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A SEQUENTIAL CLINICAL TRIAL FOR COMPARING
THREE TREATMENTS!

By D. SieEcMUND

Stanford University

A model for sequential clinical trials involving three treatments is
proposed and various error probabilities are defined. A specific procedure
involving a concatenation of repeated significance tests is studied in detail.
The first phase of testing proceeds until at least one treatment is elimi-
nated; and then a second phase is used to compare the remaining treat-
ments. Analytic approximations to the operating characteristics of the test
are derived and compared with the results of a Monte Carlo experiment.

1. Introduction. This paper is concerned with sequential clinical trials
for comparing three treatments in the simplest possible situation that patient
responses are instantaneous, independent, normally distributed random vari-
ables with a common known variance and possibly different mean values. The
building blocks for our test are modified repeated significance tests discussed
in detail by Siegmund [(1985), Chapters IV and V]. It is certainly possible and
perhaps interesting to make a similar study with the O’Brien-Fleming (1979)
stopping rule as the basic building block.

The procedure can be described roughly as follows. We begin sampling from
each of the three treatments and use the repeated significance test discussed
by Siegmund [(1980), (1985), Chapter V1. If that test indicates the existence of
some treatment effect, the least promising treatment is discarded and testing
continues to compare the remaining two treatments. Our goal will be to
indicate how various error probabilities and expected sample sizes depend on
the test parameters and to get some idea how much less power and larger
expected sample size this procedure has than a two treatment trial in which
the worst treatment has been eliminated a priori.

The evaluation of our procedure is much more complex than for the
comparison of two treatments. In general terms the interesting situations are
as follows.

(i) All three treatments are equally effective. An ideal test would not
eliminate any treatment. To do so would be to make a Type I-1 error.

(i) Two treatments are equally effective while the third is inferior. Failure
to eliminate the inferior treatment would be a Type II-1 error. Elimination of
one of the two superior treatments would be a Type I-2 error.
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(iii) The treatments can be clearly ranked in order of preference. Our goal is
to select the best treatment, and failure to do so would be a Type II-2 error.

(iv) One treatment is the best and the other two are about equally effective.
Our goal is the same as in (iii), but attaining it is more difficult.

The evaluation of expected sample sizes is also more complicated, since
there is first the expected number of triples of observations needed to elimi-
nate at least one treatment and then the expected number of additional pairs
of observations required to reach a final conclusion.

The paper is organized as follows. Section 2 is concerned with describing
more precisely the test and the measures of its quality we shall consider.
Section 3 contains the results of a Monte Carlo study. Section 4 gives analytic
approximations aimed at gaining insight into some of the results in Section 3.
Open problems are discussed in Section 5.

We begin with a brief description of repeated significance tests to compare
two treatments. Assume Z,, Z,, ... are independent and normally distributed
with mean p and unit variance. The Z’s are differences in response of paired
subjects, one of whom receives treatment 1 and the other of whom receives
treatment 2. Let S, =X7_,Z,, n=1,2,.... Given b > ¢ > 0 and positive
integers m, < m, a repeated significance test of the hypothesis that un =0
stops sampling at min(7", m), where

T = inf{n: n > mg, IS, > bnl/z},

and rejects the hypothesis of no treatment effect if either T'<m or T>m
and |S,,| > cm'/2. The probability of rejecting the null hypothesis is

P{T <m} + PA{T >m,|S,,| > cml/z}
1
(5 = P[IS,| > em'/?} + P{T < m,|S,,| < cm'/?}.

Siegmund [(1985), Chapter IV] gives approximations for these probabilities
and for the expected sample size E [min(T, m)]. In particular it is shown that
by a judicious choice of the test parameters b, ¢ and m, one can have a test
whose power function is very close to that of a fixed sample test of sample size
m while taking on average only a small fraction of m observations when |u| is
large. This entails taking ¢ small compared to b, and then the first term on the
right-hand side of (1) is much larger than the second. Indeed, except for u
close to zero it makes little difference if one neglects the second term entirely.
We shall exploit this possibility when analogous but more complicated proba-
bilities enter the discussion below.

Writing the inequality |S,| > bn'/? in the form S2/n > b? and observing
that S2/n is just the standard log likelihood ratio statistic for testing u = 0
suggest a generalization of this test to comparison of three treatments. Such a
generalization was discussed by Siegmund [(1980), (1985), Chapter V]. That
test stops sampling as soon as it becomes clear that there is some treatment
effect. It is also possible to give confidence regions for the treatment effect
vector and hence a more precise analysis of the nature of the treatment effect.
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Nevertheless, the existing theory leads to the awkward possibility that one
might terminate the trial early because one treatment has proved inferior to
the other two and yet be unable to make a choice between the other two
because insufficient data have accumulated to make that discrimination possi-
ble. An obvious proposal is to continue with a two treatment repeated signifi-
cance test to compare the remaining treatments. The overall properties of the
combined procedure are the subject of this paper.

2. Definition of the test and quantities to be evaluated. Let Y, ,
denote the response of the jth subject to the ith treatment (i =1,2,3,
J =1,2,...). Assume that the Y; ; are independent and normally distributed
with unknown means u; and common known variance which without loss of
generality can be taken to equal 1. To be specific, suppose that a large mean
response is desirable. Initially observations are taken in triples Y; =
(Yy,;,Y, ;,Y3 ), j=1,2,.... At any stage j, the experimenter can discard
one of the treatments as inferior and continue with the other two, in which
case the subsequent observations are taken in pairs.

It will be convenient to develop our theoretical results in a different
coordinate system. Let C be the orthogonal matrix

6—1/2 6—1/2 -9 6~1/2

C=|[9-1/2 _9-1/2 0
3-1/2 g3-1/2 3-1/2

and X;=CY;, j=1,2,.... Also let 6, = 6""*(u; + py — 2u,) and 6, =

1/2(,u.1 ,uz) so the expected value of X, , is 6, for i = 1,2 and the
hypothesis of no treatment effect, that is, u; = u, = pus, is equivalent to
6, =0,=0.Let S;,=X7_,X,; and S, (S1 s 82 =) The usual y? statis-
tic based on n observatlons for testlng 01 =0,=0is ||S,I?/n.

