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ASYMPTOTIC EXPANSIONS FOR THE MOMENTS
OF A RANDOMLY STOPPED AVERAGE

By GIRISH ARAS AND MiCHAEL WOODROOFE!

University of California, Santa Barbara and University of Michigan

Let S;,S,,... denote a driftless random walk with values in an inner
product space 7 let Z,, Z,,... denote a perturbed random walk of the
form Z,=n+<{c,S,> +£&,, n=12,..., where £;,&,,... are slowly
changing, { -, - ) denotes the inner product, and ¢ € #; and let ¢ = ¢, =
inf{n > 1: Z, > a} for 0 < a < ». Conditions are developed under which
the first four moments of X, == S,/¢ have asymptotic expansions, and the
expansions are found. Stopping times of this form arise naturally in
sequential estimation problems, and the main results may be used to find
asymptotic expansions for risk functions in such problems. Examples of
such applications are included.

1. Introduction. Let # denote a finite-dimensional inner product space,
with inner product and norm denoted by { -, - ) and || - ||; and let X, X,,...
denote i.i.d., #-valued random vectors with common distribution F. Suppose
that F has mean u = 0, covariance operator 2 and higher moments as
needed. Let £, &,,... be random variables for which £, is independent of
X, i1 X,.9 ... foralln=1,2...;letc € ¥; and let

(1) Z,=n+<{e,S,)+¢&,, n>1,
and
(2) t=t,=inf{n > 1: Z, > a}, azx=1,

where S, = X; + -+ +X, for n > 1 and the infimum of the empty set is .
(That ¢, < » w.p. 1 for all @ > 1 under mild conditions is shown below.) The
main results provide asymptotic expansions as a — « for the first four mo-
ments of X, := S, /¢ and the first two moments of a smooth, suitably bounded
function of X,.

Stopping times of the form ¢, arise naturally in sequential estimation, and
risk functions often involve the second moment of X, in such problems. See,
for example, Woodroofe (1977), Martinsek (1983), Aras (1989) and Sriram
(1990), where special cases of the main results of this paper may be found. The
purpose of this paper is to develop expansions under weak moment conditions,
in a form which may be applicable to other problems. The results of Martinsek
and Aras are compared to those of Theorems 2 and 4 in Examples 2 and 3.
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2. Conditions and preliminaries. It is convenient to regard the mo-
ments of F as multilinear functionals. If %2 is a positive integer and
JyIx|I*F(dx) < , then the kth moment of F is defined by

k
(3) pp(by, ..., by,) = [ [1¢b,,x)F(dx)
Yi=1
for by,...,b, € #. Of course, u, and u, may be identified with an element of

# and a linear operator, respectively; and u, is denoted by w. It is convenient
to use the notation (8) whenever the integral is finite and to write

v,(b) = { /yl(b,x)l"F(dx)}l/a

for b € # and 0 < a < «, finite or infinite. If x is any k-linear functional on
Y, let i(b) = u(b,...,b) for b € #; and recall that if u is symmetric then i
determines u. In fact, if u is symmetric, then

ak

1
(4) /’L(bl""’bk) = ;T X Skﬁ(blsl + - +bksk)

9s;...0

forallb,,...,b, € 7.
The following conditions are needed: for some 3 < p < ®,and 0 < g4,¢&, < 1,

(C1) p=0, [ 7//IIxII2F(dx) <w and v,(c) <,
n + 1P
(C2) [(Zn — —) ] , n > 1, are uniformly integrable,
€o
(C3) Y, nP{§, < —(1 —&)n} <,
n=1
(C4) ;ig)’sgp{&%m%—gnpg}=0, VO0<e <o,
In addition, it is assumed that there are events A,, n =1,2,..., and a
3/2 < a < o for which
(C5) v nP( A’k) < w,
n=1 k=n

max |€ninla,,, |, n = 1, are uniformly integrable.

The condition (C4) is called slow change by Lai and Siegmund (1977). It
follows easily from (C5), Markov’s inequality and the Borel-Cantelli lemmas
that

. &,
(5) P{lim —=0}=1, VO0<r<o.

n—o N
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Conditions (C1)-(C5) and (C6), below, are assumed throughout Sections 2,
3, and 5-8. They are repeated in the statements of the main results, but not
the supporting ones.

