ®(V’), so dw, is an
isomorphism from the subspace of Z(SO(k — 1)) spanned by {¢,;(V)I1 <
i<m,i<j<k—1} to Iy (V,_; ,) In the following we therefore choose
any such V'€ & and denote dmy({; (V') in Jy(V,_y,) by &;AVD
and similarly denote {m§} (¢, (V') in JF(V,_; ) by &;;({V]D. Then
{;AVDIl <i<m, i <j<k -1} is a basis of IvVp-1,,) and
{p,;AVDI1 <i<m,i<j<k— 1} isabasis of T3 (V,_; ).

More generally, through any V' we can choose a slice with respect to the
action of SO(m), that is, a submanifold containing V' which meets each fibre
through a neighbourhood of V' once and only once. Such a slice, together with
the fields ¢;; and ¢,;; on SO(k — 1), determines vector and covector fields on
V,_1 » that we also denote by ¢;; and ¢,;, respectively. ,

Note that @, is left invariant relative to SO(k — 1 — m), or equivalently,
for any W in SO(k — 1 — m), L%, ®,((I & W)V) = & (V). Thus {¢,;(VDI1 <
i <j<m}and {¢£;(VDI1 <i <j <m} are independent of the choice of V"
used to define them. The same cannot be said for ®,((V] and {¢,;([VDI1 <
i<m<j<k— 1} since L ®,((I ® W)V) = (V)W'. However the [P]P]
is invariant and the corresponding two-forms on V,_, ,,, required below to
express the metrics of S3* and 3%, are well defined. We now have the
following result for the size-and-shape space.

THEOREM 1. The Riemannian metric of S3.%,, restricted to w(X,, ,), is

(}'@ — X?})z m k-1
12 t 2 32 12
d)ti + _AT i + Z Z A; i

P
1 1<i<j=m A7 A i=1j=m+1

M3

(1)

i

Note that the quadratic form in the theorem is purely diagonal, and that
when k = m + 1 then the last term in the formula for the metric disappears.



1240 H. LE AND D. G. KENDALL

_ ProoF. X, , is locally a product manifold SO(m) X E™ X Fy, ), and so for

X in X, 4, 7 -(R™*~D) is isomorphic with J,(SO(m)) ® T . )([E”‘) ®
Zv{Ve_1,m)- The Riemannian metric of the flat space R'"(k i given by
tr(dX* dX). In terms of the basis

[pl<i<j<mjul{dill<ism}u{p ll<i<m,i<j<k-1}
of the direct sum
Ty (80(m)) @ I i, (E") @ I (Viei,m)>
the metric tr(dX* dX) can be expressed as

the trace of{(df&)2 + A[®][®] + 2AVAD, — /12‘1’2}

_YaR+ Y (¥ - ~)2¢ P YT Rg

(2) i=1 l<i<j<m A2+ i=1j=m+1

-~ 2
-~ -~ A,iA'
+ X ()t%-l—)t%-){tllij—zxg i dm} :

L 2
1<i<j<m l+)tj

Let us denote by 7,; the dual vector fields of 4;;. Then {n,;|1 <i <j < m},
clearly independent and left invariant relative to SO(m), are by definition
tangent to the fibres of the submersion. All the other vector fields {9/0},|1 <
i<m}U{§;ll <i<m,i<j<k— 1} that we have used are transverse to
such “vertlcal” vectors. Indeed formula (2) makes it clear that (i) the vector
fields {8/04,/1 < i < m} and {¢&,1 <i<m <j <k — 1} are actually orthogo-
nal to the fibres and so are “horlzontal” vector fields, that (ii) the horizontal
versions of {¢;;]1 <i <j < m} are

) A, o
gij_gij+2)t%+ > Mijo l1<i<j<m,

j
and that (iii)

- ~a\2
(EE = (-%),
1280 T T ey ay Qw0
A+ A2

Now it follows from O’Neill [54] that the collection of horizontal vector
fields on R™*~1D will map bljectlvely under the submersion onto the complete
.collection of vector fields on X,, , in the size-and-shape space, and that the
Riemannian scalar product of any two horizontal vector fields at such a point
of R™*~1 will be equal to the Riemannian scalar product of the image fields at
the image point of S3% . The proof of the theorem is therefore complete. O
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In order to be able to formulate a similar result for the shape spaces we
write A; = A,/r. Then A2 = 1. Using for convenience the customary stereo-

graphic coordlnates Uy, Ug, ..., U, ON this sphere, given by the formula
A

(3) u,= —= 1<i<m-1,
1+

we get the following:

THEOREM 2. The Riemannian metric of 3%, restricted to 3% N w(X,, ,), is
m m m, k

2m_1 2 ()‘21‘_)‘3')2 2 U 2492
(4) (L+2A)° Y du?+ Y, ,-j+Z Y N

2 2
i-1 1<i<j<m AiTAj Lim1j=m+1

Here again the quadratic form is purely diagonal, and the double-summa-
tion term disappears when £ = m + 1.

Proor. S3% is a warped product of the half line R, for size r and Sk
with the warping function r2, so that the warped metrlc p of S3% \ m(#, k)
is given (cf. O’Neill [56]) by

dp? =dr? + r2ds?,

where ds? represents the Riemannian metric of 3% \ m(#, ;). It is easy to

check that
m ~ 2

~ 2

/\i
) -
r

mo). 2
—dA,
£ Lo

i=2"1

>rl‘ }rl

M3

dX =dr?+ r2{

i1

i=1

and hence (1) can be rewritten as

m
dr? + r2{ Y. dX+
i=2

2
()t2~—)t2) m k-1
I R
l<i<j<m i J i=1j=m+1
Thus
m m 2 A2 = 22)
ds?= Y, dA2+ | ) ’d/\,.) + ¥ ( o ’2) 2
(5) i=2 i=2 "1 l<i<j<m Ai+Aj

m k-1
+ Y L Ael.

Li=1j=m+1

The theorem immediately follows from formula (3). O
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REMARK. The vectors d/dA,,...,d/9A,,, supplemented by {¢,11<i<m,
i <j<k—1}, also form a basis of 7(X)(E ) for m(X) in Ek N (X, ).
Formula (5) gives an equivalent expression for the Riemannian metric on
3% N (X, ,) in terms of this basis, which will no longer be diagonal. How-
ever the coordlnates Ag, ..., A, here have a simpler relation with the coordi-
nates A,,..., 1, that we used in the size-and-shape space. We shall use this
basis from tlme to time, and in particular we shall use formula (5) to obtain
the Ricci curvature tensor of the shape spaces.

COROLLARY 1. The volume element of SEﬁl is

X2 —

m o m m -
1] L [1da H H $iss
i=1 \/A2+A = —1j=i

l<i<j<m

and the volume element of 3% is

A2 — A% m—1

m-—1 - k-=1-m - —
(2™ I I \/m“ I

l<i<j<m

It would be interesting to know the values of the integrals of these two
volume elements over the size-and-shape space and the shape-space, respec-
tively, because one could then norm them to become probability elements.