In order to convert back to the orlglnal coordinate system, it will be
convenient to use the notation Xj'2=2"Y*Y, ;- Y, ;) and S;¥z=
#_1X;¥2. Observe that X/ =X, ;, X*=3"%X, ; +X, ;)/2 and X123
(3'?X, ; — X, ;)/2 are projections of the vector X; along the rays rotated
w/2, m/6 and —w /6, respectively, from the positive x; axis. Also note that
S,? = max, ,|S}| if and only if w,, the angle from the positive x, axis to S,,,
lies in the interval [7/3, 27 /3]. Similar descriptions in terms of w, hold for all
events of the form {S;"2 = max, ,|S¥|} and are used without comment below.
A picture involving a hexagon centered at the origin is helpful to display these

relations.

The test to be studied below is a concatenation of two repeated significance
tests: The first to decide if there is some treatment effect and eliminate the
worst treatment, and the second to compare the remaining two treatments. It
is determined by six parameters: b; > ¢; > 0, ¢, € (0,¢,), by € [cy, b;) and
my < m. The first stage of sampling consists of observing X;, X,,... until
min(T,, m), where

T, = inf{n: n = mg, IS, > bn'/?}.
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G) If T, <m and S}'* = max r,:lS7:], the treatment iy is discarded and
sampling of X; i1z continues until m1n(T2, m), where

T, = inf{n: n > Ty, |S/x2| > byn'/?}.

If T, <m and S;¥2 > b,T)/2 or T, > m and Si¥2 > ¢,m!/2 treatment i, is
selected as best, whereas i, is selected as best if T < m and S“l2 < —b,Ty"?
or Ty >m and Si¥2 < —c,m2 If Ty>m and —c,m!/? sS,’,}’ZSC ml/2
then no choice is made between i, and i2.

@) If T, > m, IS,,Il > ¢;m?? and S}¥s = max, ,IS}/|, then population i
is discarded. If also Sirz > c,m!/?, respectively Si‘2 < —c,m!/? then treat-
ment i,, respectively i, is selected as best; otherwise no choice is made
between i, and i,.

(iii) If T, > m and ||S,,|| < ¢;m'/?, the hypothesis of equal treatment ef-
fects, 6, = 8, = 0, is not rejected.

AssuMPTION. We assume throughout that b, < b, - 3/2/2.

REMARKS. (i) The assumption implies that if 7, < m, then max IS}ZII >
b,T}/2. Also, if at time T, wy, is sufficiently close to /3, —w/3 or m, two
treatments are simultaneously eliminated and the test terminates.

(i) The initial stage of sampling might reasonably be defined in terms of
max, ,IS¥| instead of ||S,|l. Since this alternative produces simulated out-
comes similar to those reported in the following section and seems more
difficult to analyze theoretically, it has not yet been studied in detail.

(iii) There is no special reason that the truncation point m for the second
stage should equal the maximum number of triples for the first stage. On the
contrary, if T; < m, one might argue that the 3(m — T,) remaining subjects
potentially available for the first stage of sampling should be available for
comparing the two treatments remaining at the second stage. In this case the
second stage would terminate at min[T,, (3m — T,)/2]. In many clinical trials,
however, there is a delay between treatment assignment and response, al-
though the simple model described above ignores this possibility. In such cases
the intake period will often terminate before the first stage of sampling and no
additional subjects will be available for the second stage. See Siegmund
[(1985), Section V.6] for a related discussion in the context of two treatment
trials involving survival data. We shall return to this and related issues in
Section 3.

In the following discussion wu; > u, > uj, so treatment 1 is at least as good
as the other two. Qualitatively different, interesting cases are (a) u; = uy = ug,
(b) uy = py > pg and (¢) pq > py > pug. In case (a) a Type I-1 error occurs if
the first stage of sampling leads to rejection of the hypothesis of no treatment
effect that 6, = 6, = 0. Its probability is just the significance level of the
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repeated significance test defined by b,, ¢;, m, and m, that is,
Py{T, < m} + Py{T, = m, IS, Il > ¢;m'/?}
= Po{llS,, Il > ¢;m?} + Po{T, < m, IS, Il < e;m'/2},

for which Siegmund [(1985), Section V.3] gives an approximation. In cases (b)
and (¢) a Type II-1 error occurs if the test fails to reject the hypothesis that
6, = 0, = 0. The error probability involves the complementary events to those
of the preceding case and can again be approximated by reference to the
results of Siegmund [(1985), Section V.3]. These approximations involving the
first stage of the test are reasonably accurate, as one can see by comparing
them to simulations given by Siegmund (1980) and exact numerical calcula-
tions in Jennison and Turnbull (1991).

In case (b), where u; = u, and hence 6, = 0, one can also make the Type
I-2 error of eliminating treatment 1 or treatment 2. An exact description of
this event is complicated. Assume 6° = (8,,0) with 8, > 0. The probability of
incorrectly eliminating treatment 1 or 2 is [cf. (1)]

Pf,o{T1 <m,log| <m/3,18; ,| > 02m1/2}
+ Ppo{T; = m, IS, |l > ¢;m'/2, |8, .| > c,m*/?}
+ Pf,o{T1 <m,lop| <w/3,Ty<m,|S, | < c2m1/2}

+ Ppo{T, < m, lwg,| > m/3)
(2)

= Pypo{IS,, | > com'/?}

+ Py{Ty <m, log| <7/3,Ty <m, IS, | < c;m*/?}
+ Pf,o{T1 <m,log| >m/3,18; | < szl/z}

= PpfT, > m, |IS,,ll < e;m'/2, IS, | > com!/?}.

