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We show that the method of importance resampling, introduced by
Vernon Johns and Anthony Davison, may be enhanced by balancing the
resamples. It is demonstrated that ‘‘balanced importance resampling”
improves on both ‘“‘balanced uniform resampling” and ‘“random impor-
tance resampling”, from the viewpoint of statistical efficiency. Moreover,
the range of applications for which efficient resampling methods may be
applied is extended to include statistics which are smooth functions of
solutions of estimating equations.

1. Introduction. In this paper we show that the method of importance
resampling for approximating a bootstrap distribution function, introduced by
Johns (1988) and Davison (1988), can be enhanced by balancing the resamples.
That is to say, the resamples should be drawn in such a way that the total
number of times each data value appears, rather than the probability of
drawing that value, is prescribed. We give a concise prescription of the
balancing proportions for achieving maximum asymptotic efficiency. In addi-
tion, we extend the range of application of importance resampling methods to
statistics which are smooth functions of solutions of estimating equations.
Thus, the examples involving M-estimators considered by Johns (1988), and
““smooth means’’ problems, are included as special cases. This is an important
extension because, on contemporary computers, the time required to generate
resamples (either balanced or random) is very small. Thus, efficient resampling
methods are only important in problems where the main computational con-
straint is finding the estimator.

The emphasis in this paper is upon practical considerations and upon simple
derivations of the relevant formulas. Indeed, we shall show how the formulae
for the asymptotic efficiencies of both importance and balanced importance
resampling methods follow easily from an assumption of asymptotic normality
of the bootstrap distribution in question. Examination of these formulas shows
that balanced importance resampling is slightly more efficient than random
importance resampling for approximating bootstrap tail probabilities and
slightly better than balanced uniform resampling in the center of the distribu-
tion. The technique therefore provides for unified efficient resampling in
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bootstrap problems. Technical details may be found in an unpublished techni-
cal report [Hall (1990b)], and formal results are outlined in Section 5.

We now introduce the sampling framework and some notation which will be
used throughout the paper. Let X denote a k-dimensional random variable
with distribution F and let 8 be a p-dimensional parameter or characteristic
of F satisfying

E{wr(XaB)}=0’ 7'=1,«-->P,

for some smooth vector of functions ¢ = (i, ...,c//p)T. Here E{-} denotes
expectation with respect to F. If 2'= {x,,..., x,} is a random sample from F,
then an estimate B of B may be obtained as a solution of the estimating
equations

(11) ler(xi;ﬁ):O? "=1,~~>p~
i=1

We shall assume that a solution of (1.1) always exists and is a consistent
estimate of B as n — . Suppose that our interest lies in a smooth scalar
function n = g(B) of the parameter 8 which we estimate by % = g(8). We
note that a simple but important class of problems which fall within this
framework consists of situations in which g is a smooth function of the mean
vector, that is, 8 = E{X}. In such problems, the functions, ¢,, r=1,..., p,
have the simple form: ¢ (X, 8) =X — B, r=1,..., p, where X denotes
the rth component of the random vector X.

Under mild regularity conditions the variance of 7 in repeated sampling is
given by

Var(#} = n " 'DTH' Cov{y(X, B)}(HT) 'D, + o(n" %),

where H is a p X p positive definite matrix with elements H, =
E{oy (X,B) /B, r,s =1,...,p,and D, is the p vector with elements dg/3p,,

r=1,..., p. Thus, a consistent estimate of the variance of n'/24 is
A oA A —1 A
(1.2) ¢?=DIA-'S,(AT) "D,

where H,, = n= 'Ly, (x;; B)/3B,lp-p, D, has elements dg/dB,ls- and
- ™ A AT
2, =n"" Y (x,;B)(x;;58) -
i=1

Let @ denote the distribution function of the statistic T = n'/%(; — ) /&.
We shall assume that T is asymptotically pivotal in the sense that it has a
standard normal limiting distribution. If @ is an estimate of @ and Z, denotes
the quantile of @ satisfying Q(fa) = a, then an approximate 100a% level,
equal-tailed confidence interval for 7 is given by