Note that T1% [T}, ;¢;; is independent of the choice of V'. Note also that
- ll_l ,+1<;b is invariant relative to the transformations [V] — W[V] for W
in SO(m) and [V]~ [VIW for W in SO(k — 1). Hence I172,I1/2}, ¢, de-
fines a constant multiple of the usual invariant measure on V,,_, ,,.

CorOLLARY 2. The volume of the fibre 7 Uw(X)) above any nonsingular
point m(X) is

Yom T1 YR+ 3

l<i<j<m

for some positive constant vy, ,.

Note that this coincides with the expression found by Carne [7], where
however the square root was overlooked.

Proor. It follows immediately from (2) that the volume element of the
fibre 7~ (7(X)) for any m(X) in m(X,, ,) is

12 12
M VE+2 I w,
l<i<j<m l<i<j<m

and so the expression for the volume of the fibre holds for 7(X) in (X, 1)
Then by the continuity principle it is also true for any nonsingular point. O
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COROLLARY 3. Brownian motion on S™*~VY~1 induces a shape diffusion
on 3% that is a Brownian motion with drift

m A; 1 .
(6) Z{Z—’—gm(m—mi —

i2 | ji AT N

Proor. For m(X) in Ef;t\w(./jn,k), the field (6) is grad{log(volume of
7 Ma(X)). O

Note that £ — 1 labelled independent Brownian motions on R™ induce a
Brownian motion on S™*~D-1 with respect to the random time 7 defined by
dr = dt/r? (Rogers and Williams [58]). Thus we have from the above corollary
that % labelled independent Brownian motions on R™ induce a shape diffusion
on 3* which, with respect to the random time 7, is a Brownian motion with
drift as at (6) above, because the map used to remove the centroid of the data
matrix X* is orthogonal. O

RemARK (The nesting principle). The Riemannian metric of the shape
space 3}_; restricted to 3F_; N 7(X,_; ,) is

k-2 22— 2)?
(1+A1)2Zdu%+ Z ( lz Jz) l2J
i=1 l<i<j<k-1 AP TA

If k — 1> m and if in this formula we write A, = 0 for i > m (whence also
u; = 0 for i > m), we obtain exactly the Riemannian metric on 3%, N 7(X,, ,).
This is what we shall call the nesting principle.

The “explanation” of this important result is as follows. The (¢ — 1) X
(k — 1) matrices of S~ Y*~1 of rank m or less are characterized by A; = 0 for
i > m and can be arranged, using the left action of SO(% — 1), to have their
last £ — 1 — m rows zero. In this way such preshapes can be identified with
the preshapes of 3% supplemented by the appropriate number of zero rows.
Now the shape space 3%, consists of two parts which are mapped isometrically
onto each other under left multiplication by the matrix D = diag(1,...,1, —1).
However, once embedded as above in S*~V*~1 with £ — 1 — m > 1 zero rows
adjoined, the preshapes X and DX determine the same shape in 3% _,. Thus
nested inside %f_, we have an isometric copy of Sk /7,. More generally, for
any r <s < k — 1, 3* contains an isometric copy of 3*/Z,. In particular, the
singularity set w(#, ,) N 2% of 3% is isometric with 3% _,/Z, and hence,
since this has a lower dimension, it is of measure zero. A similar nesting
principle holds for the size-and-shape spaces with similar consequences.

A useful observation is that (3) can be replaced by

u, = A i<r and u;= Aiva
o1+ Y147
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when convenient. Then (3) is the case r = 1, and in the general case the metric
will still be given by Theorem 2 except that the term (1 + A)? will be replaced
by (1 + A,)%

6. The curvature of the size-and-shape space SXk. We now turn to
the calculation of curvatures. A guiding principle here is the famous theorem
of O’Neill showing how, when passing from the “top”” space to the “bottom”
space of a Riemannian submersion, the sectional curvatures never decrease.
This is the reason why the sectional curvatures for the size-and-shape space in
Theorem 3 are always nonnegative, because the presize-and-shape space is flat
(has zero curvature).

As another notable consequence of the O’Neill theory in this application we
shall find that some of the nonzero sectional curvatures of the size-and-shape
space tend to positive infinity as one approaches a singularity.

Recall that, on X,, ,, the =, ,;’s constitute a basis for the vertical vector
fields, while the 9 /3/~\i’s, &;;’s and ¢ ;’s for the appropriate pairs (i, j) consti-
tute a basis for the horizontal vector fields, the verticality and horizontality
being with respect to the Riemannian submersion 7. Also each pair of fields
drawn from the combined (horizontal and vertical) basis is orthogonal with
respect to the metric but may not be orthonormal.

The basic measure of curvature is the Riemannian curvature tensor. We
now apply O’Neill’s theorem [54] on the curvature of submersions, which in
this case (because the curvature of R™*~1 is identically zero) says that if, for
each i, {; is the horizontal lift to R™*~D of the vector {; tangent to S3% \
w(#, 1), then the Riemannian curvature tensor Rgsr of 832\ (A, ,) is
given by

(Ress(tn )00, &) = 38, 8) [50, 2] )
1 IR ADEE (PR N A Y

where the [ - - - I” indicates that it is the “vertical part” that is required.

The only pairs of horizontal vector fields from our chosen basis whose Lie
brackets can contribute anything to the Riemannian curvature are among
those of the forms (3/91,, £;;) and (CI £, ,,)- Their Lie brackets are

[ 9 ; ] 2 a [ XA,
T eS| T 4= = MNiis
or, Y A, | A2z
AA

&0 8] = [ 6] +4 Ny i, [0 My 3]
i1’ Sigja| — | Siwr? Siaja ~9 Y9 %9 ~9 iy’ Nigjads

(7)

(8)
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respectively, where

[y 0o Mig i) = By jiMiin T By jiMzis T BisigMino O iaMinins

(€710 €y ) = Biniabiin + Bigininis T Onsiainie T Oiriabiniar
Hence [3/0A,., Eij]" # 0 if and only if r =i or j, and [éiljl, g?izjz]” # 0 if and
only if {i, ji} N {ig jg} is nonempty. Note that here we have identified 7,; =

—-n;; and &; = —&;. Using these symmetries, and those of the Lie bracket,
the following gives all the nonzero terms required for N:

[—a £ ] o NN
[ = j Nijs
. L J [~ ~o\2 U]
i (32 +%2)

(9)

~

— — v /\IA"] /\iAj/ /\J j'
[gij’gij’] “Rreren _27\2+f\2 i
i J i J' J J'

Formulae (7) and (9) allow us to compute the Riemannian curvature on
7(X,, ;). In order to compute the Ricci and sectional curvatures there it
suffices to evaluate the terms with ¢, = {,. In this case, (7) reduces to