For large values of 6, the last term is negligible. If ¢, is small compared to b,
so the first term on the right-hand side of (2) is the dominant one, the sum of
the first three terms on the right-hand side of (2) roughly equals the signifi-
cance level of the two treatment repeated significance test defined by b,, c,,
mq and m [cf. (1)]. For 6, closer to zero, the probability (2) can be somewhat
smaller than the significance level of this two treatment test. Section 3
contains a numerical example and Section 4 gives related theoretical calcula-
tions.

In case (c), where 6; > 0 and 6, > 0, one is interested in the Type II-2 error
of failure to conclude that treatment 1 is preferred to the others. We shall
neglect the possibility that at T, < m treatment 1 is incorrectly eliminated,
which is an event of very small probability unless ||0|| is close to zero. If we also
neglect some difficult to compute terms similar to the usually negligible final
term on the right-hand side of (1), it is easy to obtain an approximation to the
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probability of correctly selecting treatment 1:
P{lIS,,Il > ¢;m'/?, min( S )2, S,&f) > cym'/?}
+ P,,{T1 <m,|IS,,I <em mln(S12 Sy3) > c2m1/2}.

The final inequality inside the braces in each term of (3) specifies that
max |S*!| is attained by either S}? or by S!? and if attained by say S,2, then
Sk > ¢,m'2, so both treatments 2 and 3 are eliminated in favor of treatment
1. Typical events neglected in (3) involve sample paths for which T, < m,
T, < m, but the statistic for the treatments sampled in the second phase, say
S12 is less than c,m'/%. The probability of these events and also the second
term in (3) are usually very small and can be neglected.

It is easy to approximate each term in (3). The first can be evaluated exactly
by double numerical integration. For the second term one can write

Py{Ty <m, IS, |l < ¢;m/?, min(S;2, S}3) > ¢c,m!/?}
4
) = E,[P{T, < m|S,,}; IS,,]l < e;m*/2, min( S22, SE2) > c,m'/?],
apply Theorem 9.54 of Siegmund (1985) to evaluate approximately the condi-
tional probability, and perform a double numerical integration. The same
method applies to the final term on the right-hand side of (2), which usually

can be neglected.
To assess the expected sample size of the test defined above we consider

(5) E,[min(T;, m)]
and
(6) E,[min(Ty, m)].

The quantity (5) involves only the first stage of sampling. An approximation
for it has been given by Siegmund [(1985), Section V.3]. One hopes that at least
when 6, is substantially greater than zero the expected sample size in (6) is
not much greater than for the two treatment test to compare treatments 1 and
2. However, the second stage of sampling is delayed by the requirement that it
not begin until the termination of the first stage. Hence (6) always exceeds (5),
which may itself in some cases exceed the expected sample size for a trial
involving only two treatments. Numerical examples are given in Section 3 and
an analytic approximation for (6) in Section 4.

3. Monte Carlo results. This section gives the results of a Monte Carlo
experiment to see how the procedure defined in Section 2 performs. Only a
single test is considered; but the extensive numerical studies of repeated
significance tests for comparing two treatments strongly suggest that the basic
conclusions are applicable over a broad range of sample sizes. For our example
m, = 10 and m = 50, and observations, that is, triples or pairs, are taken one
at a time. One can expect similar results for a group sequential test where the
data are examined a maximum of five times, and observations are taken 10 at
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a time; or after an appropriate change of scale, where observations are taken &
at a time for essentially any k.

The calculations of the preceding section indicate how the parameters b,, c,,
b, and c, should be chosen. In order to control the Type I-1 error probability,
b, and ¢, must be chosen so that the significance level of the three treatment
comparison which constitutes the first phase of the test is about equal to the
desired value of a. For a = 0.05 the approximation given by Siegmund [(1985),
Chapter V] (backed up by a Monte Carlo experiment to confirm its accuracy)
shows that one possibility is b; = 3.5 and c¢; = 2.5. The Type I-2 error
probability depends to some extent on b, and c,, but when 6° = (6,,0) with
6, large enough that P,{T; < m} is close to one, the Type I-2 error probability
depends primarily on b, and c,, which must be chosen so that the significance
level of a two treatment repeated significance test is approximately «. For
a = 0.05 it suffices to take b, = 2.92 and c, = 2.05. As assumed above, b, is
smaller than b, - 31/2/2. This allows T, to equal T, in the case that two
treatments behave almost identically while being outperformed by the third.

Table 1 contains the results of a Monte Carlo experiment. The following
notation denotes the contents of each column: p, is the probability of rejecting
the global hypothesis of no treatment effect; p, denotes the probability of
incorrectly eliminating either treatment 1 or treatment 2 in those rows where
0, = 0 and denotes the probability of correctly selecting treatment 1 as best in
those rows where 6, > 0; E, is the expected number of triples in the first
phase of the test, E,[min(T,, m)]; E, denotes E,[min(T,, m)]; p5 and Ej
denote the power and expected sample size, respectively, of the repeated
significance test for comparing treatments 1 and 2 defined by m,, m, b, and
cy. The three entries immediately under each row in which 6, = 0 involve
vectors 0 oriented at angles of /3, 7/4 and /6 with respect to the positive
0, axis and having the same norm as the value of 6, in the preceding row
where 6, = 0. The values of both p, and E,; are the same for each of these
four entries. When arg 8 = 7 /3, treatments 2 and 3 are equally effective. This
is the situation most favorable to selecting treatment 1 for a given value of
I6]l. Of course, for a given value of 6, the situation becomes more favorable
with increasing 6,.

Entries not in parentheses are Monte Carlo estimates based on 9999
repetitions in cases where 6, = 0 and 2500 repetitions when it does not.
Entries in parentheses are computed from theoretical approximations. For p,,
p%, E, and EJ the approximations given by Siegmund [(1985), Chapters IV
and V] have been used. For p, the approximation developed in (3) and (4) has
been used in those cases, where 6 = (6,,0,) with 6, not equal to 0. The
approximation used for E, is given in Section 4, where the problem of
approximating p, in the case 6 = (8,,0) is also discussed. Since the present
problem is substantially more complex than those considered before, the new
approximations seem to be reasonably accurate and to convey a correct impres-
sion of the properties of the test under consideration here.

