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MINIMUM HELLINGER-TYPE DISTANCE ESTIMATION
FOR CENSORED DATA!

By Zuiuiane YinG
University of Illinois, Urbana-Champaign

A Hellinger-type distance for hazard rate functions is defined. It is
used to obtain a class of minimum distance estimators for data that are
subject to a possible right censorship. The corresponding score process is
shown to be approximated by a martingale, which is exploited to obtain the
asymptotic normality under considerably weaker conditions than those
normally assumed for minimum Hellinger distance estimators. It is also
shown that under the parametric assumption the estimators are asymptoti-
cally as efficient as the maximum likelihood estimators.

1. Introduction. Let X,,..., X, be a sequence of independent and iden-
tically distributed random variables with a common distribution function F.
Let f denote its density function. A usual parametric approach is to assume
that f belongs to some parametric family of density functions {f,: § € ®} and
to try to estimate, by the maximum likelihood method, the parameter 6, for
which f, =f. Although under the parametric assumption the maximum
likelihood estimator is usually asymptotically efficient, it may behave poorly if
this assumption is slightly violated. On the other hand, the total abandonment
of the parametric assumption and the use of standard nonparametric proce-
dures avoid making the parametric assumption but, in the mean time, may
reduce efficiency.

An alternative approach that retains the efficiency of the maximum likeli-
hood estimator when the parametric assumption is satisfied and remains
somewhat robust when the assumption is slightly violated is due to Beran
(1977), who introduced ‘the now well-known minimum Hellinger distance
estimator (MHDE). Let f be some kernel density estimator from the sample
X,,..., X,. Beran’s MHDE 8" is defined as a solution of

(1.1) /[ ) = o] o= min [[720) ~ £ ds.

It is shown in Beran (1977) that if f = fo,» then under certain _conditions and
with an appropriate choice of the kernel density estimator f Vn (6 — 0,)
converges in distribution to a normal random variable with mean zero and
variance the inverse of the Fisher information. Therefore the MHDE 6? is
asymptotically efficient under the parametric assumption. Moreover, it is
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intuitively clear from (1.1) and indeed is shown in Beran (1977) that 6°
possesses certain robustness properties. Extensions to the multivariate setting
are studied in Tamura and Boos (1986), while the corresponding MHDE for
counting data can be found in Simpson (1987).

In this article we are interested in developing minimum Hellinger-type
distance estimators for data that are subject to a possible right censorship.
Censored data often occur in survival analysis. Here by a right censorship we

shall mean that, in addition to the i.i.d. random variables X;,..., X, with the
common density f, there exist censoring variables C,,...,C,, which are
independent of each other and independent of X,..., X,, such that only
(1.2) Z,=min{X,;,C;} and 8, =Ix_c, i=1,...,n,

are observed. The censoring variables may take the value « but not —co.
Moreover, let G;, which may vary with different i, be the censoring distribu-
tion for C;. This will include the fixed censorship model, by taking G, to be
one-step jump functions, the random censorship model, by taking G, = G for
all 7, and the uncensored model, by taking G,(x) = 0, x < © and AG,(») =1
for all i. Since there are already many viable ways to estimate the density
function f for the censored data, an obvious extension of Beran’s MHDE
seems to be a solution of (1.1) with f, being some estimate of f from the
censored data (Z,, 8,),...,(Z,,8,). Unfortunately, this naive approach turns
out to be inappropriate, since we can show that it does not provide an
asymptotically efficient estimator when the parametric assumption is satisfied.

Recently, Yang (1991) introduced an extension of the MHDE to censored
data by considering the joint density function of Z,, §,, the observed data, with
respect to some measure involving G. There a random censorship model
G, = G is assumed. The Hellinger distance for the joint density function is
used to define the estimator. By using similar arguments as those of Beran
(1977) in conjunction with the weak convergence of the Kaplan—Meier esti-
mate of the survival distribution [cf. Gill (1983)], asymptotic results are
obtained.

The thesis of this paper is to introduce a new Hellinger-type distance
estimator that seems to incorporate censorship in a natural way and to
investigate asymptotic properties of it. Our approach differs from those of
Beran (1977) and Yang (1991) in that we use a Hellinger-type distance for the
hazard rate function rather than for the density function. The use of the
hazard rate function stems from our understanding that in dealing with
survival data, the hazard function often exhibits certain advantages, both
conceptually and technically. A particular advantage here is that we can
handle non-i.i.d. censoring, since the corresponding estimating equation has a
natural martingale integral approximation. Another advantage, also as a result
of martingale integral approximation, is that we have the flexibility to trim off
the ‘“tail” data without introducing a significant bias. This is especially useful
in survival analysis where statistical inference based on observations within a
period of time is needed. We can also explore this property to dampen possible
erratic tail behavior so that stringent conditions assumed by Beran (1977) as



MHDE FOR CENSORED DATA 1363

well as Yang (1991) can be removed. Furthermore, the approach can easily be
extended to handle the multiplicative counting process models; cf. Borgan
(1984).

The paper is organized as follows. Section 2 introduces a class of minimum
Hellinger-type distance estimators, along with some notation and definitions.
Then, in Section 3, we derive consistency and asymptotic normality of the
restricted minimum Hellinger-type distance estimator, which uses only obser-
vations falling into a fixed finite interval. By placing an appropriate weight
function into the Hellinger-type distance, we shall, in Section 4, show that the
resulting minimum Hellinger-type distance estimator is again consistent and
asymptotically normal under certain regularity conditions, which are satisfied
by usual parametric families, and that the estimator is asymptotically as
efficient as the maximum likelihood estimator should the parametric assump-
tion hold. The paper is concluded in Section 5 with discussions on computa-
tion, optimality and robustness and extensions to the truncated data.

2. A Hellinger-type distance for hazard rate functions. Throughout
the rest of this paper, we denote X;,..., X, to be a sequence of independent
and identically distributed random variables with a common density function
f. Denote F to be the cumulative distribution function and let A = f/(1 — F)
and A = —log(1l — F) be the corresponding hazard rate and the cumulative
hazard functions. As pointed out in the preceding section, it is assumed that
the censoring variables C,, ..., C,, with subdistribution functions G, ..., G,,
are independent of each other and independent of X,,..., X,. The case in
which Gy(x) = 0for all x < wand i = 1,...,n, corresponds to the uncensored
model. With Z; and §, defined by (1.2) let

Nn(x) = Z I(Zlgx,8l=1)’ Nn(x) =Nn(x)/n7

=1

(2.1) .
Yn(x) = Z I(lex)’ ?n(x) = Yn(x)/n

i=1

These empirical processes are often used in survival analysis, and are associ-
ated with certain martingale integral representations. For each ¢, define the o
field #, = o{N,(x), Y,(x), x <t} V .#, where .# denotes the family of all null
sets. It is well known that the process N,(¢) — [L. Y (x)dA(x), t > —, is a
continuous time martingale with respect to the o filtration {#}; compare with
Gill (1980). We shall use this fact to derive the asymptotic distribution of the
minimum Hellinger-type distance estimator to be introduced.