It is convenient to develop some simple preliminaries before stating the
main results. Extensive use is made of the inequality

= |9 q ? S q
(6) E{::£|<b,x,,>l } s(q_l) (|50, X,)[")
for all m=1,2,...,1 <q <x, and b € ¥, which follows easily from the
Doob’s [(1953), pages 317-318] maximal inequality applied to the reverse
martingale (b,X,), n > 1. Extensive use is also made of the following result
which is a simple consequence of Lemma 5 of Chow and Lai (1978) and
Theorem 3 of Chow, Hsiung and Lai (1979).

ProposiTION 1. LetY,,Y,,... denotei.i.d. random variables with a distri-
bution function G with mean 0 and finite pth moment for some 2 < p < .
Then

1 4
max |——(Y; + --- +Y,)| , n > 1, are uniformly integrable.
k<n \/77

Moreover, if 0 < e < x, then there is a nonincreasing, Lebesgue integrable
function G, on (0,») for which

n
P{I;l:i(lYl + - +Y,| >y} =< ;;_TGE(J’)
forally > neandalln =1,2,....

CoOROLLARY. There are constants ki, kg,... for which X, _ink, <« and
P{¢t, > n} <«,, foralln > 2a/¢, and a > 1.

Proor. For n > 2a/¢, a < g,n/2 and, therefore,
P{t,>n}<P{Z, <a} <P{{e,S,) + £, < —(1 - 3¢,)n}
< P{{e,S,> < —3en} + P{£, < —(1 —gy)n}.
So, the corollary follows directly from Proposition 1, (C1) and (C3). O

ProrosiTION 2.

t
6) lim = =1 w.p.l,
a—o Q
t 2
ii lim E[|=] | =1
(ii) lim (a) ;
(ii) lim [ t2dP = 0.
a—-® s >2a /8,
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Proor. (i) follows easily from (5) and the strong law of large numbers, by a
standard argument; (ii) is then an easy consequence of (iii); and (iii) follows
from the last corollary and an integration by parts, as in Woodroofe [(1982),
page 46]. O

It is implicit in the statement and proof of Proposition 2 that E(¢2) < e« for
all ¢ > 1.

CorROLLARY 1. E{(b,S,)} = 0 and E{(b,S,)*’} = (b, Sb)E(t) for all b €
Y. If b e ¥ and vy(b) < », then

E{(b,S,)’} = 3(b, SbYE(t(b, S,)) + fiz(b) E(t).

COROLLARY 2. If be # and v/b) <, then a (b, S, ax>1, are
uniformly integrable.

Proors. The first corollary follows directly from Wald’s lemmas [for exam-
ple, Chow, Robbins, and Teicher (1965)]. The second then follows from Lemma
5 of Chow and Yu (1981). O

Observe that 8* = S,/ Vn = W as n — », where W has the normal distri-
bution with mean 0 and covariance operator 3, the covariance operator of X,
and = denotes convergence in distribution. Suppose that (S%,¢,) have a
limiting joint distribution, say

(Cs) (8%,¢,) = (W, ¢) asn —>

and let
R,=2Z,—a, a>1.

PROPOSITION 8. Asa — x, (S}, £) = (W, £); and if {c,X;) has a nonarith-
metic distribution, then (S}, ¢,, R,) = (W, ¢, R), where R is independent of
(W, ¢) and

1
P{rsRsr+dr}=mP{r+(c,ST>>r}dr, 0<r<wm,
with

r=inf{n > 1:n + {c,S,) > 0}.

Proor. The first assertion follows directly from Anscombe’s theorem. The
second may be established along the lines of the proof of Theorem 2 of Lai
and Siegmund (1977), and is actually a consequence of that theorem if
&, — g(S¥) — 0 in probability for some continuous function g: #'— R. O
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3. Statement of results. In Theorems 1 and 2, let p and v denote the
means of R and &, say

p=E(R) and »=E(¢).

THEOREM 1. If conditions (C1)-(C6) hold, then E(t — a) = O(1) as a —
and if {c¢,X,) has a nonarithmetic distribution, then lim, _,, E(t —a) = p — v.