Clearly the test under discussion cannot perform as well as a two treatment
repeated significance test with the same m,, m, b =b, and ¢ =c, An
important question to be considered when examining Table 1 is whether it
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TaABLE 1
Operating characteristics my = 10, m = 50, b, = 3.5, ¢; = 2.5, by = 2.92, ¢, = 2.05; Type I-1
error probability is 0.05

0 0, ) 41 P2 p3 E, E, E3

0.70 0.00 (0.995) 0.050 (0.049) (0.050) 23.3 (22.7) 49.2

0.35 0.61 (0.995) 0.982 (0.977) (0.989) 23.3(22.7) 28.7 (26.6) (21.9)
0.50 0.50 (0.995) 0.942 (0.930) (0.936) 22.9(22.7) 32.2(32.3) (29.7)
0.61 0.35 (0.995) 0.670 (0.664) (0.682) 22.8(22.7) 41.2 (38.2)

0.60 0.00 (0.972) 0.048 (0.048) (0.050) 29.4 (29.5) 49.4

0.30 0.52 (0.972) 0.906 (0.908) (0.952) 28.9 (29.5) 35.2(33.2) (28.1)
0.42 0.42 0.972) 0.822 (0.807) (0.831) 29.4 (29.5) 38.2(39.4) (36.0)
0.52 0.30 (0.972) 0.552 (0.527) (0.564) 29.5 (29.5) 44.0 43.1

0.50 0.00 (0.890) 0.047 (0.048) (0.050) 35.8(36.8) 49.6
0.25 0.43 (0.890) 0.756 (0.741) (0.848) 36.3 (36.8) 41.8(39.3) (35.3)
0.35 0.35 (0.890) 0.629 (0.636) (0.682) 35.9 (36.8) 43.1(44.4) (38.2)
0.43 0.25 (0.890) 0.400 (0.383) (0.414) 35.8(36.8) 46.2

0.40 0.00 (0.701) 0.046 (0.046) (0.050) 41.6 49.6

0.20 0.35 (0.701) 0.503 (0.057) (0.682) 42.0 45.8 (38.2)
0.28 0.28 (0.701) 0.398 (0.414) (0.495) 42.3 46.9 43.9
0.35 0.20 (0.701) 0.260 (0.247) (0.282) 41.5 479

0.30 0.00 (0.451) 0.041 (0.041) (0.050) 46.3 49.6

0.15 0.26 (0.451) 0.264 (0.252) (0.441) 46.3 48.5 45.1
0.21 0.21 (0.451) 0.214 (0.209) (0.313) 46.2 48.6

0.26 0.15 (0.451) 0.141 (0.132) 0.178) 46.1 49.2

1p1 is the probability of rejecting the global hypothesis of no treatment effect; p, denotes the
probability of incorrectly eliminating Treatment 1 or 2 in those rows where 6, = 0 and denotes
the probability of correctly selecting Treatment 1 in those rows where 8, > 0; E; = E,[min(T,, m));
E, = Ejlmin(Ty, m)]; p¥ and EJ denote the power and expected sample size of the repeated
significance test for comparing Treatments 1 and 2 defined by m, m, by, c,.

performs substantially worse. The answer is not completely obvious. In many
rows p, and E, are about equal to p and EJ. But in several rows our test
suffers either a substantial loss of power, an increase in the expected sample
size, or sometimes both. Large percentage increases in expected sample size
tend to occur in the upper part of the table, where ||0|| is large, expected sample
sizes are small, and the expected number of triples in the first phase of our test
may be as large as the expected number of pairs required to compare the two
better treatments. A significant loss of power compared to the two treatment
test tends to occur lower in the table, where ||0|| is small and hence our test
may not even enter into its second phase. To some extent these problems are
inevitable, although with fine tuning it might be possible to devise a scheme
which does a bit better than the one considered here. It seems fair to conclude
that our test is not obviously defective, although some improvement may be
possible.

Although the preceding comparison of our test with a two treatment
repeated significance test seems to be useful for purposes of calibration, it is
presumably not the comparison one would make when trying to decide whether
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a trial should involve three treatments or only two. Then a more reasonable
comparison might be between a three treatment trial employing a maximum of
m patients on each of the three treatments for a total of 3m patients, who in a
two treatment trial could be allocated to only two treatments, so there would
be a maximum of 3m /2 subjects receiving each treatment. The two treatment
trial would have much greater power, so one would prefer the three treatment
trial only if the third treatment is a credible option. On the other hand, if the
choice is between a three treatment trial or consecutive two treatment compar-
isons, the three treatment trial seems to offer definite advantages, although
this issue might be worth more systematic investigation.

As indicated in the preceding section, it is also interesting to suppose that a
total of 3m subjects are available for the trial and those who do not participate
in the first phase are available for the second. More precisely suppose that if
the first phase terminates at T; < m, then 3(m — T,) additional subjects are
available for assignment to the remaining treatments of the second phase,
which therefore terminates at min[T,,(3m — T,)/2]. This will increase the
Type I-2 error probability, but only slightly. The probability of correctly
selecting the best treatment will also increase, most notably in cases where ||6/|
is large, so the first phase is quickly terminated, but 6, is relatively small, so
the extra subjects made available by that early termination are useful in the
second phase. If |0l and 6, are both large, the results will be much as in Table
1, because it is usually unnecessary to take more observations before reaching
a decision; and if ||6]| is small, the results will again be much as in Table 1
because the first phase of the test will usually exhaust the entire group of
subjects and very few will remain for the second phase. A numerical example
emphasizing parameter values for which one can expect large differences with
Table 1 is given in Table 2.