As in Beran (1977), let { f,: 6 € O}, where ©® C RP, be a parametric family of
density functions. Accordingly, let F,, A, and A, be the corresponding cumula-
tive distribution, hazard rate and cumulative hazard functions. We now define
our minimum Hellinger-type distance functionals. Let a < b be fixed numbers,
let u be a hazard rate function and let 1 — H be a (sub)distribution function.
Then the minimum Hellinger-type distance functional ¢(u, H, a, b) is defined
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implicitly as a solution satisfying

2
S I8 0.(0) = 07200 H () di

(2.2)

_ s (P11 _ 172 2

= min [*[X*(x) - u/%(x)]"H(x) dx.
Here confining the integration to the interval [a, b] serves two purposes: to
avoid certain technical difficulties related to the tail behavior and to get time
dependent functionals such as ¢(u, H,0,¢) which are of interest in survival
analysis. Now let /\ be a kernel estimator, satisfying certain properties that
will be specified later of the underlying hazard rate function 1. We define our

minimum Hellinger-type distance estimator, restricted to [a, b], by 6 (a,b) =
§()\n, ,a, b). In other words, (a, b) satisfies

L T 0) = R20)] V() e

(2.3)
= min [*[X/*(x) - R/2(0)] T (2) d.
Let T, be defined by
1 n
(2.4) L(x) =~ % [1-Gy(x)].
i=1

Then é(a b) should estimate £(A,T (1 — F),a,b) since A ~)X and Y, ~
I(1 — F). Also the restriction of the 1nteg'rat10n in (2.2) to [a, b] generally
makes the estimator less efficient unless similar conditions as those introduced
in Beran (1977) or Yang (1991) are satisfied; that is, (3/d6)A, has a compact
support C[a,b] and A is bounded away from zero on [a, b]. To define an
estimator that will be asymptotically as efficient as the maximum likelihood
estimator for the usual parametric fam1hes we put a weight function w, into
the Hellinger-type distance and define 0 as a solution satisfying

® A 2
[ [P = R3] Ty w,(x) dx
(2.5) o
= minfoo [)\l(,/z(x) - XI/Q(x)]z?(x)w (x) dx.
06@ w n n n

The weight function w, typically approximates an indicator function which
dampens the tail effect, making the estimator 6, stable and yet asymptotically
efficient. .

Similar to Beran (1977) and Yang (1991), 6, is also approximating the
maximum likelihood estimator of 6 if f € {f,: 8 € ©}. We give here a heuristic
argument. Since the likelihood function is proportional to 17, f2«(Z,)(1 —
F(Z))'°, it follows that the m.le. is to maximize | log )\B(x)dN (x) -
JA(x)Y,(x) dx. Because dN,(x)/Y,(x) = A (x)dx, this maximization is
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asymptotically equivalent to minimizing

Ay R R
—f[log ; Ez; ]/\n(x)Yn(x) dx + f[)\‘,(x) — Xu(0)] V(%) dx

ME) 1A VL
f[ %) _5(Xn<x) _1) ]A”(x)Y”(x)dx

U

+f[/\9(x) - /A\n(x)]Yn(x) dx

Y, (x)dx

Ao(x) = An(x) |
2f Rt

2[[W/2(x) = By2(@)] Vo) i,

U

where the last approximation follows by using the identity [cf. Beran (1977)]

2
(2.6) VLV, D (v~ v)

+
2ul/? 2u1/2(u1/2 + v1/2)2

with z = A, and v = A,, and by omitting the second order term. Note that we
did not include the weight function w, in our derivation since it is only to
stabilize the tail behavior of A. Indeed, it will be shown in Section 4 that
Vn (8, — 6,) converges weakly to a normal random variable with mean zero
and variance the inverse of the Fisher information, thus making 9 as efficient
as the maximum likelihood estimator.

3. Consistency and asymptotic normality of 0 (a, b). This section is
devoted to studying the asymptotic behavior of 6 (a b) defined by (2.3).
Following Beran (1977), we first establish the existence and the continuity of
the minimum Hellinger distance functional ¢(u, H, a, b). From this and con-
struction of the consistent hazard rate function estimator, the consistency of
) .(a, b) follows. By making some further assumptions on the choice of band-
w1dth used in the kernel estimator )\ , and by developing certain approxima-
tions of the estimating equations, we shall derive weak convergence of § (a, b).

Throughout the sequel it will be assumed that for some function T,

(3.1) sup |T(x) —T'(x)|—0,

—o<x <o
recalling that T,(x) = n7'L?_;(1 — G,(x)). Therefore, by a Glivenko-Cantelli-
type argument,

(3.2) sup |l7n(x) -(1- F(x))F(x)| -0 a.s.

—oo<x <o

Note that for random censorship models, I'(x) = I'(x) = 1 — G(x). Let 7, 7,
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and 7 denote the “endpoints” of F and (1 — F)I; that is,
7o = inf{x: F(x) >0}, 7, =sup{x:1— F(x) > 0},

(3.3)
7 =sup{x: (1 - F(x))T(x) > 0}.

To ensure that the minimum values in (2.2), (2.3) and (2.5) are attainable, we
assume that @ is a compact subset of R”. As is pointed out in Beran (1977),
for a noncompact 0, it is often possible to embed it into a compact set and to
show that the minimization can only occur within ©. In these situations, all
the results here remain valid. In practice, when the minimizer does not exist
for a particular sample realization or is difficult to compute, one may wish to
use a suboptimal solution instead. Asymptotic properties of the suboptimal
solutions may be established along the line of Beran and Millar [(1987),
Lemma 5.1].

The next two lemmas deal with existence and uniqueness of the minimum
distance functional defined by (2.2), and will be used throughout the rest of the

paper.

LemMmA 1. Suppose that A (u) is a bivariate continuous function on © X
la, b]. Then &(u, H, a, b) defined by (2.2) exists provided [lu(x) dx < . If, in
addition, ¢&(u, H,a,b) is unique, then for any u, and H,, [XuY/%(x)-
w3 (x)%dx - 0 and SUD, (g, 0l H (%) — H(x)| = 0 imply &(u,, H,,a,b) -
&u, H,a,b).

Proor. From the assumption that Ay(u) is continuous on © X [a, b] it is
clear that the trivariate functional

(3.4) ®(0, /%, H) = ["[N/2(x) — wl/2(x)] H(x) dx

is continuous with the Euclidean norm for 6, the L%[a, b] norm for w2 and
the sup-norm for H. In particular, for fixed u and H, ®(9, u/2 H) is a
continuous function of 6 on the compact set ® and therefore the mini-
mization (2.2) is attainable; that is, £é(u, H,a,b) is well defined. To show
&u,, H,,a,b) > &u, H,a,b), we note that if otherwise, then there exists a
subsequence n, such that §(/_Lnk, H,,a,b) > ¢ # &(u, H,a,b) as k > ». But
by the continuity of ® and the definition of the functional £,

q)(§0’ 'ul/2’ H) = }}13)20@(5(“%’ any a, b)’ /—Lln/kzy an)

IA

kliir;‘b(f(u,ﬂ,a,b),um H,)

ng?

CD(§(,U,, H’ay b)’:ufl/zy H)

However, since &, # é(u, H, a, b), the above inequality contradicts (2.2) and
the uniqueness assumption. O
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LemmA 2. Let 7y =sup{x: H(x) > 0}. Suppose that A = A, for some
6, € O and that for each pair 6, # 0, the Lebesgue measure of {x € [a,b A 4]
Ag(x) # Ag(x)} is nonzero, where b A 1y denotes min{b, 74}. Then
&A, H,a,b) =6,.

PrOOF. Since A = Ag, the definition of ¢ implies that

b 2
0= [[XZ fr,a,5(%) = A2(2)] H(x) dx

b/\‘rH .
Z _/ ([A‘m2 Ha, b,(x)—Ai,{f(x)]Zzn—l)H(x) dx.
But H(x) > 0onl[a,b A 1y). Therefore, for every n, the set {x € [a,b A 74]:
[N4R f0,0(0) = A7%@F 2 n7Y is a null set. Thus {x € [a,b A 74l
)\g(A,H,a,b)(x) # Ao (%)} is also a null set, implying that £(A, H, a, b) = 6, by the
assumption. O

The rest of this section is to study the limiting behavior of ) (a, b) defined
by (2.3). The hazard rate function estimator A, used in (2.3), w1ll be a kernel
estimator of the form

(3.5) A (x) = i f ( )d/\n(u) with An(x)—fx dév((u))

where K is a kernel function, that is, K > 0 and [K = 1, and d,, is positive
and converges to 0 at a certain rate. We refer to Ramlau-Hansen (1983) for a
detailed discussion of such estimators.