A —1/22 A A —1/2% A
(1.3) ("7 -nY Llajoa+a)0,M — 1 / t(1/2)(1—a)0')-

When @ is the bootstrap estimate of @, intervals of the form (1.3) are called
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percentile-t bootstrap confidence intervals. Percentile-f bootstrap confidence
intervals typically enjoy second-order accuracy; that is, the boundaries are
correct to order Op(n_l) [see, e.g., Hall (1988)].

In the following section we discuss the bootstrap method of estimating @,
and its Monte Carlo approximant based on ‘“random uniform” resampling. In
Section 3 we discuss “random importance” and ‘‘balanced importance’” re-
sampling approximants for the bootstrap estimator, and derive formulas for
their asymptotic efficiencies relative to random uniform resampling. In Section
4 we give the results of a simulation study involving a sample from a Weibull
distribution. In this example, B is the maximum likelihood estimate for the
Weibull scale and index parameters andn is the mean of the Weibull distribu-
tion. A confidence interval for n could therefore be obtained using standard
asymptotic normality results for maximum likelihood estimators. However,
this approach leads to confidence intervals which are only first-order correct;
that is, the boundaries are correct to order Op(n‘l/ 2). Thus, bootstrap meth-
ods are relevant even in fully parametric problems. Section 5 outlines regular-
ity conditions and formal results.

2. Bootstrap estimation of Q. Let 2™ denote a resample of size n
drawn randomly with replacement from £, and let T* = nl/2(4* — %) /6*
denote the version of T in which #* and 6* are computed in the same
manner as 1 and & but using the resample 2™* instead of Z". The theoretical
bootstrap estimate of Q(¢) = P(T < ¢) is given by

(2.1) Q(t) = P(T* <t1Z).

Except in rare cases the estimate (2.1) is not directly computable. In practice @
is typlcally approximated by simulating B ‘“‘random uniform” resamples
..., ZF, and calculating

B
(2.2) Q,,(t) =B L I(Ty <),
b=1

where T} is the value of T* obtained using the bth resample Z.*, b =
1,...,B.

We note that, conditional on &, the approximation @), , is unbiased for  in
(2.1). Moreover, if the assumed asymptotic normality of T' implies that of T*
then @, , has variance given by

(2.3) B Var(Q,,(t)|Z’} = @(){1 — ®(¢)} + 0,(1)

as n — . Here ® denotes the standard normal distribution function. Thus,
for example, for ¢ close to the 5th or 95th percentile of @, approximately
B = 7500 resamples are required to estimate Q(¢) to two decimal places of
accuracy, using (2.2). Conversely, if ta ., denotes the quantile of Q satisfy-
ing Qm(ta ..) = a, a Taylor series argument shows that

fa,ru - fa = {a o QA"u(f‘l)}¢(f‘1)_1’
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where ¢ denotes the standard normal density. Thus, since ¢(£,) = 0.1 for
a = 0.5 or 0.95, use of B = 7500 resamples results in an estimate of £, which
is accurate to one decimal place.

