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THE MAXIMUM LIKELIHOOD METHOD FOR TESTING CHANGES
IN THE PARAMETERS OF NORMAL OBSERVATIONS

By Lasos HorvATH

University of Utah

We compute the asymptotic distribution of the maximum likelihood
ratio test when we want to check whether the parameters of normal
observations have changed at an unknown point. The proof is based on the
limit distribution of the largest deviation between a d-dimensional
Ornstein—Uhlenbeck process and the origin.

1. Introduction. Let X, X,,..., X, be independent normal random
variables with parameters (u,, o), (g, 03),...,(u,, 02), where, as usual,
(1.1) p; =EX, and of=varX;,, 1<i<n.

We want to test
(1.2) Hy:py=py= " =p, and oy=0y= "+ =g,
against the alternative
Hy: py=py= -+ = M) F Mpre1 = 007 = My
(1.3) Or 0y =03 = **" = O # O = 777 = 0y

for some 1 € (0, 1).

Under the alternative hypothesis we can have change in the mean or in the
variance or in both.
Testing (1.1) against the stronger alternative

Hf:o1=0,= "' =0, and p; =py= " =p, #

(14) Kinsj+1 = *** = K, for some 7 € (0, 1)

has received considerable attention in the literature. Under H} we can have
change only in the mean; the variances remain the same. Page (1954, 1955)
considered a very simple procedure for testing H, against H}. Sen and
Srivastava (1975a, b), Srivastava and Worsley (1986), Yao and Davis (1986),
James, James and Siegmund (1987) and Worsley (1986) derived tests for H,,
against H} using the likelihood ratio. Yao and Davis (1986) obtained the
asymptotic distribution of the likelihood ratio. For further results the asymp-
totic distributions of these and related statistics we refer to Csérgé and
Horvath (1988) and Gombay and Horvath (1990).

The maximum likelihood method can be used when we want to test H,
against the more general alternative H,. It is easy to show that the likelihood
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ratio is
an
A = max -
" 1<k<n-1GfarTE’
where
1 A 2 1 . 2
a2 _ > _
O = E Z (Xz _Xk) ’ On—k _k (Xz _Xn—k) )
l<i<k n k<i<n
1 . 1
Xk=; > X, Xoh = “ Z X;.
1<i<k n k<i<n

The main aim of our paper is the computation of the asymptotic distribution of

(15) A, = ( max (nlog 6% — klog 6% — (n — k)log &3_k))1/2

l<k<n-1

In order to state our main result we must introduce the following functions:
(1.6) a(x) = (2log x)"?,

(1.7) b(x) = 2log x + loglog x.

Let Y be a r.v. satisfying

(1.8) P{Y <x} = exp(—2e~*) forall x.

THEOREM 1.1. If H, holds, then as n — o,

a(logn)r, —b(logn) -, Y.

The assumption that the observations are normal can be dropped. For
example, the conclusion of Theorem 1.1 remains true, if in addition to (1.1) it
is also assumed that E(X; — w)® = 0 and E{(X; — u)/o}* = 3, where u and
o2 are the common mean and variances under H,. This means that the first
four moments of (X; — u)/o must be the same as of the standard normal
distribution.

The proof of Theorem 1.1 is based on a generalization of the limit theorem
in Darling and Erdds (1956) for standardized random vectors. The following
section contains the Darling-Erdds—type result and its proof. Both Lemmas
2.1 and 2.2 may have further applications in change-point analysis. Theorem
1.1 is proven in Section 3. , '

We performed Monte Carlo simulations to demonstrate that the asymptotic
distribution in Theorem 1.1 can be used in case of moderate sample sizes. Let
F.(t) = P{a(log n)A, — b(log n) <t} and F(¢) = exp(—2e~*). The simulations
of F,(2), Fy5,(¢) and F,,,(¢) are based on 2000 repetitions in each case, and the
standard error is less than 0.001 for all ¢. The fit is good on the upper tail. The
rate of convergence of F,(¢) to F(¢) is very slow, but the interval on the upper
tail when we have good approximation is increasing when the sample size is
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increasing. It turns out that the largest deviation between F,(t) and F(¢)
occurs about the median. Let z(a,n) and z(a) denote the 100a% quantiles of
F, or F; that is, F(2(a, n)) = @ and F(z(a)) = a. The Monte Carlo simulation
gave the following numerical values: 2(0.9,20) = 3.12, 2(0.95,20) = 3.59,
2(0.99, 20) = 4.57; 2(0.9,50) = 3.14, 2(0.95, 50) = 3.60, 2(0.99, 50) = 4.54; and
2(0.9,100) = 3.05, 2(0.95,100) = 3.60, 2(0.99,100) = 4.61. Using the asymp-
totic distribution we get that 2(0.9) = 2.94, 2(0.95) = 3.66 and 2(0.99) = 5.29.