Proor. These assertions are proved by Hagwood and Woodroofe (1982),
though only the second is explicitly stated. Alternatively, Theorem 1 may be
deduced from Theorems 1 and 2 of Zhang (1988). O

In the statement of Theorems 2 and 3, let
vo(by,by) = E{&{by, W){b,, W)} — v(b,, 5b,),
A%(by,by) = azE{<b1,Xt><b2,Xt>} — (by,3bya
and

k
A%(by,...,b,) = a2E{ Q(bi,)_(t>},

for by,...,b, € ¥ for which the expectations are finite for 2 = 3,4 and
1 < a < », where 3 = p, is the covariance operator of X,.

THEOREM 2. Suppose that (C1)-(C6) hold. If b € ¥ and v,(b) <~ for
some q > max{4,2a/(a — 1),2p/(p — 2)}, then

(7 li_r)n aE{(b,)_(t>} = (b, 3¢
and
(8) Ag(b) = 0(1)

as a — «; and if {¢,X;) has a nonarithmetic distribution, then

© lim A%(b) = 2v,(b,b) + (v — p){b, =b)
9 a— ®©
+ (b, 2b){c, Sc) + 2(b,3c)* + 2u4(b, b, ).

Proor (Outline). The structure of the proof of (7) is easily described. By
Wald’s lemma,

= 1
aE{(b,X,)} = E{Y(a = t)<b, S,)}.

Then, using the relation a — ¢ = {e, S,) + (£, — R,), which follows from (2),
and Propositions 2 and 3,

1 1

?(a —t)<h,S,) = 7{(c,St><b, S, + (& — R, S} = (e, W)b,W)



508 G. ARAS AND M. WOODROOFE

as @ — . So, if uniform integrability could be established, then aE{<(b,X,)} =
E{{c,W){b,W)} + 0(1) = (b, Z¢) + 0o(1) as a — . The proofs of (8) and (9)
use similar techniques.

Uniform integrability is considered in Section 5, and the proof of Theorem 2
is presented in Section 6.

The following corollary may be used to compute the regret of several
sequential estimation procedures.

CoroLLaRY 1. If (b,3b) = 1, then a?E{(b,X,)’} + E(t) = 2a + O(1) as
a — «; and if {e,X;) has a nonarithmetic distribution, then

lim {a2E[(b,X, )| + E(t) — 2a)

a—>®

= 2v,(b,b) + (¢, Se) + 2(b,3c)* + 2us(b,b,c).
Proor. This follows from Theorems 1 and 2 and some simple algebra. O

CoroLLARY 2. Forall b,,b, € 7,

31_1)1; A%Y(bq,by) = 2v,(by,by) + (v — p)<by, Zby) + (b, Zby){c, 3c)
+ 2¢by, Zc){(b,, Ze) + 2ug(by, by, ).

PRrOOF. This is clear, since 44%(b;, b,) = A%(b; + b,) — A%(b; — b,) for all
b, b, e ¥ and a = 1. O

THEOREM 3.  Suppose that (C1)-(C6) are satisfied. If b € # and v (b) < »
for some q > max{4,6a/(2a — 1),3p/(p — 2)}, then

(10) lim A%(b) = 6(b, Sb)(b, Sc) + is(b) = Ay(b), say;
and if v, (b) < © for some q > max{4,4p/(p — 2)}, then
(11) lim A%(b) = 3¢b,3b)* = A,(b), say.

The proof of Theorem 3 uses techniques similar to those in the proof of (7).
The details are presented in Section 7.

The space #,, of all k-linear functionals is itself an inner product space with
inner product

(yvdp= 3, - Y u(e,...,e)v(eq,...,e;)

e, €& e, €&

for u,v € #,, where & denotes an orthonormal basis for #. Let |lull; =

Vi, pr for p € #,.
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COROLLARY. If there is a ¢ = max{4,6a/(2a — 1),4p/(p — 2)} for which
12 x||7F(dx) < o,
(12) [ J=l"F(d)

then there are symmetric multilinear functionals A, and A, for which A, = &,
for k = 3,4 and

lim A2 =A, € %, k=23,4.

a— ®©

Proor. This follows directly from Theorem 3 and (4). O

Recall that the derivatives of a function A: #'— R at a given w, € # may
be regarded as multilinear functionals on #. See, for example, Edwards
[(1973), page 414]. Let &# be the class of all h: #— R for which A(0) = 0 and
h is twice continuously differentiable on some neighborhood N, of 0 € %7
and let % denote the class of all A € # for which Dhy = 0 and A is four
times continuously differentiable on N,. Observe that if &~ € # has four
continuous derivatives near 0, then h% € %",

THEOREM 4. Suppose that (12) holds for some q > 4 and that conditions
(C1)-(C6) hold with p=q and a>q/(q —2). Let h € #; and let h,,
k=1,2,..., be functions for which h, = h on N, forall k =1,2,... and,
for somer > (q — 1)/(q — 2),

(13) E{:u1:1)|hk()_(k)|r} < o,
then
(14) lim aE{h,X,)} = (Dhy,2¢) + $(D?hg,3)s.