LEMMA 3. Let )A\n be the kernel estimator of A defined by (3.5) with K being
of bounded variation and having a compact support C[—c,c] for somec > 0.

(1) Suppose that there exists an open interval (x,,x,) 2 la, b] with x; <7
such that A is continuous in (x,, x,). Suppose also that the bandwidths d,, are
so chosen that d,, —»p 0 and nd? —p . Then

(3.6) sup [R,(x) = A(x)] =5 0
x€la,b]
(i) Let the bandwidths d, — 0 be nonrandom. Define 1, by
- 1 x =
(3.7) e - o [ (5

n

u)A(u)du.

Suppose that for a sequence of constants k, — ©, P{Y,(b +d,c) > k,} = 1.
Then there exist nonnegative random variables , and R, such that

(3.8) [R.(x) = 5.(2)]" = Qu(x) + R, (x),
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where P{sup, [, 5@,(x) =0} = 1, as n > », and
sup ER,(x) < 2[ K2(s)ds(d k,) " sup A(x).
x€[a,b] x€la-d,c,b+d,c]
In addition, if K is symmetric and A is twice continuously differentiable on

l[a —d, cb+d WCl, then

(3.9) sup |A (%) —A(x)|<d?  sup |x'(x)]f_°° s2K(s) ds.

x€la,b] x€la—d,c,b+d,c]

Proor. Part (i) is essentially a specidl case of Theorem 4.1.2 of Ramlau-
Hansen (1983) and we refer to it for the proof of (3.6).

The proof of (ii) is also similar to Ramlau-Hansen (1983), except we need to
consider those s for which Y (s)/n is small. Let

R 1 .= X —S R
M (x) = d—f_mK(d—n)I(Yn(s)an) dA,(s),

M (x) = ) [ (x;ns)l(yn(s)zkn})\(s) ds.
Since
{Au(x) # X5 (x) for some x € [a,b]} U (X,(x) # X(x) for some x € [a, b1}
c{Y,(b+d,c) <k,},

it follows from the assumption on Y, that @ (x) = 2[)\ (x) — )\n(x) - X”;(x) +
X (x)I? satisfies

P{ sup Q,(x) = O} - 1.
x€la, b]
Furthermore, since [*_Iy ). kn}d[f\n(s) — A(s)] is a martingale,

N . 2 1 o x—s A(s) ds
E[X;(x) - X';t(x)] = FEf_wKZ( d ) (Yo(8) 2 kp} Y,(s)

(3.10) d2k f K2( 7 ))\(s)ds

! A " K(s)d
d 7 sup (u)f_m (s) ds.

n“n uelx—-d,c,x+d,cl

Taking sup, <[4, on both sides of (3.10) we have

sup ER,(x) <2[ K*(s)ds(d,k )t sup A(x),
x€la,b] x€la—d,c,b+d,c]
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where R ,(x) = 2[A%(x) — ¥(x)]% (3.8) then follows by noting that
[A(2) = %)) < 2[R, (2) - K (2) - Re(a) + Re(o))?
+ 2[R (x) - R(2)]”.

Finally, (3.9) may be seen by the inequality

5uo) = a3 = | [ K(o)[ACx ~ dy) ~ A(x)] s
a2 : .
<5 sup |)\”(u)|f_mK(s)32ds,

uelx—d,c,x+d,c]

noting that A(x — d,s) — A(x) = X(x) d,s + 2" W(x*)(d,s)* and that
JsK(s)ds = 0. O

THEOREM 1. Let [a, b] be a finite interval on the real line with b < 7. Let
)\ be defined by (3.5) with K being of bounded variation and havmg a compact
support and with d,, »p 0 and nd% —, . Suppose that A,(x) is continuous
in O X [a,b] and GA(a, b) = &7, (1 - F)F, a, b) is unique. Suppose also that A
is continuous in an open interval containing [a, b]. Then 8,(a,b) —p 0,(a, b).

REMARK. In particular, if A = A, for some 6, then 6,(a,b) —p 0.

Proor. From Lemma 3(i), we have [P[AL/2(x) — AY2(x)]? dx —p 0, which
implies, by Lemma 3.3.2 of Chow and Teicher (1978), that for any subsequence
{n} of {n} there is still a subsequence {n,;} c{n,} such that fab[)\l/ %(x) —
M23(x)Pdx — 0, a.s. Thus from Lemma 1 and (3.2) we have 6, [a b] -

6,la, b] as. Since {n,} is arbitrary, 6 (a,b) —p 6 \(a, b), again by Lemma 3.3.2
of Chow and Teicher (1978). O

THEOREM 2. Let A, be defined by (38.5) with K being symmetric and
satisfying the same condmons of Theorem 1 and d, being nonrandom and
satisfying nd? — « and nd* — 0. Suppose that \ is continuous and strictly
positive in an open interval contammg [a,bland 0(a,b) = £(A,(1 — F)T,a,b)
is unique and lies in the interior of ©. Also suppose that A,(x), A (x)
(3/30)ry(x) and A, (x) = (62/902)Ay(x) are continuous on O X la, b] with

Ao (a,p(%) > 0 forall x € [a, b] and that A(8,(a, b), a, b) is nonsingular, where

A(x) }1/2 ['(x) dF(x)
Ap(x) Ag(x)A(x)

1/2
+ 2[bxe(x){1 - [ M) ] }F( *) 4R (x),

A(0,a,b) = /"Ae(x)iim[

Ag(x) A(x)
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Then for 6,(a,b) = £4,,Y,,a,b) and 6,(a,b) = £(A,Y,,a, b),
(8.11)  Va(b,(a,b) - 6,(a,b)) =5 N(0, X (8)(a,b),a,b)),
where

I'(x)dF(x)

———)\H(x))\(x) A7Y0,a,b).

Y (8,a,b) = A7'(8,a,b) [*Ay(x)AD(x)

CoroLLARY 1. If, in addition to the assumptions of Theorem 2, we also
assume that conditions of Lemma 2 are satisfied, then

(3.12) Vn (8,(a,b) - 0,) =, N(0,1,(a,b)),
where
(3.13) I(a,b) = [a”}\o(x))}g(x))g((—?)dzr(x).

Moreover, if there is b, € (a, b] such that the identifiability conditions of
Lemma 2 are satisfied with b replaced by b, and that I,(a, b,) is positive
definite, then

(3.14) ‘/;(én(a’ ) - 90) Db, b] Z("),

where Z is a multivariate Gaussian process with mean zero and covariance
matrix function E[Z()ZT(s)] = Igol(a, O, (a,t A s)Igol(a, s). Here and in the
sequel, Dlu,v] denotes the space, equipped with the Skorokhod topology, of
functions on [u, v] that are right continuous with left limits.

REMARK 1. In general, 6, (a, b) are random vectors because Y,, which may
be regarded as weights of the Hellinger distance, are random. However, as is
stated in the preceding corollary, under the parametric assumption, the 6,(a, b)
essentially take the same value 6,,, which neither depends on n nor is random.
We may also derandomize 6, by using n,(a, b) = £(A, EY,, a, b) and consider
instead the convergence of Vn (8, (a,b) — n,(a,b)) as will be discussed in
Corollary 2.

REMARK 2. Some regularity conditions introduced here in terms of the
hazard rate function are related to their counterparts in terms of the density
function. The requirement that A be bounded away from zero in [a, b] is
equivalent to the condition that its corresponding density function f is
bounded away in the same interval. Also an identifiability condition related to
that of Lemma 2 is that the set {x € (—o, b]: A;(x) # A,(x)} has a positive
Lebesgue measure. It is readily seen that this statement is the same as saying
that the set {x € (-, b]: f,(x) # f,(x)} has a positive Lebesgue measure.
However, replacing —« by a may cause the equivalence to be invalid.
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ReEMARK 3. If we impose a further requirement that )1 has a compact
support contained in [a, b], which is also equivalent to the condltlon that f,
has a compact support in [a, b], as is assumed in Beran (1977), then I,(a, b) =
Iy = [Z. () /Ao()PT(¢) dF(2), which can be shown to be the average (since
we do not assume an i.i.d. censorship) Fisher information. The Fisher informa-
tion representation in terms of hazard rate function has also been discussed in
Borgan (1984) and Efron and Johnstone (1990). In this case, én(a, b) provides
an asymptotically efficient estimator if the parametric assumption holds.