(10) (Ress(t, 00 0 = H{[EE] 58] ):

Then a straightforward calculation using (9) shows that, up to the symmetries
of the Riemannian curvature tensor, the only nonzero components of the
above form are the following:

<R(§ij» §rs)§ij’ &) = <R(§ij’ gsr)gij’ Esr)

= 3R (X2+ X - i2)

JEom) (o)
R (R4 ) (R R (R 4 R
(11) ifr=iorj,s+i,/j,

a K] 3 ) } X 2
<R(§U’K)§z‘j’x> = 3(A2i+/\§—)@r)___)_

8 3 o (e-w
R\ u)an, ) = M )
i J ()\ + A5

\é;herelsi<j3m.
Therefore, we have the following results.
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THEOREM 3.  All the sectional curvatures of S3% \ m(A, ,), restricted to
m(X,, 1), associated with the distinct pairs of vectors from the chosen basis are
zero save for :

K(a 5) 3)1%+?\§.—/'\2, e ioni
=& =3————" ifr=iorj,
oA, (%2 + 22)

K(gij’ §rs) = K(gij’ ‘fsr)

o EEewem)
= (X%+.X§.)(X%+Xi)()~\§+;\i)‘lfr_lor‘]’s#l,‘]‘

ProoF. By definition the sectional curvature of the tangent plane spanned
by the orthogonal vectors ¢, and ¢, is

<RSEZ;(§1, §2)§1, {2>/(”§1”2”§2”2),

which by (10) is 3[Z,, 1% /(411£,]IllZ,]1%). The theorem follows from ), @
and (11). O

Notice that A,,_ ;=\, =0ata singularity, so that some of the sectional
curvatures tend to + there.

Let us denote by d$,, the dimension of S3* . which is equal to m(2k —
m — 1)/2. Then we have the following:

THEOREM 4. The d5,, X d&,, matrix M m, & Of the components of the Ricci
curvature tensor Ric of S3% \ w(.#, ,), restricted to m(X,, 1), with respect to
the given vector fields has the form

R, 0 0
0 R2 0 I
0 0 o0

where R, is the m X m matrix, whose (i, J)th entry Ric(d/dA,,d /oA ;) is

XA A2
-83———— ifi+j and 3y —— ifi=y;
(32 + 22) s#i (124 32)

and R, is the m(m — 1)/2 X m(m - 1)/2 diagonal matrix, whose
(@, 1), @iy, j))ER entry Ric(; jpbiyjh 1<iy<ji<m, 1<iy<j,<m, is
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zero unless i; = iy, = i and j, = j, = j when it is
(B-%) w
(+32) S (R+R)(2+ )

Since for any v = (vq,...,v,,)
3 - -\ 2
U;A; — VA
VRyvi= =Y (L1} >0,
250 B+

it follows that the Ricci curvature tensor field Ric on w(X,, ) is nonnegative.

Proor. The Ricci curvature tensor Ric is defined, at each point m(X) of
S5k \ m(#, 1), to be the trace of the endomorphism of I X)(SE ) given by
{— Rszk(g“ L P4 ){,. That is, Ric is the symmetric (0, 2)-tensor given by

Rie({y1,45) = Z<RSE£’,‘(§1’ei)§2’ei>”ei”— )

where the f{e;} are d%,, orthogonal vector fields on S3% \ 7w(.#, ;). This
implies by (11) that the nonzero components of the Ricci curvature tensor on
m(X,, ;) associated with the given vector fields are

o] i g 2 ..
Rie ﬁ:’@ ’§l.l ".’gu ||§;J|| 1#],
Rie| 2| = I T

* a}:i , ?Az s#i a~ i ’ gls ~i ’ gls glsl

. ? 9 9 9
Ric(¢;;, &) = (R §ij’K gij’K +{R 5;','»5{ fij,g;
i i J J

+ X AR(&j» £0i)bijp ENEIT?

s#i,J

+ Z <R(§ij,§j3)§,~j,§j3>|l§jsll_2, 1<i<j<m,

s#i,J

and so we get the theorem. O
COROLLARY . The scalar curvature of S3% \ w(.#, ,) is
X2
(%2 + X2) (%2 + 22)

(12) 3 ¥ ! g

52 32
l<i<j<m AL+ A
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Note that the scalar curvature of S2% \ m(#, ,) is everywhere positive and
that it tends to infinity at every one of the singularities.

An important consequence of (12) is that the scalar curvature of S3k\
w(#, ;) will depend only on m for k£ > m. For k < m, its scalar curvature will
depend only on k, because S3% is isometric with 83§ _, /7.

Proor. That the scalar curvature on m(X,, ,) is given by (12) follows
immediately from the fact that the scalar curvature is the metric contraction
of the Ricci curvature tensor, or from the fact that the scalar curvature is
equal to the sum of the sectional curvatures of tangent two-planes associated
with distinct pairs of members of an orthogonal basis of tangent vectors. We
obtain the corollary by the continuity principle. O

7. The curvature of the shape space X%. Finally we discuss the
curvature properties of the shape spaces 3% themselves. Here the “top” space
is a sphere of radius 1, so it will turn out (Theorem 5) that all the sectional
curvatures of each shape space are greater than or equal to unity, and that
some of them tend to positive infinity as one approaches a singularity. Accord-
ingly the scalar curvature tends to infinity as one approaches any of the
singularities.

We can investigate the curvature of 3% \ 7(.#, ) in two different ways. We
can use either its characterization as the Riemannian quotient space of
S§m*-D-1 (away from the singularities), or the fact that S3% is a warped
product of R, with 3% . The advantage of the first method is that, since
§m(*=D-1 hag a constant sectional curvature equal to unity, its Riemannian
curvature tensor is given by

Rera-1-1(L1,$) L = <&, {08 — <&, 82040

Then, following an argument similar to that in the last section, we shall find
that the Riemannian curvature tensor of 3% \ 7(.7, ;) is given by

<R>:1;n(§1, 52)43, §4> = <$:3» Zl><§_2,f4> - <53, {_2><Zl,f4>
(13) +é<[21,52] ) [53’ 24] >
‘ _%<[52,Z3] ’[51’54] >_ %([53’ Zl] ’[Z2af4] >’

where, for each i, {; is the horizontal lift to S™*~D~" of the vector {; tangent
to 3k . Choose {3/du;ll <i<m — 1} U{§, Il <i<m,i<j<k—1}as the
basis of 7, x,(3%) for m(X) in 3%, N m(X,, ;). Note that d/du;, being a linear
combination of the horizontal fields 9 /87\1, ... ,6/8;\,", is already horizontal.
* Then the only pairs of horizontal vector fields, corresponding to fields from
this chosen basis, whose Lie brackets can contribute anything to the Rieman-

nian curvature are among those of the forms (9/9u,., £, ;) and (.§~,~1 v &y, The
expressions for [¢; ;, &, ; |” are the same as those in the last section with A,
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replaced by A; and

2Ar+ 1/\j

g = A2

(/\21 N /\3.)2 MNijs

J  _
(14) [7,&]

(w4 u3)

A2 — A2 A
2 : J{l : }7711',

du, ] 2uj

+
2 2
/\1+)tj
2 Mij>

2Mij»

ifr#j—-1,

ifi=1,
ifr=j7-1,
ifr=i-1,
. ifi+1
ifr=j7-1,
otherwise

for j,r < m. Thus we obtain the Riemannian curvature on ¥, N m(X,, ;). In
particular we have the formula for the sectional curvature as stated in the

following theorem.