The notation in Table 2 is the same as in Table 1. Since the approximations
suggested in Section 4 for the Type I-2 error probabilities appeared to be quite
accurate in Table 1, appropriately modified analytic approximations are used
in Table 2. The starred columns also give analytic approximations for the two
treatment repeated significance test with m, = 10, m = 70, b = 2.92 and
¢ = 2.05. This value of m would be appropriate in the ideal case that the first

TABLE 2
Operating characteristics when the second phase terminates at min[Ty, (83m — T,)/2]

6, 0, P2 P E, E3
0.70 0.00 (0.052) (0.054) 62.2
0.61 0.35 0.763 (0.822) 47.2 (50.2)
0.60 0.00 (0.051) (0.054) 59.4
0.42 0.42 0.856 (0.933) 40.2 (41.3)
0.52 0.30 0.610 (0.695) 49.1 (52.9)
0.50 0.00 (0.049) (0.054) 56.3

0.43 0.25 0.444 (0.540) 50.4 60.6




SEQUENTIAL TRIAL FOR THREE TREATMENTS 473

phase of the three treatment test always terminates at the minimum sample
size, T, = 10, so the maximum sample size at the end of the second phase is
(8 X 50 — 10)/2 = 70. The other entries in Table 2 are Monte Carlo estimates
based on 2500 repetitions. In comparison with Table 1, our test takes more
observations and achieves a nontrivial increase in the probability of correctly
selecting the best treatment, although it still falls short of the ideal case
represented by the two treatment trial described in the starred columns.

It is interesting to note that the Type I-2 error is not substantially larger
than the nominal level of 0.05. In fact, one of the most attractive features of
the repeated significance test with respect to the O’Brien—Fleming test is this
robustness of the significance level with respect to changes in the maximum
sample size m, which is only rarely known before an experiment begins even
in two treatment trials. An increase of the maximum sample size from 50 to 70
for an O’Brien-Fleming test would more than double the significance level if
no other adjustment is made.

4. Analytic approximations. This section is concerned with analytic
approximations for the expected sample size (6) and the Type I-2 error
probability given (approximately) in (2).

The approximation given here for (6) is similar in spirit to that given for (5)
in Siegmund [(1985), Chapter V]; but it is substantially more complicated and
hence is given to less precision. Nevertheless, the results in Table 1 show that
it can be quite good.

Our point of departure is the following identity, which may be readily
verified:

E,[min(T,, m)] = Ey[min(Ty, m)] + Eg[T, — Ty; T, < m]
—E)Ty,—m; T, <m <T,].

(7

Under the assumption
(8) llell =y, + A,/m*/?, where y, = b,/m'/?

and A, are constants as m — o with y; > 0, an asymptotic expansion for
E, [min(T}, m)] up to terms which converge to zero as m — « has been given
by Siegmund [(1985), page 113]. The approximations for E,{min(T,, m)} given
in Table 1 are the sum of that approximation and the approximations
given below for the second and third terms on the right-hand side of (7), which
under appropriate assumptions are both of order m!/2.

For w; > pg = g, up to a negligibly small error the second term on the
right-hand side of (7) equals

E,,(Tz ~ Ty T, <m, SE - n?z}x|s;{ )

(9)
+ BT, ~ Ty Ty < m, S = maxiSipl).
LJ

When u, is substantially larger than wg, the second term in (9) is negligible,
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but when p, and pg are approximately equal, so are the two terms in (9). If
Wy = Mg, that is, 6, = |0]] - 3172 /2, the two terms are exactly equal.
To analyze (9) we assume that

(10) 0, = vy + Ay/m'/2,
where y, = b,/m'/2, and also that

(11) 0, = ll6ll - 81/2/2 + O(m~1/2).
Note that conditions (8) and (10) imply that

(12) 05 = byll6ll/by + Ag/m*/2,

REMARK. Condition (12) implies that T, — T, is of order m'/? in probabil-
ity. If (12) holds, conditions (8) and (10) could be replaced by the assumptions
that |16l > y, and 6, > y, in the calculations given below. Then the third term
on the right-hand side of (7) would be asymptotically negligible. For the entries
in Table 1 these conditions are often more appropriate than those given above.
The condition (11) is also unnecessarily restrictive. It implies that the two
terms in each of the displays (9) and (20) are of the same order of magnitude.
If (11) does not hold, the second terms in (9) and (20) can be neglected.

Since the following calculations involve a large number of technical details
which for similar problems have been treated elsewhere [e.g., Siegmund (1985)],
many details have been omitted here.

From the assumptions that b, < b, - 31/2/2, it follows that if T, = n and
Sy, < byn'/? then except for an event of exponentially small probability

Sx3 > 812 and hence except for an exponentially small error the first term in
(9) equals

(13) Y [ PfTi=n,8,, €byn'/? - dx}Eyr,(x),

mo<n<m *¥>0

where 7,(x) = inf{k: S, , > by(n + k)'/2 — byn'/? + x}. Assume n ~ (b, /I|6])?
and m'/® <x < m58, Since T, ~ (b,/116ID? in probability, as in Proposition
4.27 of Siegmund (1985) one may show that these ranges of n and x make the
dominant contribution to (13) when (8) and (10) hold, and in these ranges

(14) Ey[7,(x)] ~x/(0; — by/2n'%) ~ x/(0, — b,l6ll/2b,).