3. Efficient bootstrap simulation. In this section we discuss ways of
reducing the number of resamples B used to approximate the exact bootstrap
distribution function @ in (2.1) while retaining the same level of accuracy as
the standard approximant @,, in (2.2). Two methods which have received a
considerable amount of attention in the literature are ‘“random importance
resampling”’ [Johns (1988)] and ‘‘balanced uniform resampling”’ [Davison,
Hinkley and Schechtman (1986)]. The first of these methods involves selecting
B independent ‘‘ with replacement’’ resamples of size n from 2" with unequal
probabilities assigned to the sample values x;,...,x,. This approach is de-
scribed in more detail in Section 3.1. In the balanced method, on the other
hand, the bth resample of size n consists of the (nb — n + 1)th to nbth
elements of a random permutation of the ordered set consisting of B replica-
tions of & In the latter method, each sample value is chosen exactly B times.
This means that, in the balanced case, the resampling statistics T7",..., T#
are conditionally correlated given £". Both approaches lead to unbiased esti-
mates of @ in (2.1) which have smaller asymptotic variances than the estimate
Q,, based on the same number of resamples. The importance resampling
approach is generally much more efficient than (2.2) in the tails, whereas
balancing leads to substantial improvements in the center of the distribution.
In Section 3.2 we discuss a technique called ‘‘balanced importance resampling”’
which combines aspects of both approaches and which contains the balanced
uniform method just described as a special case. Balanced importance resam-
pling leads to an estimate for @ with bias of order O(B~') but with an
asymptotic variance uniformly smaller than that obtained by either random
importance or balanced uniform resampling.

3.1. Random importance resampling. Under mild regularity conditions
T* = £7_1e(x}) + O,(n"1/?), where

(3.1) g, =e(x;) =n V% DIH YW (x;58), i=1,...,n.

Suppose that a resample 27*, instead of being selected by random uniform
resampling as in Section 2, is selected from 2" by random sampling with
replacement from a ‘“tilted” distribution which assigns probability, p, =
exp(fe,;)/Y7_, exp(fe;) to the ith sample value x;, i = 1,...,n. Note that
p; = n” ! exp{fe; — «(6)}, where k(8) = log(n~'L7_,e%") is the empirical cumu-
lant generating function for the ¢;’s in (3.1). Note also that the random
uniform resampling case is recovered in the case § = 0. Let E,{-|2"} denote
expectation under this resampling rule. Then we have

Q(t) = E{I(T* < t)e "= <O g}

for any value of 6, where £* is the value that the statistic £ takes when
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computed using the resample 2°* rather than & that is, £* = n L7 e(x¥).
Thus, there is an entire family of unbiased estimates of Q (conditional on £°)
indexed by the tilting parameter 6, with elements given by

B
(3.2) Q,.,(t;0) =B~1 Y (T} < t)e ™o —<O)
b=1
In (3.2), T} and &} are computed using the bth importance resample Z2;*. In
the case = 0, (3.2) reduces to (2.2).
Now, let Y denote a standard normal variate. Then the asymptotic variance
of (3.2) is given by

B Var,{(@Q,,(t;0)| 2} = Var {I(T} < t)e "5~ g}
(3.3) ~ Var{I(Y + 0 < t)e Y~ 1/2%%)
= ®(t + 0)e” — d(2)%.

The approximation in (3.3) derives from the assumed asymptotic normality of
the statistic T', which implies under regularity conditions (see Section 5) that
T* and n&g* are approximately normally distributed with mean 6 and variance
1. Thus, an efficient Monte Carlo estimate of the theoretical bootstrap value
Q(¢) is obtained by selectlng resamples from the tilted distribution with
parameter 0 which minimizes (3.3). A modification of this approach for the
case where ¢ is positive, utilizing the asymmetry about ¢ = 0 of the minimized
asymptotic variance formula (3.3), is described in Section 3.3.

3.2. Balanced importance resampling. Let B;, i = 1,...,n, be nonnega-
tive integers summing to nB and let &~ * denote the ordered set of nB
elements in which the first B; elements equal x,, the (B; + 1)st to (B; + By)th
elements equal x, and so on. Suppose that the B resamples 25, b=1,..., B,
are obtained by first randomly permuting 2" and then as31gn1ng the (nb +
st to (nb + n)th elements in the reordered set of Z;*, b = , B. In this
section we consider a method for selecting the B,’s which leads to an efficient
approximation to the bootstrap distribution function (2.1). More specifically we
suppose that B; = B, where B = nBp,; the approximation stemming from
the fact that each B, 1s an integer. There are a number of ways of choosing the
B;. In our approach we first choose B; = [nBp,] for i = 1,...,n, where [- ‘]
denotes the integer part; next, we obtain r = nB — L7_ B and d = nBp, — Bl
fori=1,...,n. Note that 0 < r < n. We then add 1 to those B, for which the
correspondlng d; is at least rth largest in the set {d;,.. d .}, and write
B,,...,B, for the resulting positive integers (which sum to nB ). 'We note that
this construction implies that B, is of the same order as B for i = 1,...,n.