ReMARk 4. Let Ci(t) =C; At and suppose that X, are censored by
Ci(¢). Then the average Fisher information becomes Ig(t) [t [A(w)/
Ao(w)PT(w) dF(w). In survival analysis, I,(¢) may be interpreted as the infor-
mation accumulated up to time ¢. This shows that I,(a,b) is the Fisher
information collected during the time interval (a,b). Thus the estimator
6 .(a, b) utilizes efficiently the localized information observed in (a, b).

PrOOF OF THEOREM 2 AND COROLLARY 1. From Theorem 1 and Lemma 1,
both 6 (a, b) and 6 .(a, b) converge to 0,(a, b) in probability. But 6 (a, b) and
6,(a, b) are minimizers of functions ®(-, /2 Y,) and ®(-, /2 ¥,), respec-
tlvely, defined by (3.4). Thus it follows from the existence and the contlnulty of

Ag(x), the positivity of A, \(a,0(*¥) and the assumption that 6,(a, b) belongs to
the interior of ® that, as n — « and with probability approaching to 1,

(315)  [*[A¥iu (%) = W2(0) | A5 242(8) Ao o1 (0) Fy(2) dix = O,
a

(816)  ["[NE 0(x) = AV2()|Ag 12 (¥) Ao, (2) () i = 0.

The assumption on the existence and the continuity of A,(x) also enables us to
take the Taylor expansion of (3.15) at 6, (a, b) to get

f n(a b)(x) - /\1/2( )

Ao e, o(%) V(%) dix

a Al(i/%a (%)
1 5\1,L/2 r
+5 0*(a b)(x))‘a*(a b)(x)Y(x) dx
(3.17) 2 |Ja Kl n(x)

Zfb )‘0*((1 b)(x) - A1/2( x) ..

Aora 5 (%)Y () dx
0*(a (%) e ®

x[8.(a,b) — 6,(a,b)] = 0.

Here in order to simplify our notation we have used the same symbol 6%(a, b)
to represent p different vectors, each of which lies on the line seg-
ment connecting (a, b) and K (a b), in the above Taylor expansions of
the set of p equations. Since 6 (a b) and 6,(a, b) converge to 0,(a,b) and
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§upx6(a’b]|3\n(x) — Mx)| —p 0, the continuity assumptions on A,(x), A,(x) and
Ao(x) together with (3.2) imply that

b )\1/2(36) . _
3/2 Agia, b)(x))\a’;(a py(2)Y,(x) dx
a *o¥(a, b)( )
(3.18) A2 (x) — AY2(x) . _
+2/” It b)( ) ( )Ae*(a,b)(x)Yn(x)dx
a 0*(a b)( ) "

-p A(b)(a,b),a,bd).
On the other hand, from (3.16) and (2.6),

b)\ (a, b)(x) - Al/z(x)
o au(2)Y,(x) dx
jt; Aleja,b)(x) Aontart Ml®)

b A% (x) = N/%(x)

= fa N2 (%) Ao o, (%) Y, (x) dx

(3.19)

=—fhu)—A(ﬂ tosen(£)Fi(x) d

)‘1/2(-"5) Al/(a p(%)

Aoyam (%) Y,(%) dx
N2() [A2(x) + AY2(2) a2, (x)

1 n
5 [T = A,0)

Now Lemma 3(ii) and the assumptions on the choice of d,, that is, nd2 2 5w
and nd;, — 0, imply that sup, ., ,A(x) — Al =0 H(n” 1/4) Therefore from
the positivity and differentiability assumptions on A and Ag(x), it follows that

[[A) - ]’ hoyian(3)Fo(x) d
(3.20) ‘e n AV2(x )[/\1/2(x) +)\1/2(x)] 2 o)

=o0,(n"?).
In view of (3.17)—(3.20) we see that (3.11) will hold if it can be shown that

0,(a, b)(x)l_/ (x) dx
)‘l/z(x)’\l/(a (%)

[P = R )]
(3.21)
I'(x) dF(x)

b. .
=5 N{0, | Ao, o)(X)AY (4 py(X) —————
/t; fat@. 0 fa@. 0 )‘GA(a,b)(x)A(x)
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We shall show that the left-hand side of (3.21) may be approximated by a
martingale integral and then apply a martingale central limit theorem to prove
(3.21). The first step to do so is to show that 6,(a, b) on the left-hand side of
(3.21) can be replaced by the nonrandom quantity

(3.22) n.(a,b) = £(A, EY,, a, b).
Since 1,(a,b) = 6)(a,b) and A, (, ,(x) > 0 for all x € [a, b] and large n, we
can, similar to (3.17), take the Taylor expansion of [Ny, ,(x) —

)\1/2(36)]/\J"}fb)(x))'\an(a,b,(x)l_/n dx at m,(a, b) and get

16,(a,b) = n,(a,b)]

|

b ~ . _
= 0| [ [0 (5) = RN (5D f(5)Fo)

b ~ .
=op( [T ) = A2 ()

X(Y,(x) — EY,(x)) dx

|

= Op(/‘b{?n(x) - EYn(x)ldx) = Op(n_l/z*f)

for any ¢ > 0, noting that

b 3 . —
LR (%) = X740 20(2) 0, (%) BT (3) s = 0

and that E[X[Y (x) — EY (x)?dx < n~ (b — a). Letting 0 < & < 1/4, it fol-

lows that [|6,(a, ) — n,(a, b)ll = 0,(n~'/*), which together with the smooth-
ness and the positivity assumptions on A, and A implies

b A )"Bn(a,b)(x)Yn(x) dx
R RN Bvrmyr s

0,(a,b)

(3.23)
b ()T () de
- [1a) = A@)] Al/(z(x)))\z/n";a,b)(x) —0,(n"1/?),

noting that sup, (. ,|A,(x) — A(x)| = 0,(n /%) by Lemma 3(ii). Next by (3.9)
we have

(3.24) sup |A,(x) = A(x)| = 0,(n"1/2),

x€la,bd]
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which implies that

nn(a b)(x)Y (x)dx b }‘nn(a b)(x)l_/ (x)

[ 15 O, 1) AT ) ()
b }\nn(a,b)(x)?n(x)
(3.25)_/(z A2 A2 (x)

nnla,b)

X{dif" K(xd;s)d[An(s) — A(s)] dx = d[A,(x) - A(x)]

n?'—w
+o0,(n"1?).

Clearly, the total variation [’Id[A, ., (%)Y, () /2 2)N% ()] = 0,(1).
Thus (3.25) is 0,(n~'/?) if we can show that

/wd /. ( )d[An(s)—A(s)] du

sup
x€[a,b]

(3.26)
—[A(x) = A(x)]

_ —-1/2
=o0,(n"1?).

To do so we first note that from the integration by parts formula we have

2, (5 Jalhaor - aeo - (R = a@)] ok

s
)ds.

n

Therefore,

/xwdi/—ewa(?)dMn(s) — A(s)] du ~ [R,(x) = A(x)]

(3.27) / [A (s) — A(s)]—K( )ds — [Au(x) = A(x)]

- /:[An(x -d,v) — A(x —d,v) - (An(x) - A(x))]K(v) dv.