2. Darling-Erdés-type results for vectors. Let
{(Vi(8),0 <t <w},...,{Vy(¢),0 <t <}

be independent identically distributed Ornstein—Uhlenbeck processes with
EV(t) = 0 and EV(#)V,(s) = exp(—|¢t — s]/2), 1 <i < d. Next we define

(2.1) Ny = £ v

l<i<d

which is just the distance between (V(¢), ...,V (¢#)) and 0. Let Y* be a random
variable with distribution function exp(—e~*) and define

d d
(2.2) by(t) =2logt + Eloglogt — log F(E)’

where I'(¢#) is the Gamma function. Since I'(1/2) = 7w'/2, the following result
reduces to Theorem 2 of Darling and Erdds (1956) when d = 1.

LEMMA 2.1. As T — o,

(2.3) a(T) sup N(t) —by(T) —, Y*.
0<t<T

Proor. The process {N(¢), 0 < ¢ < «} is a diffusion process and its initial
distribution is the square root of the yZ-distribution with d degrees of
freedom. The backward equation associated with N(¢#) is

_=__+_ PR
it 29x%2 2 dx

du 1 0% 1(d—1 )au
— X
X

with boundary condition
u

limx?d-1 —
x10 ax

[cf. It6 and McKean (1965), pages 162-163]. Using Theorem 1 of Mandl
[(1968), page 102] we get [cf. also Ronzhin (1985)].

(2.4) lim P{ sup N(t)<M}=e‘”

M-w N g<t<uy(M)
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for all u > 0, where

(2.5) y(M) = 2¢72T(d/2) M~ eM"/2,

For each x € (-, ) and T > 0 there is a unique M such that y(M) = Te*,
and therefore by (2.4) we have

(2.6) hin P{0s1t1p N(t) < y-l(Tex)} = exp(—e™%).
) <t<T
It is easy to verify that
(d/2)loglog T  logT'(d/2)
(2log T)"*  (2log T)*

x 1/2
’y((ZTT)I/Z +(210gT) +

. (loglog T')?
=Te {1 + O(TgT_

as T — «, and thus (2.6) yields Lemma 2.1. O

(2.7)

Let {(Z®,...,Z{?), 1 < i < =} be independent identically distributed ran-
dom vectors, and define

SOk)y= Y z®, 1<i<d.

l<j<k
LEmMA 2.2.  Assume that EZ(" = EZ® = --- = EZ{® = 0, the covariance
matrix of (Z(, ..., Z{D) is the zdentzty matrix and
(2.8) max E|Z(‘)| < forsomer > 2.

l<i<d
Then, as n — o,

(29) a(logn) max | ¥ (k-1/28<">(k>)2)1/2—bd(logn)e

l<i<d

Proor. By Einmahl (1989) we can define d independent Wiener processes
Wi(#),. .., W,(¢) such that

(2.10) max sup |SO(t) — W(¢)| =, o(TY").

1<l<d 1<t<
Next we observe that
5\ 172
(2.11) {( Y (tTVAW(r)) ) ,l<t< oo} =9{N(logt),1 <t <},
l<i<d

where N(t) is defined by (2.1). Let v = 2r/(r — 2). Now (2.10) and the law of
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iterated logarithm imply

a(logn) sup

(logn)' <t<n

(lszi;d(t‘l/zs(i)(t))z)l/z

(2.12)

(= (t'l/zvn(n)Z)l/z

l<i<d

=as. 0(1).

Using again the law of iterated logarithm it can be established that
1/2
a(logn) sup ( Y (£71289(¢) )
(213) 1<t<(logn)’ \1<i<d )
—(bg(logn) +x) =p —
and

a(logn) sup (1:‘1/21’[/'l~(t))2)1/2

(2.14) 1<t<(logn) ( l<i<d
—(bg(logn) +x) »p —
for all x. Hence Lemma 2.2 follows from Lemma 2.1 and (2.11)-(2.14). O

3. Proof of Theorem 1.1. It is easy to see that linear transformation of
the data does not change the values of A, and therefore it can be assumed that
pu = 0 and o2 = 1. The proof is based on the observation that the asymptotic
distribution of A, is determined by

ax ax l A2 k l A _ _ k l 1/2’
m {IOg’lSIl?sn/logn(n 08 On 0g 7, (n ) og O'n k)
max ( lo k1 ( k)l )1/2}
nlog 67 — klog 6 — (n — k)log 5?7 .
n—n/logn<k<n-logn g g Ty, g G,

A three-term Taylor expansion gives
= nlogcr - klogak - (n - k)logan &

(3.1) —3n (62 —1)" + 3k(62 = 1) + 3(n — B)(62, — 1)’
RCURICE
_l(g(z) _3k( a2 _ 1) _ 3(§(3)k)‘3(n _ k)( )3,

where ¢ — 1] < -1, €2 - 1] < |62 — 1] and [¢9, — 1| <le?, = 1l.