Let Ef{‘|Z, B;,i = 1,...,n} denote expectation under the resampling rule
just described. Then it is shown by Hall (1990b) that, for each 6 = 1,..., B,

(3.4) E{I(T} < t)e ™% —<ONg B, i=1,...,n} = Q(t) + O(B™")

provided B > n (e.g., B = n?). In the balanced uniform case 6 = 0, the bias
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term in (3.4) disappears altogether. Thus, a second family of approximants for
Q(t) indexed by 6 has elements Q,,(¢;6) of the same form as (3.2) but where
Ty and &} are computed using the bth balanced importance resample. The
effect of balancing the resamples is to introduce a negative correlation p =
—(B — 17! 4+ o(B™!) between the resampling estimates T}, b = 1,..., B.

We assume regularity conditions (see Section 5) such that (7%, T}}), b # ¥/,
has an approximate bivariate normal distribution with mean (6, 6), unit vari-
ances and correlation p as n — « with B > n. Let U} = I(T;* < t)e™™0% ~<®),
for b =1,..., B, and let (Y;,Y,) denote a standard bivariate normal variable
with correlation coefficient p. Then the variance of @,,(¢;6) is given by

B Var,{Q,,(¢;0)|2, B;,i = 1,...,n}
=VaI‘9{Ub*|.Q/', Bl’i 1,...,71,}
+(B — 1)Cov,{U¥, U2, B;,i = 1,...,n)

~ Var{I(Y; + 6 < t)e~*V1~1/2¢%}

(3.5)

+(B — 1)Cov{I(Y, + 0 < t)e~M1=(/D% [(Y, + ¢ < t)e V2~ (1/2%%)

= Ot + 0)e” — O(£) — {8D(t) + &(1))%,

using the argument in Appendix A. An efficient Monte Carlo estimate of the
theoretical bootstrap value Q(¢) is obtained by selecting balanced resamples
with B,’s determined by the value of 6 which minimizes (3.5). As with
importance resampling, a modification of this approach for the case ¢ > 0 is
suggested in the following section which takes account of the asymmetry about
t = 0 of the minimized asymptotic variance formula (3.5).

3.3. Efficiency comparisons. Figure 1 depicts graphs of
{@(5)[1 = @()]}/ min {@(z + 0)e” — @ (1)},
{e())[1 - ()]} min {@(¢ + 6)e” — B(2)° — [69(2) + #(1)]"}
and

{@(2)[1 - ()]} /{@(6)[1 - ®(2)] — (2)?)

versus ¢, corresponding to the asymptotic efficiencies of approximations to the
theoretical bootstrap distribution based on random importance, balanced im-
portance and balanced uniform resampling, respectively, relative to random
uniform resampling. It is clear from the graphs that both random and bal-
anced importance methods are more efficient for negative ¢. Hence, in these
cases, when ¢ is positive we first approximate G(¢t) = P(—T* < —¢|2) by
either G,,(t) or G,,(t) say, and then set @,,(t) = 1 — G,,(t) and @,;(t) = 1 —
G »:(#). The asymmetry of the random importance resampling efficiency curve
is of course well known; see Johns (1988) and Hinkley and Shi (1989).
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Fic. 1. Asymptotic relative efficiencies.