If h € X%, q = 6 and (13) holds for somer = (q — 1)/(q — 3), then
(15) a’E{h,(X,)} — X D?hq,3),a = O(1);
and if, in addition, {¢,X,) has a nonarithmetic distribution, then

lim a?E{h(X,)} — 3(D?h,,3),a
om0,

= 3(D%hg,Ay) 5 + 5(D3hg, Ag)y + 5 ( Dy, Ay),.

The proof of Theorem 4 uses a Taylor series expansions together with
Theorems 2 and 3. The details are presented in Section 8.
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4. Examples. The examples considered are all of the following form. Let
g: ¥’— R be a function for which g(0) =1 and g is twice continuously
differentiable on some neighborhood of 0 € #; and let g,, £ = 1,2,..., be
functions for which g, = g for all £ = 1,2,... on some neighborhood of 0.
Then

(17) z,=ng,(X,), n=1,

are of the form (1) with ¢ = Dg,, the derivative of g at zero, and ¢, = Z,, —
(n+<e,8,0),n=12,....

ProposiTiON 4. If (17) holds, with the conditions of the previous para-
graph, and (12) holds for some q > 3, then (C4), (C5) and (C6) hold, with
a=q/2 and ¢ = $(W, D?g,W), where D?g, denotes the second derivative of
gatO.

Proor. For (C5), let 0 < 6 < « be so small that g is twice continuously
differentiableon N ={w € #:|w|[ < d}and g, =gon N forall k = 1,2,...;
and let A, ={l|S,,/nll <8} forall n =1,2,.... Then

Sy

Yy nP( U A’k) < Y nP{sup
n=1 n=1

k=n k>n

> 5} < o©
by the Baum-Katz (1965) inequalities. Of course, if A, occurs, then

1
fn = %(Sn’D2gYnSn>’

where Y, denotes an intermediate point between 0 and X,, by Taylor’s
theorem. So, if C denotes an upper bound for the operator norm of Dg,, for
[lw]l < 8, then

o
a 2
max I < {— max S
ks<n L A"”' {2n k<2n ISl }

for all n > 1; and the sequence on the right is uniformly integrable, by
Proposition 1. It follows easily that

Il?fr)flfnﬂe - %<St+k, D2gosi+k>l -0
in probability as n — «. So, (C6) holds with ¢ = 3(W, D%g,W); and (C4) may
be established as in Woodroofe [(1982), pages 41-42]. O

ProprosITION 5. Suppose that (17) holds with g, =g on ¥ for all k =
1,2,..., where g is a convex function on ¥. If p > 3 and E{[g(X,)*1?} < e,
then (C2) and (C3) are satisfied.
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Proor. In this case (C3) is clear, since &, > 0 for all n =1,2,.... For
(C2), observe that Z, <gX)+ - +gX,)<nd +Y, + - - +Y,, where
9 =E[gX)]and Y, = g(X,) — 9 forall £ =1,2,....If ¢, = 1/29, then

n Gy(nd + 2)
p{zn__>z} <P{Y,+ - +Y,>nd + z} P —
(nd +2)”

€0

forall z>0and n = 1,2,..., where G is the distribution of g(X,) (and G, is
as in Proposition 1). So, (C2) holds. O

ExampLE 1 (The linear case). If g(x) =1 + {¢,x) for all x € 7, then
& =0forall 2 =1,2,..., sothat (C3), (C4), (C5) and (C6) are clearly satisfied
for all 0 < @ < «; and if (C1) holds, then (C2) is satisfied with ¢, = 1/2, by
Proposition 5. So, if (C1) holds and if v (b) < = for some ¢ > max{4,2p/(p —
2)}, then the conditions of Theorem 2 are satisfied. For p = q, this requires
p > 4. For the case b = ¢, a finite third moment in the direction b = ¢ is
clearly necessary for (9).