Since A is continuous and the jumps of A, are of O(1/n), it follows that
Vn supxe[a’b]Ian(x —d,v) — Alx — d,v) — (A (x) — A(x))| is of the order
0,(1). Therefore, (3.26), which implies (3.25), holds. Now Rebolledo’s martin-
gale central limit theorem [cf. Gill (1980)] implies that

t Ay o i(%) V()
W/ )\1/2(36))\1/2 (x)d[ (%) A(x)]

Aoy, b)(x)(l F(x))I(x)
. b]/ A G, by () A2 (x)

(3.28)

dW(x),



MHDE FOR CENSORED DATA 1375

where W is a zero-mean Gaussian martingale with covariance function
[t dA(w)/[(1 — F(u)T'(w))], t € [a, b]. Since with ¢ replaced by b, the right-
hand side of (3.28) is a normal random vector with mean zero and covariance
matrix

'/;b)“o)\(a,b)(x))\gA(a,b)(x) [)‘OA(a,b)(x)A(x)] _lr(x) dF(x),

(3.23), (3.25) and (3.28) imply (3.21), which further implies (3.11).
To prove Corollary 1, we note that under the assumptions of Lemma 2,
6,(a,b) = 6, for all large n and

A(8y,a,b) = [b}\eo(x)}\go(x))\;f(x)r(x) dF(x) = I,(a,b),

implying that X(6,, a, b) =Ie‘01. Hence, (3.11) becomes (3.12). Now since
I,(a,by) is positive definite, A, - Ay, and [IN/*(x) - AV2()RY (x) dx
is continuous in 6 and ¢, it follows that for all large n, 6,(a, ¢) is continuous in
[b,, b]. Moreover, it is easily seen that all the previous approximations are
valid with & replaced by ¢ and uniformly in ¢ € [b,, b]. Therefore by using
(3.28) we can easily get (3.14). O

COROLLARY 2. Let n,(a,b) = £(A, EY,, a, b), the same as (3.22), and let all
the assumptions of Theorem 2 be satisfied. Assume

1 n
(3.29) I(x,y) = lim — L (1= Gi(x))(1 - Gi(y))
n—ow i=1
exists for all x and y. Therefore, I'(x) = I'(x, —»). Denote
by ., T(x)dF(x)
B(6,a,6) = ["A(x)X(x) i

w2 ["[U()V () + V(=) U] ()]

(3.30) dF(y)

X(]. - F(x))F(x)de

4" ["U()UF () [(1 ~ Fx v y)T(x v )

—(1 - F(x))(1 - F(y))l“(x,.y)] dx dy,
where

M2 (x)

: Ag(x)
Us(x) = (1 - xl;/?(‘x—)))\a(x), Va(x) =
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Then
\/;(én(a, b) - ﬂn(a, b))
—g4 N(0, A"Y(A(a,b),a,b)B(6,(a,b),a,b) A" (6,(a,b),a,b)).

REMARK. 7,(a, b) depends upon n because we do not wish to assume the
censoring distributions to be the same. However if this is the case, that is,
G; = G, then n,(a,b) = n(a,b) = £A,(1 — F)Q - G), a, b).

The proof of Corollary 2 is very much the same as that of Theorem 1, except
we need to take into account an extra variation due to the replacement of Y,
by EY,. Therefore the details are omitted.

4. Construction and asymptotic properties of 5,,. This section is
devoted to the study of the asymptotic behavior of 6, defined by (2.5) with an
appropriate weight function w,. Extending the integral in the definition of the
Hellinger-type distance from [a, b] to the whole line is necessary in order to
utilize all the essential information in the data so as to make the estimator
asymptotically efficient when the parametric assumption holds. A main techni-
cal difficulty arising from this extension of [a, b] to the whole line is caused by
tail fluctuations of relevant hazard rate functions. The same difficulty also
occurs in the usual minimum Hellinger distance estimation when density
functions are involved. However, unlike the latter case, here we can arbitrarily
dampen the tail influence by putting a weight function in the Hellinger-type
distance for hazard rate functions without introducing a significant bias into
the estimator. Although there are many possible ways to choose the weight
function w,, we shall discuss here only a specific type defined by (4.2). The
consistency and the asymptotic normality of the estimator 6, with this type of
weight functions will then be shown.

Let 7, 7, and 7 be defined by (3.3). Denote 6, to be a solution of

[ (W2(x) = 2(20)) (1 = F(x))T(x) dx

To

(4.1)

= min T()&/z(x) - )\l/z(x))z(l — F(x))T(x) dx.

00 /7

In Theorem 3 we shall give conditions that guarantee the existence of 6,. Let
a, and ¢;, i = 1,2, be some positive constants and let ¢ > 0 be so chosen that
the kernel function K has a compact support contained in [ —¢, c]. Define the
weight function as

1, if N(x—d,c) =c(logn) ™
(4.2) wy(x) = and Y, (x + d,c) = cy(logn) ,
0, otherwise.
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The weight function w,, is basically an adaptive version of the interval [a, b]
introduced earlier. It confines us to a time interval that is an open subinterval
of and approaching to [r, r]. Thus, if [a, b] C (74, 7), then for all large n,
w,(x)=1, V x €[a,b]. Its main advantage is that it enables us to avoid
certain technical difficulties due to a possible discontinuity of the hazard rate

function at 7, and to the well-known tail instability of A, at r. The use of
log n in the definition of the weight function here is that it does not affect
certain ‘““algebraic bounds’ that will be used in the technical development. The
choice of «; and c¢,, i = 1,2, should be based on a proper balance between
efficiency and stability.

The following lemma shows that on the set w,(x) = 1, Y,(x) and EY (x) =

(1 — F(x))I'(x) are essentially the same, so are N (x) and EN (x).
LEmmA 4. On an event with probability 1, for any € > 0, there exists an n_,
depending on the sample point, such that for all n > n_, w,(x) = 1 implies

(4.3) (1 —¢&)(1—F(x))T(x) <Y, (x) < (1+e)(1—F(x))T,(x),

(1- o)L (x)F(x) < (1-¢) [ T,(s)dF(s) < N,(x)
(4.4) h
<(L+e)[ T(s)dF(s) < (1 +e)F(x).

ProoF. From an exponential inequality of Bretagnolle [cf. Shorack and
Wellner (1986), page 797, Inequality 2], it follows that for every ¢ > 0,

P{ sup|Y,(x) — (1 — F(x))T(x)| = nfl/Q“} < D exp{—2n~%}
for some constant D > 0 and all n. Therefore, the Borel-Cantelli lemma can
be used to show that for any y > 0,
(4.5) sup |V, (x) — EY,(x)| = o(n"/2*7) as.

Since w,(x) = 1 implies Y, (x) > c,(log n)~ 2, (4.3) follows from (4.5).
Now let M,(x) = N (x) — [*.Y (sX1 — F(s))~' dF(s). Then

My(x) = /; I(1—F(s)zn‘7/2) dMn(s)

is a martingale satisfying sup [AM*(x)| < 1/n and
Y,(s) dF(s)
<

LA e S 2
1-F(s)

1 .«
<M:>(x) = ;/1001(1717(3)27177/2)

Here and in the sequel, Ag(#) of a right continuous function g denotes
g(¢) — g(¢ — ). Thus from a martingale exponential inequality [cf. Shorack and
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Wellner (1986), page 899, Inequality 1] we have, for y < 1/2,

n—1+27 1/2+7n~1
P(Sule:(x)l > n_m”) < 29Xp{_ o 1rv/2 ‘/’( “1+y/2 )}
x

n

=o(e™™) as,

where ¢ is a continuous function on [0,) with (0) = 1. Therefore, the
Borel-Cantelli lemma together with the fact, for all large n, M*(x) = M, (x) if
w,(x) = 1, implies that

N(x) = [ ()1~ F(s)

sup =0(n Y%*7) as.

x:wy(x)=1

From the above bound, (4.5) and (4.3) we have

N(x) - [ T(s)dF(s)

sup =o(n 12*?) as,

x:w,(x)=1

which implies (4.4) because N, (x) > c,(log n)™* on w,(x) = 1. O

THEOREM 3. Suppose that A,(x) is continuous in ©® X (74, 7) and that A is
continuously differentiable in (7, 7). Assume that

(4.6a) (1-F(r)T(r+)=0(n"")
for some ¢ > 0 and that

o 5‘;?;{/ (N 3(x) = /3(0)) (1 = F(x)) dx
(4.6b) i

+f7()\}9/2(x) - Al/z(x))z(l — F(x)) dx} =0
b
Then 6, exists. In addition, suppose that 0, is unique,
(4.7) x| +X(x)| = O((1 - F(x)) "), asxtr

for some k > 0, and that A, is defined by (3.5) with its kernel function K being
continuously differentiable and having a compact support contained in [—c, c,
and with nonrandom bandwidth d, satlsfymg nd? - wand d, = o(n=*) for
some a > 0. Then9 —p 0,.