To construct confidence intervals of the form (1.3), for example, approxima-
tion of a-level quantiles of the theoretical bootstrap distribution is required.
This may be accomplished as follows. First arrange the values T},...,T# in
ascending order. Let (b) denote the subscript of the bth smallest value. Then
compute

1 r
(3.6) S,.=3 ¥ exp[—n{05%, — x(0)}]
b=1

as in Johns (1988) for increasing values of r, starting with » = 1, until S, first
exceeds @ (at r =R + 1, say). An approximant for 7, is then found by
interpolating between T, and T/%,,,. If R = 0, approximate 7, by T/, The
value of the “tilting” parameter 6 in (3.6), determining the way in which the
importance resamples are selected, should be chosen to minimize the relevant
asymptotic variance formula, (3.3) or (3.5), with ¢ = z_, the a-level quantile of
the standard normal distribution. Some of these “optimal” 6 values are
tabulated in Table 1 for a range of values of « together with the corresponding
asymptotic efficiencies. It is interesting to note how close the optimal 6 values
are to the relevant quantiles of the standard normal distribution. This is
particularly striking in the balanced case. In practice, substituting z, for the
optimal 6 is likely to have only a marginal effect on efficiency. An intuitive
interpretation of this phenomenon is that, since «'(#) = 6 asymptotically, the
optimal tilted distribution is approximately centered over z,, the asymptotic
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TABLE 1
Optimal “tilting” parameters and asymptotic efficiencies of random and balanced importance
resampling schemes versus uniform resampling for various values of «

Balanced Random
« 2, 0 eff. 0 eff.
0.025 —1.960 —1.959 18.03 —-2.178 17.53
0.050 —1.645 -1.613 10.41 —1.894 9.98
0.100 —1.282 —1.206 6.20 —-1.575 5.77
0.250 —-0.675 —0.555 3.45 —-1.078 2.89
0.500 -0.000 —-0.000 2.76 -0.612 1.75

value of the quantile of interest. Quantiles close to the mode of a distribution
can generally be estimated more accurately than those in the tails which
explains why importance resampling leads to greater efficiency for quantile
estimation.

4. A simulation study. In this section we compare the efficiencies of the
four resampling methods described in Sections 2 and 3 in the context of a
particular parametric model. Specifically, suppose that x,,..., x, is a random
sample from a Weibull distribution with unknown scale parameter w, v > 0,
and index v, » > 0, also unknown. That is, x,...,x, is a sample from the
distribution with density

(4.1) f(x;0,v) =ovx’ le™@*,  x>0.
Estimates of w and » based on the sample may be obtained by solving the
maximum likelihood equations which are of the form (1.1) with p = 2 and
1
Yi(x50,v) = — + log(x;) — wxy log(x;),
14

1
Uo(x;;0,v) = — —x).
I3)

In this case, solving (1.1) reduces to finding # which satisfies

1 1=z rr_ix) log(x;)
4.2 S+ 2 Y log(a,) - 2L 2=
( ) ﬁ n igl Og(xl) Z;L=1x£)

Then, @' = n™1X?_,x?. It can be shown that (4.2) has a unique solution in
the range [{log(x,)) — n~'L}_; log(x,)} !, »), where x,, = max{x,...,x,}.
Let n be the mean of the distribution (4.1). Then, in terms of w and v,

I\ (14w
(43) n-gon - (<) (=)
w 14

An estimate of the mean is therefore given by % = g(&, ?), where g is the
“smooth” function given in (4.3).
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TABLE 2
Relative efficiencies of various approximants for quantiles of a theoretical bootstrap distribution
versus random uniform resampling

o £, RIR! BIR? BUR?
0.025 -3.67 7.46 11.03 1.04
0.050 -2.33 513 6.10 0.97
0.100 -1.59 3.69 4.49 1.13
0.250 —0.743 3.69 3.88 1.55
0.500 —0.0401 2.17 3.37 3.37
0.750 0.656 1.77 1.97 1.70
0.900 1.25 5.13 4.97 1.84
0.950 1.64 6.49 6.78 1.59
0.975 1.98 13.82 17.09 1.34

'RIR = random importance resampling.
2BIR = balanced importance resampling.
3BUR = balanced uniform resampling.