THEOREM 5. The sectional curvatures of 3% \ w(.#, ,), restricted to 3%, N
(X, 1), associated with the distinct pairs of vectors from the chosen basis are

all equal to unity save for

3

2 2
Ar+ lAj

d
K(_..
du

r

,gij) =1+

K(gij) grs) = K(gl.]’ gsr)

3—— {1+
(1+A1))

A2+ X% - N
2 2\2 ’
(/\i+/\j)

(1+2)% (2% +42)°

Ay

(A2 +2%-2%)

Af+ A2

—1+3

()@i + /\3)()@; + )@s)()@. + )@s) ’

ifr+j—1 andi=1,

2
} , ifr=j—1landi=1,

ifr=i—1lorj—1,
andi #+ 1,

ifr=iorj,s#i,j.

These results could alternatively be obtained via a general formula of
O’Neill that expresses each sectional curvature for the bottom space as the
corresponding sectional curvature for the top space plus an extra nonnegative
term. Thus, quite generally, Riemannian submersions never decrease the

sectional curvatures.
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The component “1 + ”’ in the above formulae represents the contribution
from the top space (a unit sphere) while the remaining (nonnegative) term
represents the effect of the submersion.

To compute the Ricci and scalar curvatures of 3 it is more convenient to
take the second approach, so we use the fact that SEk is a warped product of
R, and 3% with its metric dp determined on S3% \ 17-(/ 1) by

dp? = dr? + r?ds?.

We can then use the formulae of O’Neill [56] that relate the curvature of SE""
to that of 3% . For this, as already mentioned, the most convenient basis to
choose for Y(X)(E ), where m(X) € 3% n (X, ), is {9/07,]1 <i <m} U
g l<i<m,i<j<k-1}

In the case of the Ricci curvature we obtain the following result, where
d,,=mk—m(m + 1)/2 — 1 is the dimension of 3% .

THEOREM 6. The d,,, X d,,, matrix of the components of the Ricci curva-
ture tensor Ric of 3% \ w(#, ,), restricted to Ek N (X, ), associated with
the chosen vector fields has the form diag(R¥, R%, R%). R¥ is the (m — 1) X
(m — 1) matrix, whose (i, j)th entry Ric(d /6/\l,c9 /8/\ j) is given by

1 1

3AA; +
’ ’{ (242" (+R)" (24 a)

oA (dnr— 1)
z Y

+_
Aoz (R +R2)°

if i +Jj, and
¥ I R
Vo P E ey TR L ey
i 1 s#i (A i 182(’\ +’\)

A2
+(dpp — 1){1 + —;}
A1
if i=j; R} is the m(m —1)/2 X m(m — 1)/2 diagonal matrix, whose
iy, Jp), (lz,Jz))th entry Rlc(gllh, 51212) 1< zl <jir<m,1<i,<j,<m, is
zero unless i, = iy =i and j, = j, = J when it is

M{(dmk 1)+3Z Az }

(2% +23) L (% +22)(2+ 02

and R% is the m(k —1—m)Xm(k —1—m) diagonal matrix, whose
iy, Jp), (zz, Jo)th entry Rice(¢;, ;,, 51212) l<i;,<m<ji<k-1 1<i,<
m<j,<k—1, is zero unless i, =i,=1i and j, =j, =] when it is
(d,,;, — DA% Evzdently the Ricci curvature tensor of % \ w(.#, ,) is positive
when restricted to 3%, 0 w(X,, ,).
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ProOF. On 7(X,, ,),{9/0A,]1 <i <m} U {§,ll <i< m,i <j<k—1}are
tangent to 3% N (X, ;). Thus, by O’Neill’s result for the Ricci curvatures on
warped product spaces, the Ricci curvature tensors of Sk \m(A, ) and of
S3k \ m(#, ;) are related by

(grad r,grad r)

Ricsr ({1, 42) =Ricszfn(§1’§2)|,=1 + e dpmr — 1) 2

r=1

wherever ¢, and ¢, are vectors tangent to 3% \ 7(., ;). Hence

I A U PPN
RN —— = _— + —_ - —_—
fest\ aa an, |~ Fessa x| T (9 Nax, o, |

-

Ricys(& &) =Ricgst(€ij &), oy +(dma = D&y &)y

and the components of the Ricci curvature tensor associated with other pairs
of the basis of 7, x,(3}) are zero. '

Because the matrix consisting of Ricgx#(3/dA;,d/9A ;) will be J ‘R,J, where
R, is the matrix in Theorem 4, and J is the m X (m — 1) Jacobian matrix
given by

r=

r=

—Ao/Ay _)‘3//\1 _/\m/AI
0 1 0 ,
0 0 1
we have
Rf 0 0 J 0 0\ J 0 0
0 R o0|=|o 1 o|M,,|0 I O]+ (dnr—1)Gsk,
0 0 R: 0 0 I 0o 0 I

where G is the matrix of the metric on 3% derived from (5), and M,, , is
the matrix of the components of the Ricci curvature tensor of S5k \ (A, 1)
in Theorem 4, with the A; replaced by A;. This proves the theorem. O

COROLLARY. The scalar curvature of 3% \ m(#, ) is equal to the sum of
the scalar curvature of S3% \ m(.#, ,) (with the A; replaced by A;) and an
extra term d,, ,(d ., — 1.

Thus the scalar curvature is bounded below by d, ,(d,, — 1) and is
(positively) infinite at the singularities.

Proor. This follows from a result on warped products in O’Neill’s book
[56] which implies that the relation between the scalar curvatures Sgs: of
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S35\ m(#, ) and Ssi of 3\ 7(A, ,)is

d d,,—1
SE}:’L={SS2£€'E+ mk( rr;k )}

r

0

r=1

In the simplest case %5 when m = 3 and % = 4 the above formula can be
reexpressed in a particularly neat form, and it will be convenient to divide this
by d,, .(d,,, — 1) (here equal to 20, because d,, = 5) so as to obtain an
expression for the “average” sectional curvature. We then have

8 1+ 2(2%0% + 4323 + A3A%)
10 (45 +22) (A3 + A3) (A% + 42

(15) average(K) =1 +

where A, > Ay, > [Agl and A2 + A3 + 2% = 1.