REMARK. Condition (4.6a) says that, for large n, the risk set size process Y,
beyond the “last point” 7 is at most of the order n'~* for some & > 0. It is
imposed to guarantee that the Hellinger-type distance used in (2.5) approaches
that used in (4.1). This condition is certainly satisfied if 7= 7, or if the
censoring variables are i.i.d.

Proor. Choose a, | 7, and b, 1 7. From Lemma 1, for each n, the func-
tion W,(0) = [2»(Ay*(x) — A/*(x)*(1 — F(x)I'(x) dx is continuous on @. But
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(4.6b) implies that W¥,(0) converges unlformly to W(0) = [[(AY*(x) -
A2(x)%(1 — F(x))I'(x) dx. Therefore, ¥ is also continuous on 0, whose com-
pactness implies that 6, exists. To show 0 — 6,, we need the convergence
result

J (2 (x) = R2(x)) Fo(2)w,(x) dx

(4.8) )
= [ (W(x) = NA(@)) (1 = F(x))T(x) dx

for every 6 € ©, which will be shown at the end of the proof. Now for any fixed
la, b] C (7,4, 7), the definition of 0 implies that, for all large n,

J (2 (x) = R2(x)) To(2)w,(x) dx

To

(4.9) > ["(W2(x) = B2(x)) T(x) wy(x) dx

= [*(K2(x) = 272(x)) (1 ~ F(x)T(x) dx + 0,(1),

where the last equality follows from Lemma 3 and (4.5), noting that for all
large n, w,(x) = 0 for x > 7 by (4.6a) and w,(x) = 1 for x € [a, b]. Suppose
that 6, does not converge to 6,. Then there exist £0>0, 6,>0 and a
subsequence n, such that P{l§, n, — 0rl = &0} = 8, for all large k. However, the
uniqueness of 6, and (4.6) lmply that there exists ¢; > 0 and we can choose
a > 7y and b < 7 such that

, 1;1’f>5 [a()ﬂﬂ(x) — A2(x))*(1 - F(x))T(x) dx

(4.10) )
> [[(Wy2(x) = 2/%(2)) (1 = F(x))[(x) dx + ¢,

Combining together (4.8)—(4.19) and P{Iénk — 0,1 > g} = 8, clearly leads to a
contradiction, showing that 6, —, 0,. Thus it remains to show (4.8). We
observe that (4.8) holds trivially if 7, and 7 are replaced by a and b. In view of
Lemma 4 and (4.6) and the Chebyshev'inequality, it suffices to show

lim limsup [ER,(2)(1 — F(x))T,(x)
(4.113.) alTy pnow To

><I(F(:tc—dnc)zc1/2(10gn)’”‘1) dx =0

(4.11b) lim lim sup [ EA, (x)(1 = F(2))T,(x)

XTIy~ Fx+dyey= eq/2(l0g ny-og 4% = 0
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noting that A(1 — F) = f € L'(7,, 7). The equation (4.11a) is easily seen from

a_ A
J R (%) (1 = F()) (%) Lipe—ayer s ey 2010 - G2
7o

<[ . / dlK( 7 )/\()dsdx</ “AM(s)ds = 0

as n — o« and a |7, Note that the argument holds regardless of whether
To = —®or 7, > —o. For (4.11b), we have

/I;E,Xn(x)(]‘ - F(x)) (x) {1-F(x+d,c)=cy/2(log n) 2} dx

Sf dcf d; 1K( p ))\(s)ds(l—F(x))F(x)
XI(I*F(xde,lc)ZcZ/Z(log n)—92) dx

< [T™de  sup {IX(xF)NL - F(x)T(x)

b x*:|x*—x|<d,c

XI{I—F(x +d,c)=cy/2(log n) ™2} dx

+/b“d"°)\(x)(1 — F(x)) dx.

The second term on the right-hand side of the preceding equation approaches
0 trivially. From (4.7), since d, = o(n™*), we have, on 1 — F(x + d,c) >
cy/2(log n)~“2, for some constant B > 0,

d sup {IX(x*)]} <Bd,(1 - F(x +dnc))7k

x*:|x*—x|l<d e

n

k+1

<B*(1 - F(x +d,c))
Since (4.7) implies [7(1 — F(x))**!dx < =, the first term also converges to 0.
Hence (4.11b) holds. O

Throughout the rest of this section we shall always assume that 6, exists
and is unique. Before introducing the next theorem we shall define 6, and 7,,
similar to 0,(a, b) and 7,(a, b) of the previous section, by

J(W2(x) = K72(x)) T (2w, (x) dx

(4.12)
= min [ (¥(x) = #/%(x))"F,(x)w,(2) ds,
J(V2(x) = X72(x))° BT, (2) () da
(4.13)

_ ggg/(»eﬂ(x) — A2(x))*EY,(x)@,(x) dx,
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where i, is the same as w, defined by (4.3) except N, and Y, are replaced by
EN, and EY,. Moreover, we list below some regularlty COl’ldlthIlS that will be
used in estabhshlng weak convergence of 4, .

For some &, > 0, A is twice continuously differentiable
(4.14) in (74, 7) and

A7)+ X @)+ X (2) [ = O((1 = F(x)) ™" + Fh(x)).
There exists a constant §; > 0 such that
lim sup { f [Aa(2) AME ; (1 - F(x)) dx

bTT 9—0
alr I B

2\L/2
(4.15) + [ WE ; —F(x))dx} =0,

V2(x)
}151: Y Sou|$)<51 {f ||)\ (x)H (A}g/z(x) + 1)(1 — F(x)) dx

TH| of AL/2
+[b [ X,(2) (ngz—; + 1)(1 ~ F(x)) dx} =0.

Ag(x), Ag(x) and A,(x) are continuous in © X (79,7)
and for some £, > 0 and 5, > 0,

(4.16) e i)
wup {WH HA%((?)H N ”A:(x))”}

[CEUNEH
=O((1 - F(x)) ™™ + (F(x)) "),

THEOREM 4. Suppose that the assumptions of Theorem 3 together with
(4.14)-(4.16) are satisfied and that 0, lies in the interior of ©. In addition,
suppose that the kernel function K is symmetric and that the bandwidth
sequence {d,} satisfies d2 = O(n~Y27F1) and d,;'/? = O(n'/*~P2) for some
B; >0, i =1,2. Denote A(8) = A(9, 7-0,7') and B(6) = B(0, 1o, 7), where
A0, a,b) and B(G a, b) are defined as in Theorem 2 and

I(x) dF(x)

(4.17) D(6) —f)\e(x))\ (x )W.
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Then
(4.18) Vn (6, —6,) > N(0, A1(8,)D(8,) A"Y(8,)),
(4.19) vn (8, —m,) =5 N(0, A7(8,)B(8,) A~(6,)).

In particular, if the parametric and the identifiability assumptions of Lemma
2 are satisfied for some [a, b] C (7, 7), then 6, = n, = 0, for all large n and

(4.20) \/E(én —0y) =5 N(0,17(8,)),
where 1(0) = [7 A ,(x)AG(xXT(x)/N3(x)) dF ().