Many sequential estimation procedures call for taking a sample size n for
which n > 6,/ ‘/a , where 67 is an estimate of a variance and c, is a cost
parameter; and it is often desirable to truncate &, below to avoid problems
with early stopping. If &, is truncated below at 1/n, say, then the resulting
sample size may be written in the form (2) with a = o/ \/a and

no

18 Z,= ——F—"——, > 1.
(18) " max(d,,1/n) n=

ExamPLE 2 [Martinsek’s (1983) problem]. Let Y,,Y,,... denote ii.d. ran-
dom variables with an unknown distribution function G, having mean 6 and
variance 0 < 0? < «; and define Z, by (18) with

1z — 2
Az: —_ . —
1= L L(G-E), mzl

Then Z, is of the form (17) with X, = [(Y,, — 0),(Y, — 0> — %], k = 1,2,...,
and g(x,, x,) = 0/ y/(0? + x, — x7) for all x = (x, x,) € # for which x, —
x? > —o?, in which case ¢ = (0, —1/202).

It is shown that conditions (C1)-(C6) are satisfied with p = 3 provided that
E{(]Y,|®} < . In the verification, there is no loss of generality in supposing that
6 = 0 and o = 1. Then (C1) and (C3) are clear, since {¢,X;)> = (1 — Y?)/2 and
£, =0 for all n > 2 (essentially, since g is convex); and (C4), (C5) and (C6)
follow from Proposition 4 with ¢ = 3. For (C2), observe that Z, < n? and that
Z,<2n on {d,>1/2} wp. 1 for all n=2,3,.... So, E{[(Z, — 2n)*]"} <
n®"P(6, < 3} which approaches zero as n — o« for all » > 0, as in the proof of
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Lemma 4 of Chow and Yu (1981). With b = (1,0) and g = 6, Corollary 1 now
supplies an expansion for the regret of Martinsek’s procedure. This expansion
was obtained by Martinsek (1983), under the assumption that EIYIISH <
for some £ > 0.

ExampLE 3 (Aras’ problem). Let L,, L,,... denote ii.d. exponentially
distributed random variables (lifetimes) with an unknown mean 0 < 6 < o;
and let C;,C,,... denote i.i.d. positive random variables (censoring times). In
the censored data problem, one observes the random variables, 8, = {L; < C;}
and Y, =min(C;,L;), i=1,2,.... Let K,=68;+ - +8, and T,=Y;
+ -+ +Y,, n=1,2,.... Then the maximum likelihood estimator of 6 is
T,/K,, provided that K, > 0. Let 6, = T,,/max(1, K,) for n = 1,2,... . Then
it may be shown that vn (én — 0) is asymptotically normal with mean 0 and
variance o? = 0%/p, where p is the probability that L, < C;. Let J, =
6,/ ‘/an , where p, = max(1, K,)/n for n > 1. Then (a slight variation on)
Aras’ (1989) stopping time is of the form (2) with Z, defined by (18). Let
X,=(,-pY,—po), k=1,2,.... Then Z, is of the form (17) with

glxy,x) =0y (p + x1)3 /(p6 + x,) for x, > —p6. Since X; has moments of
all orders, it is easily seen that (C1), (C4), (C5) and (C6) are satisfied; and it
may be shown that (C2) and (C3) are satisfied, as in the last example.

In this case 6, — 6 = h(X,), n > 1, where h(x, x;) = (p8 + x,)/
(p+2x,)—0 for all x; > —p; and an expansion for E[(f, — 6)*] may be
deduced from Theorem 4.

5. Uniform integrability. Estimates are needed for the probability that
t, is small.

LEMMA 1. There is a function A on [1,®) for which lim, _,, A(a) = 0 and
P{t, < n} < naPA(a), foralln <eya/2 and a > 1.