Thus, for all shape spaces, average(K) is never less than unity and explodes
to infinity in the neighbourhood of each singularity (i.e., when )\, and
therefore also A4 tends to zero).

This last expression for the scalar curvature of the special shape space 35
was derived about 1981 by Kendall using an ad hoc method, now lost. Contour
lines for average(K) (drawn on a hemisphere of A% + A% + A3 = 1) will be
found in his contribution to the discussion following Bookstein’s paper ([4],
page 223).

8. Three applications. We now return to the three examples mentioned
in the first section of this paper.

8.1. Shapes of fossils. This problem arose when James Crampton of the
Department of Earth Sciences in Cambridge asked us if we could suggest a
technique that would assist in the classification of shapes of fossil specimens
from the genus Inoceramus. We were encouraged to concentrate on the outer
boundary of a plane projection of each fossil, starting at the outer extremity of
the hinge line, and then moving along this and around the boundary of the
shell until the outer extremity of the hinge line was again reached. For each of
12 specimens he gave us the coordinates of 24 equally-stepped points on this
boundary (obtained with the aid of a digitiser). In this way each specimen was
identified with a point in the shape space 32! = CP?2(4), and the whole data
set was thus represented by 12 shapes identified with points in that 44-dimen-
sional shape space. We decided to proceed as follows.

(a) We first calculated the geodesic intershape distances & for the '>C, = 66
distinct pairs of shells. These determine the off-diagonal values in a 12 X 12
symmetric distance-matrix. The geodesic distances were computed by using
the special techniques first introduced by Le [49].

(b) Now a geodesic distance in shape space measures shape-dissimilarity,
while what we need for correspondence analysis is shape-similarity. We there-
fore replace the geodesic distance s by (1 — sin s)*, this being an empirical
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Fic. 1. A 2D correspondence analysis plot for the fossil data.

antimonotone rescaling that happens to produce a reasonably uniform distri-
bution of similarity values. Note that the diagonal entries in the matrix will all
be equal to unity.

(c) We then performed a standard correspondence analysis as explained for
example in Hill’s paper [19].

(d) We examined the first three nontrivial eigenvectors produced by the
correspondence analysis procedure and plotted for each shell-shape its position
in two dimensions as specified by the first two such normed eigenvectors
(Figure 1). In that picture links are drawn between those pairs of shapes that
are separated by relatively small geodesic distances. It will be seen that we
obtain a plot consisting of three ‘‘branches” spreading out from a common
central region.

(e) It was feared that the use of a merely two-dimensional projection might
have concealed important detail, and so we also constructed a computer-drawn
stereo plot making use of all of the first three nontrivial eigenvectors (Fig-
ure 2).

This stereo option is now one of the standard components of DGK’s
correspondence analysis program. Readers with normal vision may be able to
“fuse” the pair of stereo views by observing the left-hand plot with the left eye
and vice versa, but the use of a stereo viewer is in general recommended.
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F16. 2. A 3D stereo correspondence analysis plot for the fossil data.

Notice that in each component of the stereo plot the centroid is marked by a
“+7” sign. It proves helpful in naked-eye viewing to start by fuzing these two
“+” signs, and once that is done the three-dimensional view of the whole
configuration should be apparent.

The stereo view makes clear the genuine separation between the three
“branches.”

A final plot Figure 3 is similar to Figure 1 but now shows at each locus a
size-standardised portrait of the corresponding shell outline itself, thus facili-
tating visual assessment in relation to the original data.

8.2. Collinearity-testing. We turn next to the ‘“collinearity’’ problem in
Section 1, and make use of data studied by Broadbent [5] concerning 52
“standing stones” in Cornwall. This data-set has also been analysed by
Kendall and Kendall [37]. In these two earlier investigations the methods used
were quite different from that now to be described.

In the present investigation we decided to confine our attention to four-point
collinearities. Now four labelled points in R! that are not totally coincident
determine a shape that can be identified with a point on the sphere 3% = S%(1),
while four labelled (and again not totally coincident) points in R? determine a
shape that can be identified with a point on the complex projective space
35 = CP(4).

- If the points in this last tetrad happen to be exactly (or nearly) collinear,
then the shape-point in CP%(4) will lie on (or near) the “equator” of the
complex projective space. That ‘“‘equator” is, in fact, the real projective space
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F16.3. The 2D correspondence analysis plot with the fossil profiles shown.

RP2(1). This projective two-sphere of unit radius is thus the natural home for
the shapes of exactly collinear labelled tetrads in R2.

If we now pick out from our two-dimensional data set a nearly collinear
tetrad ABCD represented by a point P in the four-dimensional projective
sphere, then P will be close to some ‘“nearest point” @ on the projective
two-sphere, and we can regard @ as identifying the shape of the truly collinear
tetrad which best approximates the original tetrad in R?, so we can use the
length & of the shortest geodesic arc from P to @ as a measure of the degree
of noncollinearity of the labelled set ABCD of four points in R2 This is an
intuitively attractive procedure, and we shall see that there is a sense in which
it is also the statistically natural one.

In a practical context the labelling of the four points will only be of
secondary importance. The projective two-sphere can be dissected into 24
regions (which turn out to be 24 congruent spherical triangles) that match the
24 possible labellings. (Because we shall only be interested in near-collineari-
ties, we can without ambiguity suppose that the points of the tetrad are
labelled as A, B, C, D following their order along their best-fitting straight line.)
Figure 4 will help to illustrate the situation. Note the small triangular markers
that locate the shapes of the equispaced collinear tetrads.

The three corners of any one of these spherical triangles (say the spherical
triangle for which the order of the labelling is (A, B, C, D) will then represent



1256 H. LE AND D. G. KENDALL

Fic. 4. RP2 seen as a sphere, with the 24 “tiles.”

the three possible double-coincidence situations:
(A BCD), (AB CD), (ABC D).
The midpoints of the sides will correspond to the single-coincidence situations:
(A B CD), (A BC D), (AB C D),

while the central point of that spherical triangle will represent the equispaced
tetrad

(A B C D)

identified in Figures 4-6 by the small triangular marker.

Now for distributional (but not metrical) purposes the equal-area projection
of RP%(1) onto a right-circular cylinder can be used as an alternative to RP2(1)
itself, and further we can confine our attention to the image on that cylinder of
just one of the “spherical tiles” —say the one just referred to that has ABCD
as the ordering of its points.

Figure 5 illustrates the map onto the cylinder, while Figure 6 shows an
enlargement concentrating on the “central” tile and containing further detail
that we will describe in a moment.