ReEMARK 1. The regularity conditions (4.14)-(4.16) are satisfied by the
usual parametric families when ©® are taken to be compact subsets of their
corresponding natural parameter spaces. For example, it can be easily verified
that they hold for the normal, the exponential and the Cauchy families with
compact 0.

REMARK 2. As we mentioned in the previous section, I(6) is the Fisher
information matrix. Therefore, (4.20) shows that under the parametric as-
sumption 6, is asymptotically as efficient as the maximum likelihood estima-
tor.

REMARK 3. The two conditions on d, imply that nd? = O(n~2f1) - 0 and
(nd?)"! = O(n"*%2) > 0. It can be shown then that B, are restricted to
B <1/2 and B, < 1/8. Moreover, it can also be shown that if we choose
d, =n"%with 1/4 <« < 1/2, then the conditions are satisfied.

We preface the proof with the following two lemmas.

LEMMA 5. Suppose the condition (4.14) is satisfied. Let A, and X, be
defined by (3.5) and (3.7) with the kernel function K and with the bandwidth
d, satisfying the same assumptions as specified in Theorem 4. Then

(4.21) sup {wn(x)|)~\n(x) - )\(x)|} =o0,(n"'271) forevery e, < By,

(4.22) sup{wn(x)lf\n(x) - )\(x)‘} =o0,(n"1/*7%2)  forevery e, < B,.

x

Proor. From Lemma 4 and the definition of w,,, for all large n, w,(x) > 0
implies F(x — d,c) > clogn) /2 and 1 - F(x +d,c) > c,(log n)™2/2.
Consequently, by (3.9), (4.14) and the assumption d2 = O(n~/%27P1), for some
k>0, ‘

sup {w,(x)[1,(x) = A(x)[} = O,(d2(log n)")

X

=o0,(n"/?7¢1) forevery &; < By;
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that is, (4.21) holds. Now applying the integration by parts formula and the
fact that [dK = 0, it is easily seen that

|A(x) = X,(x)]

d,

[ TR (s) = As) = Ay(x) + A(x)] dX( xd_ ° )'

x—d,c n

1
= Vnd, Y (x+d,c)

x osup WRT()[A(s) - Als) - Au(x) + A)]]

s€lx—d,c,x+d,c]
X [ 1K' (u)]du,

which together with Lemma 6 and the definition of w, implies
(log n) *ne
ndl?

for every ¢ > 0 and some k& > 0. Since d, /% = O(n'/*~#2), (4.23) and (4.21)
imply (4.22). O

(4.23) sup {w,(2)[A,(x) = %,(x)]} =0,

X

LEMMA 6. Let A, be Nelson’s estimator as in (3.5). Suppose that (4.14) is
satisfied. Let h, satisfyn™"2 < h, <n~" for some 0 < y, <y, < 1. Then for
every € > 0,

sup |A,(x) = A(x) = A, (3) — A(¥)| = 0,(n™1/2+hY/?)
lx—yl<h,,
wn{x)=1

Proor. First choose x; < -+ <x,4 in such a way that F(x,) =i/n*
Then
‘ ) 1
P{X, €[x;_,x,)and X, € [x,_;,x;] forsome 1 <i <nand k + [} < —,

implying that for all large n, there can only be at most one survival time X, in
each interval [x;_, x;]. Therefore, for all large n, N, can only have at most
one jump within each [x,_;, x;]. In view of this and the fact that
(log n)™*
sup [A(x;) = A(x;_1)] < ———— =o(n"?m/?),
i,1-F(x,)>(log n)~ 22 n
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it suffices to prove that

sup |Au(x) = Alx;) = A(x;) + Ax))]

0<x,—x <h

) =Mns
(424) 1—F(x,)=(og n)~ 22,

wp(x)=1
_ —1/2+e31/2
o, (n"1/ i)

for every ¢ > 0. Now for each fixed pair (j,7) with 0 <x, —x; < h,,
t ) A
Vij(t) = _/;I(}_’"(s)Zcz(logn)""?,l—F(s)z(logn)‘z"‘2}d[An(s) - A(s)], t e [xj’xi]’

is a martingale with
AV,;(t) < (log n)**(con) ™" and (V;;), < (log n)**(cyn) 'h,.

Thus the martingale exponential inequality [cf. Shorack and Wellner (1986),
page 899, Inequality 1] can be used to get for every 1/2 > ¢ > 0,

P{ sup ‘Vij(t)‘zn_l/z“hln/z}

X, <t<x,

(4.25)

[n—1/2+eh1/2]2
< 2exp{ — Ll <e™
P 2(log n)***(cyn) "'h,
for all large n, where ¢, — 1. Since there are less than n® pairs of (i, j), (4.25)
and the Borel-Cantelli lemma can be used to get sup, [V, (x)l =
O(n~1/2%¢p1/2) which in view of Lemma 4 implies (4.24). O

Proor oF THEOREM 4. For the sake of simplicity, we shall only prove the
case p = 1, that is, ® C R, since the proof for p > 1 differs only in notation.

From Theorem 3, 6, -, 6,. Furthermore, since Y, (x)w,(x) —p (1 —
F(x)T'(x) and EY,(x)w,(x) > (1 — F(x))['(x), for all x € (74, 7), we can apply
the same argument as in the proof of Theorem 3 to show that 6, —, 6, and
n, — 0,. To prove (4.18), we note that analogous to (3.15) and (3.16),

(4.26) [ [A2(x) = X/2(20)] 05 12(x) g () Fo(x)w,(x) dx = 0,
(427) — [T[A2(2) = M2(0)| 4 2 (2) Ay (2) F(x) w,(x) dx = 0.

Summing together the left-hand sides of (4.26) and (4.27) and then taking the
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Taylor expansion of it (as a function of én) at 6, we get
P2 (x) = AY3(x)

O Ty e T () d
1/2
(4.28) +5 /TOWE ;A%*(x)Y(x)wn(x)dx

L2(x) - AY2(x)
+2ffo N (x)

Agx(2) Y (2)w,(x) dx | (6, —6,).

For each [a, b] € (¢, 7), we can apply an argument analogous to that leading
to (3.18) to get

b;\Inﬂ(x)P( VY, (x)w,(x)
()Y, (x)w,(x) dx
a /\%éz(x) On

(4.29)
NP (x) = N/2(x)
P2 A (DT w(x) dx p A(0,a,b).
From Lemma 4 and (4.15),
1'/\1/2 X)
sup 575 A5(2) Y, (x)w,(x) dx = 0,(1)

(4.30) 0—0,1<5, 76 Ay (%)
asn »>oand b1 7.
Moreover, from Lemmas 4 and 5,

swp [T S ) T, () d

10—6,l<8, "0

(4.31) _ Op(fb’nx/s[l — F(x)] Y (2)w,(x) dx)

_ op(/fh — F(x)]' dx) = 0,(1)

as b1 7 with & chosen to be the same as that in (4.7), noting that |Al/2(x) —
A2 ()| < IA,(x) — A(x)|*"? and that sup {w, (x)n~1/°[1 — F(x)]~*} - 0 for any
k > 0. Combining (4.30) and (4.31) we get as n — » and b 1 T,

(4.52) - A2(x)
. sup
—g,1<5, 76 AY (%)
A similar argument leads to
a A/2(x)
(4.33) sup

10—6,l<8, /fo Ay (%)

as n —» © and a | 7. Likewise, it can also be shown using the second part of

B(2)T,(x)w,(x) dx —p 0

()Y (2 )w,(x)dx —p
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(4.15) and Lemmas 4 and 5 that as n = o, a | 7y and b 1 7,
(4.34) sup {/a N /T} )\%/2(3;1)/2— AL2(x)
16 —6,l<8, \"To b d(x)
In view of (4.29), (4.32)-(4.34), we have
- A (x)
| xem

| Xo(2) |T()w,(x) dx —>p 0.

3 (x) T(x0)w, (%) de
(4.35) A2(x) - W/2(x) B
2 S m (D Tw(x) dx = AG6)).