A likelihood ratio calculation [Siegmund (1985), page 114] shows that for
any stopping rule defined in terms of ||S;ll, = 1,2, ...,in particular for T,

P,{Sy 1, € d&ITy, 1Sy}
(15) ~ eXp<||0II 1S, Icos[sin~*(£/I1Sll) — sin—1(02/||0||)]} dé¢
21, (101 1S5, 1) (1S )12 — £2) ’

where I, denotes the usual modified Bessel function.
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Since T,/b% ~ [16I"* in probability and [ISz || = ,T{/% + R, where R is
stochastically bounded (and in fact converges in distribution), by (12), the
asymptotic relation I,(v) ~ exp(v)/(27mv)!/? as v — », and some extensive
Taylor series expansions, one finds that for m!/® < x < m®/8 on an event
having probability converging to 1,

P,{S, 1, € b,T}/? — dx|Ty, ISy}

(16) . .
~ ¢[v185/0, + xl61*/(m1/2y,0,)] dxl6ll® /(m'/y,6,),

where A; = A, — y,A,/v; and ¢ denotes the standard normal probability

density function.
Finally, it is well known that T, and R = [|Sy |l - b,T/? are asymptotically
independent [cf. Siegmund (1985), Theorem 9.17], and that when (8) holds,

(17) P{T, <m,|S,|l < bm'/?} = O(m~1/?),
SO
Py(T, < m} = Py{IIS,,Il > b;m'/?} + O(m~1/2)
(18) =1 - ®(b, - ll6lm/?) + O(m~1/2)
=1-®[-A]+0(m™1?),

where ® denotes the standard normal distribution function.
Substitution of (14), (16) and (18) into (13) and integration yield the
following result.

ProposITION 1. Assume (8), (10) and (11) hold. Let Ay = Ay, — y,A1 /vy,
n = Agy,/0, and o = v,0,/|011°. Then as m — o,

E,(T, - Ty; T, < m, S} = max|SF)

~ P{T; < m}om'/2[¢(n) — n®(—n)]/(6; — byll6ll/20,),
where P{T, < m} is given approximately by (18).

(19)

Now consider the final expectation in (7). Under the assumption that
Uy > Wy = W, up to an exponentially small error this term equals

E,,,<T2 -m; Ty <m <T, S7> = maxIS;{ }
(20)
+ E{Ty = m; Ty <m < Ty, S = max|S7l}.

As above, if u, is substantially larger than u,; the second term in (20) is
negligible compared to the first and can be ignored. If u, and wg are about
equal, both terms can be approximated by the following argument. Of course,
if gy = pg, the two terms are exactly equal. By (17) the first term in (20) has
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the same asymptotic behavior as
f P”{”Sm” >bm'2, Ty >m, Sp? = maxlS;jL
(21) x>0 1 1
Sa,m € bym'/? = dx| By [, ()]

For x in the critical range m!/® < x < m®® we can ignore the constraint
S7> = max|Sy/|, since the conditional probability

P(,{T1 <m,SF = maxIS;{I 1Sy, = bgm'/? — x}
< Py{S, , > byn'/? for some my < n < mlS, ,, = b,m'/% —x} -0

as m — o [(cf. Siegmund (1985), page 200]. Similarly we have P/{T, < m,
ISy, | < bym'/?} = O(m~1/?), so we can also ignore the constraint T, > m in
(21). After a lengthy calculation one sees that

PlS, Il > bym'/?, S, ,, € b,m'/? — dx}
(22) ~ ';b(Az + x/ml/z)
X {1 = ®[(~ A6+ A0, + Oy 1/2) /6,]} d/m1 2,

Finally, substitution of (14) and (22) into (21) yields an expression which is
easily computed numerically. The final approximation is summarized in the
following proposition.

PRrOPOSITION 2. Assume conditions (8), (10) and (11). Then as m — ,

Eo(Tz -—m; Ty <m <T,, ,31151” = maxISIi,{ )
(23) ~m(0y = v5/2) "

xJ Yd(Ay + y){1 — O[(— A6l + Ay, + 8,7)/6,]) dy.

REMARK. By scrutinizing the argument given above, one can see that there
is in principle no impediment to calculating a term of order one in an
asymptotic expansion of E {min(T,, m)}. Unfortunately the result would be
extremely complicated and involve some terms which seem to give insight into
the situation and others which just appear in the calculation. Since there are
other approaches to an approximation for E{min(T,, m)}, which might pro-
duce useful results over a wider range of parameters than the approach taken
here, it seems reasonable to regard the above results as demonstrating the
possibility of a theoretical analysis, but by no means providing the final word.
On the other hand, in spite of the crudeness of the preceding analysis it gives
interesting insight into the structure of the expected sample size.
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Now consider the Type I-2 error probability given (approximately) by (2).
The loose heuristic argument in Section 2 indicates that for large 6; that
probability should be only slightly less than the significance level of the two
treatment repeated significance test defined by b,, ¢,, m, and m. Since this
reasoning is substantiated by the Monte Carlo results reported in Table 1, it
seems interesting to try to provide a more precise explanation; and since the
next to last term in (2) seems difficult to evaluate, we shall replace the original
probability by the analogous one for Brownian motion. Although the approxi-
mation for the new problem cannot be expected to provide numerically accu-
rate results for the original, an ad hoc continuity corrected version does, as we
shall see below.

The first term on the right side of (2) is the principal one when ¢, is small
compared to b,. It also makes the principal contribution to the significance
level of a two treatment test, and it does not change if the process {S,} is
replaced by Brownian motion. As indicated in Section 2, the fourth term in (2)
can be approximated by the same method used in (4), but is usually negligible
unless 6, is small.

To study the behavior of the second term, let W, = (W, ,, W, ,) be two
dimensional Brownian motion with drift 6 = (6,, 6,)' per unit time. Let

. = inf{t: £ > mg, W, > b,£'/%)
and
Ty = inf{t: t > 7, [W, | > byt1/2}.
Let o, = arg(W,). Assume 6° = (9,,0) with 6, > 0 and consider

PBO{TI <7 <m,lo, | <m/3, W, | < 02m1/2}

(24) = '[I » /3P00{7'1 €dt,w, € d o}

[mg, m)

X Poo{Tz <m, Wy | <com'?Ir; =t 0, = a)}.