We now have to call on the theory developed in Le [50], where it is shown
that generically there is a unique shortest geodesic arc from a point P in
34 = CP%4) to the unique nearest point @ in the “‘equatorial set”” RP2(1), and
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Fic. 5. The equal-area projection of RP? onto a cylinder (opened out).

where techniques for finding @ and evaluating the geodesic distance d from
P to Q are both worked out in detail. We must refer the reader to Le’s paper
for these technicalities, and especially for her method for computing d. In
Kendall [26] and Le [50] it is shown that, for a random tetrad in two
dimensions generated by iid sampling from a Gaussian distribution with
circular symmetry, the quantity & = sin®(2d), has the uniform distribution on
[0, 1]. This fact suggests that it will be convenient in what follows to work with
the monotone transform 8 = sin?(2d), 0 < d < /4, rather than with d itself,
and accordingly we shall do this. (Note that 7/4 is the maximum possible
value of d. See [26].) Now we are interested here not in exact collinearities, but
in near-collinearities. The degree of nearness & that is to be regarded as
critical must be decided upon by the initiator of the investigation. It is in fact
desirable to choose two such “levels of nearness.” The first (and strictest) &,
(= 0.00001) is used to define really remarkable near-collinearities, while the
second (and weakest) 8, (= 0.001) is used to provide a standard for compari-
son. We recommend plotting those tetrads that satisfy the strict requirement
as large solid black spots, and those that are to provide the background
comparison as small crosses. The result of this procedure for the Broadbent
data-set will be seen in Figure 6.

It is, of course, the large solid black spots that are of primary interest: They
are candidates for meaningful four-point collinearities. The small crosses
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Fic. 6. The central tile (enlarged, with Land’s End data).

representing other less remarkable collinearities provide essential background
information and also supply a check on the methodology.

However this is not quite all. We must take care to distinguish ““well
spaced-out” solid-spot collinearities from those that have two or more nearly
coincident member-points, because configurations of the latter type will nor-
mally be dismissed as three-point collinearities that just happen to have a
nearly-replicated member-point. A useful criterion for this purpose is the
rather artificial requirement

min(AB, BC,CD) > AD/5.

The choice of the number 5 in this formula is somewhat arbitrary, and may
well need to be altered. This convention allows us to exclude all large solid
black spots that are too close to the boundary (or corners) of the basic spherical
triangle (all the points of which represent exact single or double degeneracies).

In Figure 6 the locus corresponding to the “critical” situation (equality in
the above formula) is shown as a dotted triangle whose edges correspond, in
fact, to arcs of certain other spherical triangles on the original RP? along
which the inequality reduces to an equality (cf. Figures 4 and 5).

To sum up, the “large solid black spots” mark the strikingly close collinear-
ities, characterised by a very small length of the “geodesic perpendicular”
from the original shape-point onto the exact-collinearity locus, but such points
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251 ;1 2 - 9,000508

004 ; 1 0,000009

ee3 ; 1 - 0,000008

ee2 ; 3 0,000001

001 ; 4 " 0,000000

Fic. 7. The first four (and the 251st) most nearly collinear Land’s End tetrads.

are to be discounted when they lie on the edge of or outside the inner dotted
triangle.

For the Broadbent data it turns out that none of the large solid black spots
lie within the inner dotted triangle that would (on this criterion) contain the
genuine near-collinearities if there were any—though one large solid black
spot is indeed a ‘‘near miss.”

A considerable advantage of plots such as Figure 6 is that we see the way in
which the collinearity-criterion is actually working, instead of having to rely on
a merely numerical judgement. Because the inequality-criterion and its geo-
metric equivalent is of a somewhat arbitrary form, it is helpful to supplement
the graphical output by an additional plot or plots showing some of the more
nearly collinear tetrad-configurations themselves—say all of those correspond-
ing to the large solid black spots, together with some of those (corresponding
now to small crosses) that have a §-value not more than say 508,. Figure 7
shows a plot of this sort for the Broadbent data. (The straight-line segments in
this diagram are determined by singular-values decomposition.)

From a classical Fisherian point of view we could say that the size and
shading of the spot representing the quantised &§-value in the graphical
representation is the basic test statistic, and that its distance from the edge-
or-exterior of the inner triangle is the associated ancillary statistic. Thus a
natural differential-geometric analysis has led us from the initial description of
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the problem to an extension of classical testing procedures in a novel curved-
space context.

Diagrams such as Figure 6 reveal a great deal of further information that
cannot be discussed in full detail here. Thus the reader may have noticed the
strings of small crosses hugging the left-hand and right-hand “arches” bound-
ing the larger spherical triangle. These signal the presence of “close pairs” in
the data set. Obviously if the site of a ‘“‘close pair” happens to be nearly
collinear with two other points, then such a ‘“boundary” point will appear in
the diagram.

The interpretation of such phenomena is not always self evident, and
experimentation with a number of artificial and real data sets is strongly
recommended. It is also very helpful to have available as many different
graphical presentations of the data as possible, and we now exhibit a few of
these.

Figure 8 shows a scatter-plot for max(ZABD, £ZACD) (vertical axis) against
& (horizontal axis). This plot shows in a very striking way the complete
inadequacy of the usual max-angle criterion as a collinearity statistic.

Figure 9 shows the geographical locations of the 52 Broadbent points,
together with the four four-point collinearities that correspond to the four
‘“large solid black spots.” It is a striking fact that two of these four collineari-
ties each has five or more well separated points on or near it.

Fic. 8. The angular criterion plotted against the shape-theoretic criterion.
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Fic. 9. Broadbent’s Land’s End data, with the four best collinearities.

+
+ + *
o +
¥ oL+ *s
+
+ + ¥
++ +
w o+ o+
+ 7+ gt o+
* +
+
Tt + 4]
+ L+ ++ +
+ + +
+F+ 4 +
++1;,+ ++++ +¢
+ ++ +
+ + ot -
v, ; : *
+
+ ++.
+ ++ﬁ-+ $+*'_+ . +
f
+ + + + + +
+ 4 4 b
AR R
T+ + + 5
+ o+ + +
++¢:+¢++.t + o +
+ + o+ + +H
*"‘"f Poae * +++++1+‘x++*+
i+ +}+++ +, ot
e +++ + o+
n + EN O ey
e+ ¥ w1
R s
Wt 4, St
7 i
g 1
i

Fic. 10. A “ flat-space” criterion compared with the shape-theoretic criterion.



1262 H. LE AND D. G. KENDALL

30 —
25 —

20 —

I
|||l|||l||l||l|]

1
IIII'IIIIIIII

L

I e R

T ' LA S Bt [ g

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Fic. 11.  Histogram of the 100 most nearly collinear tetrads.

Figure 10 compares the 8-value derived here from shape-theoretic consider-
ations (horizontal axis) and a similar but more classical criterion (vertical axis)
derived by fitting a straight line in 2D and measuring the lateral departures
from that. Here (in contrast to Figure 8) the two techniques are obviously
trying to measure the same thing, but instead of a linear relationship we have
points scattered within a wedge whose upper boundary is about 4 times as
large as the lower boundary. This factor 4 quantises the penalty to be paid if
one uses a crude linear analysis instead of the shape-theoretic one.