Let T = n'/%(4f — 1) /&, where & is given by (1.2). Table 2 summarizes the
results of a simulation study comparing four approximations to the theoretical
bootstrap estimate of the distribution function of T given in (2.1). The sample
2 used in the study consisted of the n = 10 values

3.13,2.81,1.36,0.79,2.25,0.34, 1.29, 0.80, 0.28, 0.64

generated from an exponential distribution with mean 1 corresponding to the
Weibull model (4.1) with @ = v = 1. The values in Table 2 were obtained as
follows. First, we obtained ‘‘exact” quantiles of the theoretical bootstrap
distribution based on 10,000 random uniform resamples from £". These values
are denoted by £, where « is the quantile level. Then, using each method, 100
independent estimates of f, were obtained, each based on B = 100 resamples.
Denoting these estimates by ), i = 1, ..., 100, the relative efficiencies of the
various resampling techniques were computed as the ratio of their mean
squared errors to that of random importance resampling, where

1 100 ,
= - 20) _ ¢
mse = —o5 i§1 (9 -12,).

The ‘““tilting”’ parameters 6 for the two importance resampling methods were
selected by minimizing the asymptotic variance formulae given in Sections 3.1
and 3.2 with ¢ = z_, the a-level quantile of the standard normal distribution.
The modification described in Section 3.3 for the case ¢ > 0 was also used. In
practice, if the aim is to construct a confidence interval of a prespecified level,
the “optimal” value of § may be read from Table 1. However, the minimiza-
tion process is almost instantaneous on a computer and hence this is not an
important consideration. An algorithm for generating balanced resamples is
given in Appendix B. The algorithm appears to be both simpler and more
efficient than algorithm BB3 of Gleason (1988).
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There are several things of note in this example. First, there is a distinct
asymmetry in the results. The theoretical bootstrap distribution is highly
skewed to the left and the approximants for quantiles in the lower tail are
much less accurate than those for quantiles in the upper tail. This applies to
all four resampling methods. Second, the relative efficiencies of the four
methods qualitatively follow those predicted by the asymptotic theory. In
particular, random uniform resampling is uniformly less efficient and balanced
importance sampling is uniformly more efficient than the other methods.
Moreover, balancing yields large improvements towards the center of the
distribution, whereas importance resampling yields large improvements in the
tails. Third, there was a significant bias in the balanced importance resampling
estimates in both tails of the distribution. However, despite this bias, balanced
importance resampling is substantially more efficient than random importance
resampling. This is an important saving when one considers that the difference
in computation between producing random resamples and balanced resamples
is negligible compared with the computations involved in solving the estimat-
ing equations. Finally, we note that the efficiency of balanced importance
resampling relative to random importance resampling is substantially greater
than that predicted by the asymptotic theory. Specifically, there is a 24%
improvement when « = 0.975 and a 48% improvement when a = 0.025 com-
pared with the predicted values of 2.9%. Here, for example, the predicted value
was calculated using Table 1 as 100(18.03/17.53 — 1).

5. Summary of technical details. In this section we outline an argu-
ment which shows how results for the ‘““smooth function model” described in
Hall (1990a,b) extend to the more general setting of this paper. A similar
approach can also be used to show second-order correctness, as defined by Hall
(1988), of the percentile-t bootstrap in this context. The key step is to
approximate the distribution of the statistic 7 by polynomials in the means of
independent random variables, plus negligible remainder terms. Although this
facility may not be immediately apparent in the example of Section 4, it is
nevertheless available. For example, we may write

n © . n i
n 'Y xl(logx) = X () (B -v)'nt L xl(logx;)’ T
i=1 j=0 i=1

k—1 . n .
= X (GN@-v)nt L ar(logx)’t + Ry,
j=0 i=1

where R, denotes a generic random variable satisfying
(5.1) P(IRkI > n‘(l/z)k”) =0(n™")