To

From (2.6), (4.16) and the definition of w,,
sup {w,(2)|\/2(x) = 8/2(x) [} = 0,(n?) sup {w,(x)[A(x) = A,(x)]}

for every ¢ > 0,

which, together with (4.35), (4.28) and Lemma 5, implies that én -0, =
0,(n=1/*7?) for some & > 0. Similarly, it can also be shown that

(4.36) N, — 0, = 0,(n"/*7")  for some &' > 0.
Again by the mean value theorem, for some n} between 6, and 7,

(x) - Rx) .
i (ii/nz(x) B () Ty ()

AV2(x) — AY2(x) . -
(437) - To Aln/f(x) A"In(x) n(x)wn(x) dx

T2 £1/2 x""ﬁ(x) Az”ﬁ(x)
= _/;_O(A / (x) - An/ (x)) Aln/’,"?(x) - 2/\:37%2(36)

=o0,(n"1?),

where the last equality follows from (4.16), (4.36) and Lemmas 4 and 5.
In view of (4.28), (4.35) and (4.37) we see that for (4.18) to hold, it suffices to
show that

(438) 2V [

?n(x)wn(x) dx(en - nn)

W) = K)o
TG (9 T(wn(x) dx =g N0, D(0)

Applying (2.6) we can express the left-hand side of (4.38) as

. . i ()T,
\/r?fTO[A(x) - An(x)]m%wn(x)dx
(439) . [A(x) _ Xn(x)]2 . ~
+\/’?f g4, (%)Y, (%) w,(x) dx.

7o AL/2(x) AV2() [A2(x) + AY%(2)]
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The second term in (4.39) is 0,(1) by Lemmas 4 and 5 and (4.16). Hence (4.38)
is equivalent to

Ao ()Y (x)

(4.40) \/E[:[A(x) ~ Xn(x)]mwn(x) dx -, N(0, D(6,)).

Let H,(x) = A, (x)/[XN/2(x)A"/?(x)]. Then we can write the left-hand side of
(4.40) as

\/rTf:[A(x) 3, ()] H, T, (x)w,(x) dx

dN,(x
=Vn [ Hn(x)Y<x)wn(x>{dA<x) 7(( ))}
(4.41) i [ H(0) T, (x)w,(x)

dN,(x)
?ﬂ(x)

—dA(x) — A (x)dx + A,(x) dx}
[ H(2) T, (x)w () [Mx) = ()] dx

From (4.21) and (4.16), it follows that the last term on the right-hand side of
the preceding equation is 0,(1). Moreover, the second term can be rewritten as

ﬁfT:Hn(x)mx)wn(x){dmx) - A(x)]
—d; f ( )d[An(u)-A(u)] }
(4.42) _ «E/T’H,L(x)Y,,(x)wn(x){d[Mx) ~ A(x)]
—d: / [A(u)-A(u)]K'( _n )dudx}

= ﬁ[:Hﬂ(xm(x)wn(x)d{ﬁnm - A(x)

[ A - A<u>1d51’<(x;nu)d”}



1388 Z.YING

recalling that A (x) = [*_ Y (s)dN,(s). In view of Lemma 6,

A N X —U
sup  |A,(x) = A(x) - [ [A,(w) - A(u)]d;lx( )du
x:w,(x)>0 — dn
(4.43) . X
sup |A,(x) = A(x) = A (x +7) + A(x +y)| = 0,(n71/270)
w,(x)>0,
lyl<ed,

for some & > 0. Thus, it follows from (4.42), (4.43) and the easily verifiable fact
that [”|d(H,(2)Y, (x)w,(x)| = 0,(n°) for every & > 0, that

dN,(x)
Y, (x)

" /TTHn(x)?n(x)wn(x) _ dA(x) — Xn(x) dx + /'\n(x) dx}

=o0,(n"'?).

Therefore it remains to show the weak convergence of the first term on the
right-hand side of (4.41). We shall prove this by applying Rebolledo’s martin-
gale central limit theorem [cf. Gill (1980), page 18]. To do so, we need to
replace w, by the predictable weight function

1, if N(x—d,c)=>c(logn) ™
(4.45) va(x) = and Y,(x) = cy(logn) %,
0, otherwise,

where «; i = 1,2 are the same constants as those in (4.2) which defines w,,.
Also define stopping times T, = inf{x: Y, (x) < c¢,(log n)~*2}. Then by the
Rebolledo martingale central limit theorem we can easily show that

(4.46) v [V H ()0, (2){dN, (1) = Fu(%) dA(%)) =g W(),
7o
where W is a zero-mean Gaussian martingale with
EW?(t) = ["R3(x)(Ap(x)M(x)) 'T(x) dF(x).
Since W is continuous,

Vi ["H(x)w,(x){dN,(x) - F,(x) dA(x))

=V [ H () u, () {dN,(2) - F(x) dA(x)} =g W(T).

To

Hence (4.18) follows. A similar argument leads to (4.19). O

5. Concluding remarks. We have introduced in this paper a Hellinger-
type distance for hazard rate functions. For parametric inference, the distance
can be used to define minimum distance estimators of unknown parameters.
Among its features, it accommodates censored data in a natural way and
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exhibits flexibility in stabilizing tail fluctuation. In particular, it does not
require that censoring variables be identically distributed. Thus it is suitable
for applications in areas such as clinical trials and industrial life tests.

When the distance [[AY/2(¢) — AL/2(£)12Y,(¢) dt as a function of 6 is convex,
we can use the classical Newton-Raphson method to compute 6,. However,
computational complication will arise when local minima exist. In low-dimen-
sional situations, we can first use a systematic grid search to locate the region
where the global minimizer @n belongs and then apply a more efficient algo-
rithm such as the Newton-Raphson method. Recently, Beran and Millar
(1987) proposed a general stochastic search method for finding solutions
defined as minimizers of certain distances and have investigated its conver-
gence properties. Their method can certainly be applied to our setting. The
readers are referred to their paper for details.

As we have shown in the preceding developments, when the underlying
density (hazard) function belongs to the parametric family, the estimator 9n is
asymptotically as efficient as the usual maximum likelihood estimator. On the
other hand, if the parametric assumption fails, then én — 64, which provides a
closest fit in the sense that A, has the shortest Hellinger-type distance; that
is,

J[Vyzce) = 22|11 = F()IT(2) de

= mginf[/\}g/z(t) — X2(6)]*[1 = F(2)]T(¢) dt.

This may be interpreted as a robustness property.

Beran (1977) as well as Yang (1991) proved convolution and asymptotic
minimax properties for their estimators. We believe that analogous results
should also hold for our estimator, though we have not been able to prove
them yet. It is also worth mentioning that the estimator discussed in Section 4
generally estimates a different parameter than that estimated by the usual
MHDE when the underlying density does not belong to the prescribed para-
metric family, even in the absence of censoring. Therefore, it is usually rather
difficult to compare the current estimator with Beran’s (1977) or Yang’s (1991)
estimators.

Finally, the hazard rate function approach can also handle left truncated
data, or, more generally, both left truncated and right censored data. A
Nelson-type estimator of cumulative hazard function can be found in Wang,
Jewell and Tsai (1986) and Keiding and Gill (1990) for the truncated data, and
in Lai and Ying (1991) for both left truncated and right censored data. Let /A\T,LC
denote the Nelson-type cumulative hazard function estimator for the left
truncated and right censored model and let Y,7¢ denote the corresponding risk
set size process. Then Ramlau-Hansen’s (1983) smoothing method can be
applied to obtain a hazard rate function estimator, say )A\Tnc. Therefore, we can
use the Hellinger-type distance

J'IVES@) = Vao | Erec a
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to obtain a minimum distance estimator (3,7: €. Since similar counting process
and its associated martingale theory has already been developed for the left
truncated and right censored model, it is straightforward that the results of
Sections 3 and 4 can be extended.
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