Finally Figure 11 shows a histogram of the shape-theoretic §-values for the
range 0 <6 < 0.001. This picture shows that there is nothing out of the
ordinary at the small-6 end of the range. The only really striking feature of
the Broadbent data set is the pair of multiple collinearities noted above. (This
comment of course largely echoes Broadbent’s own conclusions.)

Figures 4, 5, and 6 were first published in a contribution to a Royal
Statistical Society Discussion Meeting (Kendall [33]), and are reproduced here
by permission of the Society.

8.3. Shapes of Poisson—Delaunay tetrahedra. Our third and last problem
is concerned with the shapes of the polyhedral cells in a Voronoi tessellation in
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three dimensions generated by a three-dimensional homogeneous Poisson
process. Now the dimensionality is not in itself a problem (though here we
shall confine ourselves to three dimensions),. nor does it matter that the
polyhedral cells carry no specified labelling because we can always impose an
arbitrary labelling and quotient it out at the end of the calculation. The
difficulty lies in the fact that we have not yet investigated the fraction of shape
space that is characterised by the special condition (an essential feature of
Voronoi cells) that each labelled point is an effective vertex (i.e., each such
point lies properly outside the convex hull of all the others). Until this
situation is thoroughly explored (and it presents a very attractive problem) it
would be premature to invest too much effort in the shape analysis of Voronoi
cells.

However, there is a useful duality between Voronoi tessellations and
Delaunay tessellations, and happily with Delaunay tessellations generically
each vertex does lie properly outside the convex hull of all the other vertices.
What is more, generically each Delaunay cell is an (m + 1)-simplex when the
tessellation lives in R™. Here again there is no preferred labelling of the
vertices, but this is not a problem if we agree to impose an arbitrary labelling
and then quotient it out at the end. We therefore discuss the Delaunay
problem, and leave the Voronoi problem for another occasion. We shall assume
throughout that the set of points generating the tessellation is a homogeneous
Poisson process.

The two-dimensional case has already been fully explored (Kendall [25, 30,
31]), and so we concentrate here on dimension m = 3.

A key contribution to the solution will be the following theorem for general
m that was established in a more general context in the papers just cited.

Let us write R for the radius of the circumsphere of an m-dimensional
simplex in R™, and let us write L for the square root of the sum of the squares
of the distances |P,G| from the vertices P, to their centroid G. Now suppose
that we have available an infinite sequence of independent standard Gaussian
simplexes in R™. [This means that the simplexes are to be independent, and
that for each individual simplex the m + 1 vertices are to be iid Gaussian with
a unit isotropic variance matrix and a common mean (0,0, ...,0).] For each
such simplex calculate the value of the random variable

r=(R/L)™(m+1)™? 1<r<w.

Then if we accept that simplex when 7U < 1, and reject it when U > 1,
respectively, where the independent U-variables are to be drawn from the
distribution unif{0, 1], the accepted simplexes will form an infinite sequence of
independent Poisson—Delaunay simplexes in R™.

Thus when m = 3 we can easily generate as many independent Poisson—
Delaunay tetrahedra as we please, and in this way can study the distribution of
their shapes in the shape space X3. That is the programme we here propose to
carry out. We shall want to illustrate the results graphically, and this will
involve some ingenuity because the shape space 33 is five-dimensional.
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Now the shape of any one Poisson-Delaunay tetrahedron can be adequately
described by the diagonal matrix A = (A, A,, A;) together with the (right-hand)
rotation matrix V € SO(3). [Note that we can take V to lie in SO(3) rather
than in O(3) because we have left A; free to assume either sign.] Evidently we
can display all the “A” information in a (Aj;, A;) diagram. This loses no
information about A because

Ay =+ (1 -2 -2%).

We shall call the region available to (A, A;) the basic region. It corresponds
to a spherical triangle with angles (7 /2, 7/3, 7/3) that is a totally geodesic
submanifold of the “‘top” space which maps bijectively onto a totally geodesic
submanifold of the “bottom” space (the shape space %3). (The proof of that
statement is just the observation that in the top space the preshape point
moves in a direction orthogonal to the fibre whenever the A’s are perturbed.)

We can plot the point (A, A,, A3) directly onto the sphere S%(1) (or rather,
the appropriate spherical triangle thereof), but in many circumstances (and in
particular, here) it is more convenient to plot (A4, A,) (which contains all the
A-information) via a suitable rotation of the sphere and the classical equal-area
projection from S*(1) onto a convenient snugly-fitting cylindrical sleeve, which
is then cut along a suitable generator and opened out.

With a suitable choice of axes this yields a plotting-region that is a curved
isosceles triangle looking rather like a bell. A vertical axis of symmetry (the
A;-axis) cuts the base orthogonally, and passes through (1,0,0) (the home of
the singularities) and the point (1/v2,1/v2,0). The Ag-axis cuts that axis
orthogonally at the last mentioned point, and runs from (1/v3,1/V3,
—1/V3) (the negatively oriented regular simplex) to the complementary point
in which the last coordinate is positive (the positively oriented regular simplex).

However this A-representation takes no account of the shape-variables
associated with the rotation matrix V, and in order to plot at least a quantised
version of the V-information we now choose and dissect an appropriate coset of
the group SO(3) and distinguish 24 abutting but nonoverlapping ‘“compart-
ments” into which it can naturally be subdivided.

This “quantisation” can be carried out in many different ways, and we
choose the one that follows. We record the signs of the nine elements of the
matrix V, and observe that it is permissible and appropriate (if needed) to
borrow diagonal rotations in SO(2) from the rotation matrix U in SO(3) that
lies to the left of A in the singular-values decomposition and to use these (i) to
switch the signs in the first and third rows of V and then (ii) to switch the
signs in the second and third rows of Vin such a way that each of vy, and vy,
becomes nonnegative.

This leaves us with a standardised V having two fixed (nonnegative) signs
in the positions (1,1) and (2,1), and seven variable signs elsewhere in the
matrix.

Now because we are dealing with a rotation matrix these seven variable
signs are by no means arbitrary. There are in all just four possibilities for the



RIEMANNIAN STRUCTURE OF SHAPE SPACES 1265

signs of (vy, U13), and these are each individually to be combined with just
three possibilities for the signs of v,, and v,y giving so far 12 possible
variable-sign combinations. In addition we have an additional factor from the
(now rather limited) sign-possibilities in the bottom row. It turns out that this
extra factor is in fact equal to 2.

To see that this is so, note that the third row is the vector product of the
first two rows. Careful examination of the possibilities then shows that two
(not always the same two) of the elements in the third row have signs that are
already determined, while the third sign in that row is free. Thus, on putting
all this together, we have proved the nice little lemma that the so standardised
V matrix has exactly 24 possible sign patterns.

We can now use these 24 possibilities for the sign pattern in the standard-
ised version of V to cut up the chosen coset of SO(3) into 24 ‘“‘compartments”
that do not overlap but may share common boundaries.