Assume that m — o with b,/m!/2 =y, >0, my = t,m, c,/m'/? a con-
stant in (0,y,], and t/m € (¢;,1) bounded away from the endpoints. It is

shown in the Appendix that

PGO{TZ < m, IWZ,ml < czm1/2|71 —_ t, W2,1- — §}
(25) e , ,
~ (byt'/2/¢)exp| — (b3 — £2/t) /2],

provided there exists ¢ > 0 such that (1 + &)b2/c,m'/? < ¢/t < b,/t'/?, and is
of smaller order of magnitude if ¢/t < (1 — £)b2/c,m'/?. Known results cited
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in the Appendix strongly suggest that

Pyfr, € dt, w, € dw)
(26) 172 172 1/2 1p2
5b7 exp[ —5b7 + 0,0t/ cos w — 501t] dodt/(27t).

Substitution of (25) with ¢ = b,¢1/2 sin w and (26) into (24) yields the approxi-
mation

Po{my <7y <75 <m,lw,| <sin™'(by/b,), Wy ,| <c,m'/?}
(27)
~ 2bz¢(bz)b1ffx_1¢(x — b, cos w) dxdw/sin w,

where the range of integration is &émYy? < x < 8b,com'/? sin w /b3,
bamly/?/(b,c,m'/?) < sin w < by/b,. The approximation (27) omits several
boundary cases in (24) which can make important contributions for some
configurations of the parameters. Similar arguments yield

Ppofr, = mo, o, | <7/3, mg <7y <m, Wy ,| <cym?}

28
. ~ 2b2¢>(b2)f/¢>(r cos w — ;mY?)(sin w) "' drdw,

where the range of integration is b2mY2/(co,rm'/2) < sin w < by/r, b, <r;

and

P(,o{m0 <t =1y<m,lo,| <m/3,|W, | < czml/z}
~ (2m) " *big(by)

(29) Xfmf t~'exp(0,b,t"/? cos w — 07/2)

mq’sin™Nby /b)) <w<m/3

com'/2 — bt/ % sin
X ® Y dwdt.
(m —1)

The probability (29) is closely related to the third term on the right-hand side
of (2), and the right-hand side of (29) integrated over values of w > 7/3 yields
an approximation to that term. Finally, it is easy to evaluate Pyo{r, = 7, = m,,
[Wy, | < c,m'/?) exactly as a double integral, but since this probability is
usually negligible compared to (28) and (29) it is omitted here. The sum of (27),
(28) and (29) gives an approximation to (24).

The preceding approximations cannot be expected to be quantitatively
accurate for problems in discrete time, but there is a simple modification
which appears to be. For the two treatment repeated significance test with
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stopping rule min(z, m), where
T =inf{t: t > mg, W, | > byt'/?},

one has the approximation [Siegmund (1985), Chapter IV]

(30)  Ppfr <m,|W, | <com'/?} ~ 2b2¢(b2)log[mcg/mobg]l/z,

which for m, = 10, m = 50, b, = 2.92 and ¢, = 2.05 equals 0.015. The analo-
gous probability in the discrete case is about 0.01 or about 2/3 as large. The
discrete time approximation [Siegmund (1985), page 200] can be regarded as
the approximation in (30) multiplied by a factor correcting for excess over the
boundary. Since this correction factor changes rather slowly as a function of
the various parameters in the problem, one suspects that the same correction
factor might be roughly correct for a class of related problems, in particular
those discussed above.

The sum of (27)—(29) with the range of integration in (29) extended to
include values of w > 7 /3 gives for 6, = 0.7, 0.6, 0.5, 0.4 and 0.3 the values
0.013, 0.012, 0.011, 0.0094 and 0.0074, respectively. If these figures are
multiplied by 2/3 as a correction for discrete time and then added to the
principal term on the right-hand side of (2), 2[1 — ®(2.05)] = 0.040, they
predict quite well the Monte Carlo estimates in Table 1, except for 6, = 0.3.
Actually for 6, as small as 0.3 or 0.4 the final term on the right-hand side of
(2) is not negligible, but approximately equals 0.004 or 0.001, respectively.
Including this term makes our overall approximation quite good at 6; = 0.3 as
well. The final continuity corrected approximations are given in Table 1.
Simulations for various parameter values, in particular for group sequential
tests where sample sizes are nominally very small and corrections for discrete
time important, show that this ad hoc correction works well over a broad range
of parameter values. A more satisfactory, although still not completely justifi-
able approximation has recently been obtained by Betensky (1992) and will
appear elsewhere.

It is also easy to modify the approximations (27)-(29) so that they apply to
the procedure studied in Table 2, where the test is truncated at T3 = [3m —
min(T,, m)]/2. However, in that case the dominant contribution to the Type
I-2 error probability corresponding to the first term on the right-hand side of
2)is

Pyo{lW, 1| > ¢, T37%}.

This probability does not exactly equal 2[1 — ®(c,)], although some simple
manipulations suggest it should be very close. The values given in Table 2 for
the overall error probability are the sum of 2[1 — ®(c,)] and the sum of the
modified (27)-(30) corrected as above for discrete time. A Monte Carlo experi-
ment not reported here showed these approximations to be quite accurate.
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It seems an interesting, but difficult problem to give asymptotic approxima-
tions to the integrals appearing in (27)-(29), which would give sufficient
accuracy that one would prefer to use them in lieu of numerical calculations.

5. Discussion and open problems. There remain a number of prob-
lems which should be addressed before one feels comfortable with the proce-
dures of this paper. The most obvious is to develop analogous methods for
censored survival data. There is by now considerable literature in the two
treatment case showing that the simple model discussed here, which involves
normally distributed immediately available responses of known variability,
provides a good approximate model for censored survival data analyzed, for
example, by the proportional hazards model. However, an important aspect of
the related large sample theory is a data dependent change of the time scale,
for example, Sellke and Siegmund (1983), which adapts automatically to
different than anticipated accrual rate, baseline hazard rate, and amount of
censoring. In the case of three treatments there are at least two time scales
and one cannot devise a single time change which works for all of them
simultaneously, except by making somewhat stronger assumptions than the
two treatment case requires. The issue is less significant when the treatment
effects are all roughly equal, but becomes more important if the treatment
effects are radically different and hence information about them accumulates
at different rates. See Betensky (1992).