Proor. Let A(a) = sup,.,a?’P{Z, — n/ey > a/2} for a > 1. Then
A(a) —» 0 as @ = », by (C2); and, for all n» < agy/2 and a > 1,

k a
P{t,<n} =P{ max Z, — — > —

n k a n
< ZP{Zk———>—} < —A(a). O
a

PROPOSITION 6. Letb € 7,0 <71 <gy/4and 2 <r <. If v, (b) < for
somer < q < «, then

1 p(l—r/q)
) A(a)l_”@,

(19) j |(6,X)|" dP < Cuv,(b)" x (

t<ma a

where C is a constant depending only on r and q.
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ProoF. Let K be the least integer for which 2% > na. Then, using (6), the
Marcinkiewicz-Ziegmund inequality, and Lemma 1,

J

t<na

r K — r
(b.X)[ dP< ¥ [ (b,X,)| dP
k=172

E-lcop<ok

K g r/q 1=r/
Y E{ sup [(b,X,)] } P{t <2k 77
k=1

= n>2%"1
K va(b) 1] (1)? 1o/
< Z[C\/E_] [2 2] 2@

1\PA-r/9)
SZ’Cq’vq(b)r( )

vy K (1 rk/q
_ A T/ % —
: (a) 21(2)

k=

for all @ > 1, where C, depends only on gq. (19) follows. O
CoroLLARY. Ifq =rp/(p — 2), then [,_ /b, X,)I"dP = o(a™?) as a > =.
For the next result, let 8 = min(2, a),
r=r1,=inf{n > 1:n + (e,S,) > a},
E, =7, + <c,STu> -—a.

Then, comparing (C1), (C3), (C5) and Lemma 1 with the conditions of Theo-
rem 2(ii) of Zhang (1988),

(20) lt, — 7,1°, @ = 1, are uniformly integrable.

Let B’ = min(2B8, p) = min(4, 2, p). Then it follows that [{c, S, — ST>IB',
a > 1, are uniformly integrable. See Lemma 5 of Chow and Yu (1981).

ProposITION 7. ¢, — R,|?, a = 1, are uniformly integrable.

Proor. This is clear from the preceding remarks, since B, — ¢, =E, +
t,—7,+<c,S,—S,), and EP~! is uniformly integrable. (Note that p — 1 >
2>Band g =>23=6) 0

Let 0 < n <é&,/4; and let t* = (¢, —a)/Va for 1 <a < .

PROPOSITION 8. [t*]° 'I( a > 1, are uniformly integrable.

t<a/np

Proor. It is easily seen that {¢t < a/7, |t¥| > 2x} = @ for x > Va /n and
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that {t <a/n, It*| > 2x} c{|R, — &| > x/a} U {max, _, , [<c,8,>| > xva'}
for all x > 1 and a > 1. So,

P{t < -g—, £ > Zx} <P{|(R, - &)| > nx?} + P{nlggi(n Ke,S,)| > xﬁ}
for all x > 1 and a > 1. The proposition follows. O

COROLLARY. t*2) a > 1, are uniformly integrable.

Proor. This follows easily from the Propositions 2(iii) and 8. O

6. The first two moments. Now let 0 <7 < min(e,, £,)/4. Then, by
Wald’s lemma and Proposition 2(iii),

(21) [ (e,8,dP<(e,3e)[ tdP~0.

t>a/n t>a/n

Similarly, if b € #; v(b) < ® and 0 < r < 4, then

R a 1-r/4 . r/4
|<b,S,>|" dP < P{t > p x{[  |Kb,sp['dpP

t>a/n

(22) 'l;>a/n
= O[a~21-"/Y]o[a" /%] = o(a""2)

by Hoélder’s inequality, Proposition 2 and its corollaries.

LEMMA 2.

1
lim —E(¢<b,S,)) = —<(b,3¢), Vbe ¥.

a—o a

Proor. By Wald’s lemma, E(¢(b,S,)) = E[(t — a)Xb,S,)] for all ¢ > 1.
Now, (t —aXb,S,)/a = (R, — &) — {c,S,)Kb, S,)/a = —{c, W){b,W) as
a — «; and (¢ —aXb,S,)/a, a > 1, are uniformly integrable, by Propositions
2 and 8 and Hélder’s inequality, since ¢*2, a > 1, and (b, S,»?/a are. So,
lim, ., E{(t — a)Xb,S,>)}/a = —E{{c, W){b,W)} = —(b,2¢). O

Proor oF (7). The proof of (7), described after the statement of Theorem 2,
may be justified in a similar manner. O