Simple algebra shows that
n(62—1)— k(62 -1)— (n—-k)(¢2, - 1)

(3.2) X § \
= kX2 + (n — k) X2_, — nX2
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and
n(62 - 1) — k(62 — 1)’ = (n — k)(62, — 1)°
R ED - RE )

l<i<n l<i<k
(3.3) ( Y o (X2-1 )
n k<z<n( )
-2X2 Y (X2-1)+nXi+2X2 ¥ (X2-1)-kX}
l<i<n l<i<k
+2X2, L (X2-1)-(n-k)X:,
k<i<n
The law of iterated logarithm yields
(3.4) max k/2(loglog k)~ ¥ ¢@k(52 — 1)°| = 0p(D),
l<k=<n
(35)  max (n—k)/oglog(n — £)~*|e@y(n — (324~ 1’| = 0p(1),
(3.6) max £1/%(loglog B2RY L (XE-1)| = 0p(),
=k=n 1<i<k
2
3.7 _—
(3.7) lsk<n(10g10gk) = Or(D),
(3.8) max (n - k) %(loglog(n — k) "*2X2_,| ¥ (X?- 1)| 0p(1)
sk<n k<i<n
and
3.9 n—k 2X - 051
(3.9) 1<k<n(loglog(n—k)) p(D)-
Thus we can write
(3.10) n, = AP + AD + R} + R,

where
AP = kX2 + (n — k)X2_, — nX?2,
1
a0 =gl 2 xe-n) s g 2 - 0)

1<i<k k<i<n

~onl T @-y),

l<i<n
RE - 360) 06— 1) = 5(60) h(3E - 1)’

+X2 Y (X2—1)——X4 X2 Yy (X2—1)+ka

l<i<n l<i<k
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and
]. -3 o 3 n — k -
RP = S(69.) (= B)(32, - 1)’ + 2L,
-X2, ¥ (X2 -1).
k<i<n
By (3.4)-(3.9), R{V and R{? satisfy
(3.11) max £'/*(loglog k) ~**| R{’| = 0p(1),

(3.12) max (n - k)*(loglog(n — k)) "**| RP| = 0p(1).

Combining the law of iterated logarithm with (8.10)-(3.12) we get

(3.13) a?(logn) max n, — (x +b(logn))® =, — o,
l<k<logn
(3.14)  a2(logn) |_max (AP + AP) — (x + b(log n))? —»p — =,
<k=<logn
(3.15) a’(logn) max m, — (x +b(logn))® =, — o,

n—logn<k<n

(3.16) a’(logn) max (AP + AP) — (x + b(log n))* —p — @

n—logn<k<n

for all x and
(3.17) a’(log n) max |nk - (AP + A(,f’)| =o0p(1).

logn<k<n-—logn

Thus Theorem 1.1 is proven if

(3.18) ,}iflp{“z(l"g n) max (AP +AP) < (x + b(log n))z}
= exp(—2e7%)
is established.
Observing that

(n—k)X2_, — nX?

k 2 2
= TN Z Xi) I X; X;
(3.19) n(n — k) (lsiSn ‘ n - ISLZSn 15:51;3 !
1 2
* n—k ( L Xi) g

l<i<k

we obtain

(3.20) a®*(log n) . ](n —k)X2_, — nX2| = 0p(1).
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Similar arguments give

1 2
2(1 2-1 )
@ (ogn) lskrélr?}{logn n—k(kﬂzsn(X‘ )
(3.21)
1 5 2
——( Y o(x?- 1)) — 0p(1).
n l<i<n
Using Theorem 2 of Darling and Erdds (1956) we get
(3.22) max | AD + AP| = Op(logloglog n),
n/logn<k<n-—n/logn
and therefore for all x,
a?(log n max AP + AD
(323) ( g )n/lognsksn—n/logn( k k )

—(x +b(log n))? —»p — c.
Similarly to (3.20) and (3.21) we obtain
(3.24) a®*(log n) max lkaZ - nX’f| =0p(1)

n—n/logn<k<n

and
2 ! 2 2
I o Xz - 1))
@ (Ogn)n—n/glgafsk<n k 1<Zi:<k( t )
(3.25) o .
7(12 (Xiz—l)) = 0p(1).
=<i<n
Now (3.20)-(3.25) yield
lim P{a2(log n) max (AP + AP) < (x + b(log n))2}
n—o <k<n
2
= lim P{a?*(log n)max| max (k‘1/2 Y Xi)
n—o l<k<n/logn 1<i<k
x2-1\\’
—-1/2 i
(3.26) R R e )) ’

max (((n—k)‘1/2 Y X,.)2

n—n/logn<k<n k<i<n

+

k<i<n

(n—k)"'/* Z %) )) s(x+b(logn))2}.

Since {X;, 1 <i<n/logn} and {X;,, n —n/logn <i <n} are.independent
and var X; = var((X? — 1)/2'/2) = 1, EX(X? - 1) = 0, Lemma 2.2 implies
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that

2
Pla(logn) max (k-1/2 Y X,.)

l<k<n/logn 1<i<k
2\ 1/2
Xi2 - 1
wler B S|~ bdlegn),
1<i<k

(3.27) a(logn) max ((n—k)_l/2 N Xi)2

n—n/logn<k<n

k<i<n
1/2
xz-1)\*
—_ 2 1
+((n.—k) v Z 91/2 )
k<i<n

—b(logn)) -4, {Y{", Y},

where Y* and Y are independent, identically distributed random variables
with distribution function exp(—e~*). This also completes the proof of Theo-
rem 1.1. O
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