The procedures discussed in this paper are symmetric in the labeling of the
treatments. There are various reasons that some treatments, notably a stan-
dard treatment or placebo, may be regarded differently from the others. For
example, there is usually a presumption that a new treatment is more expen-
sive or more toxic, perhaps both, than a standard and should be adopted only if
it shows definite advantages in treatment. Thus the standard treatment need
not prove itself superior, but only not inferior to new treatments. For two
treatment trials there are easy modifications to allow for early termination of
the test if it appears early on that the data are consistent with the hypothesis
of no treatment effect. For example, Siegmund (1986) shows that the theory
developed for a symmetric repeated significance test can be applied to a natural
asymmetric modification of the test which is designed for early termination if
the null hypothesis appears to be true. In the case of three treatments it is not
obvious how to modify the stopping rule of the first phase of the test we have
studied in order to terminate the test quickly in the case neither experimental
treatment seems definitely superior to the standard. On the other hand, one of
the principal reasons given for wanting to terminate a test if the experimental
treatment does not display a definite advantage is to begin a new trial with a
new experimental treatment. Insofar as the methods of this paper may allow
one to consider several treatments simultaneously, there may not be as much
pressure to get on to the next trial. See Betensky (1992).

There is always the possibility that a treatment is discarded early in the
test, and by the end appears to be a serious competitor to the other two, if they
fail to live up to their early promise. If the criterion for eliminating a



SEQUENTIAL TRIAL FOR THREE TREATMENTS 481

treatment from consideration is reasonably stringent relative to the maximum
sample size, as is the case for the example discussed in detail in this paper, it
seems unlikely that there will be enough observations remaining after a
treatment is discarded to lead to a situation where it ought to be reconsidered.
In fact, it seems reasonable to require the probability of such a reversal to be
small, and to calculate this probability as a part of one’s evaluation of a given
test.

It would also be interesting to see if the methods of this paper can be
reasonably extended to trials involving four or more treatments and to attempt
to give confidence regions for the treatment effect vector at the end of the test.
For this latter problem, the methods of Woodroofe [(1986), (1989)] might be
useful.

APPENDIX

The approximations (27), (28) and (29) are direct consequences of (25) and
(26). This Appendix contains arguments in support of (25) and (26). Since both
are closely related to other well known results, most details are omitted.

Display (26) contains an approximation to the probability density function
of T,. In one dimension a very sharp result analogous to (26) has been given
by Jennen (1985), and the method used there probably can be adapted to prove
(26). An alternative method for one dimension which probably can be used to
prove (26) has been developed by Durbin (1985). A discrete time version of (26)
has been given by Woodroofe (1978). Analogous results for the distribution
function have been obtained, for example, by Siegmund [(1985), Problem 5.1]
(where, however, some exponents depending on the dimension of the process
are incorrect). In view of this quite substantial related literature there can be
little doubt that (26) holds, so we shall not discuss it further.

The relation (25) follows from a modification of known arguments. Since the
basic idea is easily understood, it is explained below; but since the details are
similar to those given in several other places, they have been omitted. See, for
example, Siegmund [(1985), (1988)].

Let w, be one dimensional Brownian motion with drift x and for § > 0 let

7= inf{s: s > ¢, lw,| > bs'/?}.

Our point of departure is the following representation, which is a synthesis of
Lemma Al of Siegmund (1988) and Problem 4.13 of Siegmund (1985). The
proof proceeds along the lines of Wald’s likelihood ratio identity and is
omitted. Let @ = [P, du/(2m)'/? and let L, denote the likelihood ratio of w,,
s <t under @ relative to P,. Then for any 0 <t <m, 0 < |¢ < bt'/? and
0<c<b,

Py{r <m, lw,| < cm'?|lw, = £}
= [ E [l < m)L7 'Po{lw,| < cm 2w, s < 7w, = £]

Xexp(pé — p?t/2) dp/(2m) ">,
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Since L, =t"'2explw?/(2¢)] and |w,| = b7'/? on {t <7 < m}, straightfor-
ward substitution yields the following identity.

PROPOSITION 3. Let 0 <t <m, 0 < |¢ <btl/2,0 <c <b. Then
Pyfr <m, lw,| < cm'?lw, = £}

=¢1/2 exp[—%(b2 - §2/t)]

31 w
( ) Xf E#[l(‘r< m)ﬁrl/2P0(|wmI < cml/ZlT’ w‘r)lwt = f]

Xo[(n — £/2)t2]t 2 dp.

Note that the inequality
Po{r <m, lw,| < cm?lw, = ¢} < (m/t)"* exp| — 3(b2 — £2/t)]

follows at once from (31).

Assume now the asymptotic scaling of (25): b, = b/m'/?, ¢, =c/m'/?,
&y =¢&/m and t, = t/m are constants different from 0. The integrating mea-
sure ¢l(uw — £/t)t/21t1/2 dp in (81) behaves asymptotically like a delta func-
tion at ¢/t = £,/t,, and hence the integral

~ E§Ot61[1(7<m)71/2P0(lwml <em?|r,w, )lw, = §].

Under P; ,-1, 7 ~ (b/&gty )? with probability 1; and the conditional probabil-
ity asymptotically equals

cml/? — prl/?
(m-r)"% )

which converges to 1 if [£yl¢g! > b3co ! and to 0 if |£yl¢5! < bicy . Hence
by (3D),

Py(r <m, lw,| <cm'?lw, = £) ~ (bt1/2/§)exp[—%(b2 - §2/t)]

or is a smaller order of magnitude according as |£,| > b2t,/c, or |£o] < b3ty/co.
This is essentially (25) except for the change of notation.
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