Proor ofF (8) anD (9). To begin, write az(b,)_(t>2 = (b, St>2 + (a?/t? —
1Xb, S,)* and (a?/t2 — 1) = —2(t/a — 1) + (8/s*)t/a — 1)?, where s is an
intermediate point, |s — 1| < |¢,/a — 1|. Combining these relations with a¢ —
t={c,S,) +¢ — R, yields

2/h ¥ \2 2, 2 2
a <b:Xt> = <b’ St) + ;(C, St><b7 St> + Yl + Y2’
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where
2 2
Y1 = g(gt - Ra)<b7st>
and
3 (t—a\? 2
Y2=;Z( )(b’st>-

Here E{{b, S,}z} = (b, 3b)E(#) by Wald’s lemma. So, by Theorem 1,
E{(b,S,)’} = (b, 3b)a + O(1), and

E{(b,8,)’} = (b,3b)(a + p — v) + o(1)
as a — o, if {¢,X;) has a nonarithmetic distribution. Similarly,
2 2
E{ g(c, S, (b, St>2} = ;{(b, SbYE[t{c,S,)] + 2(b,Zc)E[t<b,S,)]
+I“‘3(b:b: C) E(t)}
- 2{us(b,b,c) — (b, Zb)c, Ze) — 2(b, Zc)’}

as a — o, by Wald’s lemmas, Proposition 1 and Lemma 2. It is clear that
Y, = 3(c, W)Xb, W)? and Y; = 2(¢ — R)(b,W)?, if {(¢,X,) has a nonarith-
metic distribution; and it is shown below that Y; and Y, are uniformly
integrable. So, E(Y; + Y,) = O(1), and

E(Y;) = 2vy(b,b) + 2(v — p){b,3b) + o(1)
and
lim E(Y,) = 3E{(c, W)X b, W)’} = 3(b, 3b){c, 3¢) + 6(b, 3c)*

if (e, X;) has a nonarithmetic distribution. Relations (8) and (9) then follow by
substitution. O

UNIFORM INTEGRABILITY OF Y; AND Y,. On {¢ < a/7},

2
Y, <|¢, — R,| X {— max (b, sn>2},

a n<a/n

which are uniformly integrable by Propositions 1 and 8 and Hélder’s inequal-
ity, since |¢, — R,|®, a > 1, are uniformly integrable and ¢ > 28/(8 — 1) =
max{4,2a/(a — D}. On (¢ > a/q}, I£§, — R,| <t + [{e, S,)|. So,

f |Y,|dP < 2\/{[t>m[t +|(c,S,>|]2dP> ‘/{La/n(b,st)“dP} = o(1)

t>a/n
by Proposition 2(iii), (21) and (22). So, Y; is uniformly integrable.
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On{an <t <a/n}
3 1 g
IY,l < — x (¢)% x {— max (b, S, }
n a k<a/7n

which are uniformly integrable by Propositions 1 and 8 and Hélder’s inequal-
ity, since ¢ > 28'/(B’ — 2). On {t > a/n}, 3/s* < 4a/t, so that

4 (t-a)’ ) 4 )
[ vap<—f —t—<b,S,>dPs—f t(b,S,dP - 0

t>a/n a’t>a/n at>a/m
as a — », by Proposition 2(iii), (22) and Schwarz’s inequality. Finally, on
t <an, 3/s* < 4a%/t?, so that
| Y,dP<ta 2[ (1,X,)'dP -0
t<an t<amn

by Proposition 6. So, Y, is uniformly integrable. O
7. Higher moments.

Proor oF (11). Let 0 < 1 < min(e,, &;)/4; and let M be the least integer
which exceeds a/n. Then, by Proposition 6, (6) and the Marcinkiewicz—
Ziegmund inequalities,

lim a®[ (b,X,)*dP =0
a—® t<ma
and
a?[  (b,X,)dP < 4a’E((b,X,,)"} < 8Cnu,(b)*
t>a/n

for all 1 < a < », where C is an absolute constant. Moreover, since Va ITIt =W,
by Proposition 3, and a2<b,Xt>4, a > 1, are uniformly integrable on {na < ¢t <
a/m}, by Proposition 1,

lim o? [ (b,X,»* dP = 3(b, Sb)*.