for all £, A > 0. Arguing in this way we see that the solution # of (4.2) may be
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expressed in the form
(5.2) ﬁ_V=SI+"'+Sk_1+Rk,

where S; is a polynomial of pure degree j in centered means of independent
and identically distributed random variables, and R, satisfies (5.1).
Analogous arguments allow bootstrap versions of expansions such as (5.2),

having forms such as
p*—-90=8F+- - +8Sf | + R},
where
P(IR%| > n'(l/z)k”IQ") =0,(n™")

for all £, A > 0. Provided B increases no faster than a power of n then, by
choosing & sufficiently large in expansions such as (5.2), we see that it suffices
to establish the efficacy of efficient bootstrap methods (such as balanced
importance resampling) for statistics which may be expressed in the form

S=8,+ - +8,_;.

More generally still, the efficacy of efficient bootstrap methods may be
proved for statistics S which are smooth functions of vector means. For
example, using arguments similar to those of Hall (1990a), it is shown in Hall
(1990b) that result (3.5) holds if S, regarded as a function of a vector of
sample means, has at least three bounded derivatives of all types in a neigh-
bourhood of the true population mean, if sufficiently many moments of the
sampling distribution are finite, if the sampling distribution satisfies Cramér’s
continuity condition and if B = B(n) increases at a rate between n® and n*
where 3/2 < 6 <A < o,

APPENDIX A

Let (Y}, Y,) be a standard bivariate normal variable with correlation coeffi-
cient p and let U, = I(Y; + 6 < t)exp{—0Y;, — (1/2)8%} for i=1,2. Let
Dy(t,,ty;p) = Pr(Y, < ¢, Y, <t,). Then some straightforward algebra shows
that

(A.1) Cov{U,, U,} = e?®®,(t + pb,t + pb; p) — D(¢)°.
Expanding (A.1) in a Taylor series about p = 0 we obtain
(A2) Cov{Uy, Uy} = p{0(2) + 6(2))* + O(p?),

where we have used the fact that [? x¢(x)dx = —@(2).
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APPENDIX B

Our algorithm for generating balanced importance resamples is now given.
BIR algorithm.
Step 0. Put m = nB + 1.

Step 1. Change m to m — 1, generate u from the Uniform(0, 1) distribu-
tion and put ¢ = mu.

Step 2. Find the £ such that ©*-!B, <c < ©*_,B,.
StEP 3. Put I,, = k and change B, to B, — 1.
StEP 4. If m > 1, return to Step 1. Otherwise, stop.

The sets {I,,..., [,L{I,,1,..., I5,},.. {Ig_1yn 41, -, Ip,} contain the indi-
cies of the B bootstrap samples of size n.

Note that, if we introduce the B; in Step 2 in the order By, B,,...,
then there should be a modest advantage in starting with the ordering
B, >B,... > B,. Also, to avoid storing nB integers, we may return the
indicies to the main program in blocks of n, provided that we keep track of the
“current” values of By,..., B,,.

Finally, we indicate the theoretical basis of algorithm BIR. Let U, =
(U,,...,U0,), i=1,...,nB, denote vectors with each Uj;=0 or 1, and
Y%_1U;; = 1 for each i. Write the multinomial distribution with probability
vector p = (py,..., p,) and index m as Mult(m, p). Suppose U, ..., U, are
iid. Mult(1, p). Then Y72 U, is Mult(nB, p). First, note that

nB
(B.1) U,5l ¥ U = ¢ ~ Mult(1, (nB) 'q),

i=1
where ¢ = (By,..., B,) is given. Now
PI‘(U1 = ul,..., UnB = unB|SnB = q)
(B2) nB-1 _
= f(unBlsnB = q) ]._.E f(unB—ilsnB—i =q — SnB—i+1)’
i=

where f is the generic symbol for probability mass function, S; = Z§~=1Uj and
S, = Z;fiu ;- Sequential application of (B.1) to (B.2) leads to algorithm BIR.
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