We then replace the shape space by an approximation that is the Cartesian
product of (1) the bell-shaped area-true projection of the spherical triangle
carrying the variables (A, A,, A3) and (2) the 24-point discrete space that now
represents the chosen coset of SO(3).

This means that if we construct a diagram consisting of 24 replicates of the
“bell,” each identified with one of the 24 possible sign patterns, then we will
be able to “see” the five-dimensional shape space modulo the approximation
being used, and so to enjoy a direct, if approximate, perception of ““what lies
where” in five dimensions. We have carried out this programme in full, and
now present two examples of its use.

In the first example we constructed 8000 independent tetrahedra with iid
standard Gaussian vertices (Figure 12). Notice the bilateral symmetry in each
“bell,” and the falling-off of the density towards zero at the edges (and
especially at the vertices) of the “bell.”

In the second example we made use of Kendall’s device mentioned above
that enables one by optional selection (utilising the size-standardised version
p = R/L of the circumradius R) to select from an iid sequence of Gaussian
tetrahedra a subsequence that is again iid and whose members are
Poisson—Delaunay tetrahedra. We can then construct Figure 13, which allows
one to “see” in the five-dimensional shape space how the shapes of these 8000
iid Poisson-Delaunay tetrahedra are distributed.

(Of course what one does in practice is to prepare to create sequentially
some 80,000 Gaussian tetrahedra, and then to abandon the construction as
soon as 8000 Poisson—Delaunay tetrahedra have been obtained.)

The reader will notice the almost vacant vertical medial strip lying below
the uppermost vertex in each bell in Figure 13. This feature is easy to explain.
It simply reminds us that Poisson-Delaunay tetrahedra are very unlikely to be
even approximately plane, the point being that the medial vertical line in each
bell is the locus of the degenerate (plane) tetrahedral shapes (with a near-
infinite value of p).

Another very interesting feature of Figure 13 is that the 8000 Poisson-
Delaunay points are approximately equi-frequently distributed among the 24
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Fic. 12. The “bell” plot for the shapes of 8000 Gaussian tetrahedra.

bells. The corresponding feature in Figure 12 merely reflected a well known
property of the singular-values decomposition of a Gaussian matrix, but its
repetition in Figure 13 came as a surprise to us. It suggests several interesting
possibilities that we hope to explore on another occasion.

The ratio of the number of Poisson-Delaunay tetrahedra obtained to the
number of Gaussian tetrahedra used was 0.18613. The theoretical value for
this ratio in an infinite sample is 0.14726... . The program took about 7
seconds to create each 1000 Poisson-Delaunay tetrahedra, and that rate could
be improved upon by cutting out the large volume of ancillary diagnostic
material requested by this exploratory program.

It is important to stress here the quite different behaviour of Poisson-
Delannay tessellations that are based on a given finite set of points. In that
case we have to take into account what happens near the boundary. A
substantial proportion of the boundary tiles will be ‘“‘outward looking,” with
large circumspheres that succeed in being void precisely because they are at
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Fic. 13. The “bell” plot for the shapes of 8000 Poisson—Delaunay tetrahedra.

the boundary, and so the analogous plots for such a finite situation will tend to
have the typical Poisson-Delaunay void along the median line “filled in” by
contributions from boundary tiles. The quantitative aspects of this remark
could be sketched on an asymptotic basis, but we will not do that here.

To conclude this discussion we wish to comment informally on the nature of
a so-called “duality’”’ between infinite Poisson-Delaunay and Poisson-Voronoi
tessellations of R™. Here the true ‘“‘duality’” hinges rather on the relationship
between the collection of all the Delaunay tiles that meet at a given vertex, and
the collection of all the faces of a single Voronoi tile. Thus if we wish to
discuss the shape of an individual Voronoi tile then we are confronted with a
problem as hard as that of describing the whole “fan” of Delaunay tiles that
meet at a common point.

A little is known about such “fans” (Kendall [30, 31]). The number of
Delaunay tiles meeting at a given point grows fantastically quickly with
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increase in the dimension m, and there will be about 44 million million such
tiles when m = 15. Very little is known about the statistical distribution of the
Delaunay hypersolid angles that have a vertex ‘at a given Poisson point in R™,
even for m = 3, but we conjecture that it will consist asymptotically of a
relatively few “‘chunky’ hypersolid angles accompanied by a vast multitude of
“needle-like” ones. Note however that these “needles” will not normally have
a large circumradius.

Arguing by duality one would expect for a high-dimensional Voronoi tile a
moderate number of large faces supplemented by a vast multitude of minute
faces.

Is this correct? It seems reasonable, but an attempt to confirm it by a
numerical simulation is at present held up by the difficulty of computing
hypersolid angles in many dimensions. We are, of course, familiar with the
apparatus constructed by Schlifli for such purposes, but we would welcome
advice about its use.

To conclude this discussion we mention here that the procedure for “view-
ing” what goes on in the five-dimensional shape space can also be used
dynamically with great effect. Specifically, we can produce in this way, for
ready visual examination, (a) the global behaviour of one or more geodesics,
and (b) the global behaviour of the paths of Brownian motions (or any other
diffusions) in 3. We hope to study such possibilities in a sequel to this paper.

We also have in mind the analogous problems associated with 3% when %
and m are general. Obviously further detail has to be sacrificed when m is
equal to 4 or more, and a reasonable strategy would be to replace Ay .aiA,)
by (A, A,,_1, A,,), where

A=+ + R,

In principal the standardisation and decomposition of the Stiefel manifold that
now replaces SO(3) could be done on a sign-pattern basis as before, but the
number of distinct sign-patterns would become uncomfortably large and it
seems likely that some further amalgamation would be necessary—especially
for large k.

8.4. The importance of global considerations. We close this paper with a
general remark that seems to us important. The three applications that we
have described all depend in different ways on the global geometry of the
relevant shape spaces. In the first two applications we only needed the shape
spaces 3} = S*7%(1) and 3% = CP*~2(4), for each of which the global metric
geometry is thoroughly understood. But in our third application involving 33
we were in quite a new geometric environment, and had to investigate its
(previously unknown) global metric structure in some detail before we could
adequately deal with the problem under discussion.

It seems clear that this pattern will be the norm whenever we are concerned
(as there) with an ambient dimension m that is greater than or equal to 3. We
already have an adequate study of the geodesic geometry (Le [49, 50]), and
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work on the homology structure (Barden [3] and Kendall [36]) is well advanced.
This may not suffice for all the applications, and more ambitious global
investigations (for example involving homotopy) are being planned. Perhaps
they will be needed. ‘
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.

Note. We have attempted to construct a general bibliography for shape
theory and some of its applications, and not all of the papers listed here are
referred to in the text. The reader is advised to consult in addition the
complementary bibliography in the monograph by Rohlf and Bookstein [59],
which is particularly concerned with biological applications.
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