a—x na<t<a/m
Relation (11) follows by letting @ — « and n — 0, in that order. O
Proor oF (10). For the third moment,
— 1
E{(b,X,)’} = gE{(b,S,)?’} + E(Y),

where

1/ad 5 3 3
Y= Z(t )(b 8, = ——(a - 1)(b,8,)
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and |s — 1| < |[t/a — 1|. By Wald’s lemma, Lemma 2 and Proposition 2,
1 3 1 3
;E{(b,St> } = ;{3(b, ShYE[t(b,S,)] + is(b)E(¢)}

- —3(b,2b){b, 3c) + fiz(b)

as a — «. It is clear that Y = 3(e, W){b,W)? as a — «» and may be shown
that Y is uniformly integrable, using (22) and Propositions 1, 6 and 8, as
above. So,

lim E(Y) = 3E{{c, W){b, W)’} = 9(b, Sb)(b, Sc¢). o

a—®

Lemma 3. If (12) holds for some q > max{4,4p/(p — 2)}, then a?IIX,|*,
a > 1, are uniformly integrable.

Proor. The proof of Theorem 3 shows that a®¢b, )_(,>4, a > 1, are uni-
formly integrable. O

8. Smooth functions. The proofs of (15) and (16) are presented in this
section. The similar, simpler proof of (14) is omitted. Thus it is assumed
throughout this section that A € %, so that Dhy = 0, that (12) holds for
some q > 6 and that (C1)-(C6) hold with p = ¢ and a@ > q/(q — 2).

Let 0 <8 <1 be so small that A, =h for all k =1,2,... and A is four
times continuously differentiable on {x € 7. ||x|| < 8}; let 0 <7 < ¢,/4 and
let C = {t > na} N {IX,Il < 8}.

LEMMA 4.
lim a2 sup,h ,dP=O
a— o Clk>1

and

lim o?[ (1 +IX,I*)dP = 0.
a— C’

Proor. Clearly, P(C’) < P{t < na} + P(supk>na||)_(k|| > 8} =o0(a™?%1) as
a — «, by Lemma 1, (6) and Proposition 1. So, letting r = (¢ — 1)/(q — 3),

T
o[ sup|hy(X,)|dP < azP(C’)l_l/rE{ sup | h,(X,)| } = o(1)
C'k>1 k=1

as a — . This establishes the first assertion; and the second then follows
easily from Lemma 3. O

Proor oF (15) anD (16). By Lemma 4,

a®E{h,X,) —a/h )dP + o(1)
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as a — . On C, h(X,) may be expanded in a Taylor series about 0, and

1, .. 1, ..
a fh )dP =a {2fD2ho(X,)dP + EfCD3h0(Xt) dP

1 ., o
t o fCD“hY(Xt) dP},

where Y denotes an intermediate point between 0 and X, [since A(0) = 0 and
Dh, = 0]. By Lemmas 3 and 4 and Theorem 3,

4 1 )4 1 4
lim ——fD hy(X,)dP = E{D*ho(W)} = 2 (D*ho, Ag)

L 1 o
Eaz fc D% o(X,) dP = gaZE{D:*ho(Xt)} +o(1)

1 1
= E(D3ho,A‘§>3 +o(1) - g<D~"*ho,A3>3

1, o 1, o
Pad [C D?ho(X,) dP = —a’B{Dho(X,)} + o(1)

1 1
= 5 (D%ho,3)3a + 5 (Dho, 43), + o(1).

By Theorem 2, (D?h,, A%)2 is bounded and if {e,X;) has a nonarithmetic
distribution, it converges to {( D?hg, A,)2 as a — . (15) and (16) now follow
from simple algebra. O

9. Remarks. In some cases, Z;,Z,,... may be bounded random vari-
ables, in which case some of the results may be sharpened slightly. Suppose
that Z,, Z,, ... are bounded and let

=1,=inf{n > 1: P{Z, > a} > 0},

so that ¢ >/, w.p.1 for all 1 <a < ». Suppose next that there are 0 <k,
vy < 1 for which ! > ka” for all 1 <a < . For example, if Z, < n? as in
Example 2, then [ > Va for 1 < a < . Then the conclusion of Proposition 6

may be sharpened to

1 p(l—r/q)+y8
B

[t< Kb, X)| aP < zqu(b)’ X

where 8 =(r/2 +r/q — 1); and (11) holds provided q > 4(p — v)/(p —
2+ y).
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