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SPECIAL CAPACITIES, THE HUNT-STEIN THEOREM AND
TRANSFORMATION GROUPS

BY ZBIGNIEW SZKUTNIK

University of Mining and Metallurgy, Cracow

The problem of maximin testing between families of probability mea-
sures generated by special capacities and transformation groups is solved
by showing that the Hunt-Stein theorem is applicable to such, generally
nondominated, families of probability measures and that the problem
reduces to maximin testing between neighbourhoods of distributions of
maximal invariant, defined by special capacities closely related to the initial
ones. An application to testing approximate binormality is also sketched.

1. Introduction. Consider a measure space (2, &, m) and suppose that
m is positive and o-finite. Let 2, and 2, denote disjoint families of probabil-
ity measures absolutely continuous with respect to (w.r.t.) m and let G be a
transformation group acting on 2, satisfying regularity conditions stated
explicitly, for example, by Bondar and Milnes (1981) and preserving the testing
problem (2,, 2,). The classical Hunt-Stein (HS) theorem can be formulated
as follows: If G is an amenable group, almost G-invariant tests form a
maximin complete class, that is, in order to find a maximin test for (2,, 2,),
one can restrict oneself to the class of almost G-invariant tests. o-finiteness of
the dominating measure m is essential, since it implies the weak compactness
of the set of critical functions and this property is, in turn, crucial for the
proofs of the HS theorem [Lehmann (1959), Bondar and Milnes (1981)].

In an alternative approach originating from Kiefer (1957) [see also Wesler
(1959) and Kiefer (1966), page 263] and resulting in the so-called generalized
HS theorem (for general decision problems), the compactness of the corre-
spondihg set of decision rules results from a construction of a suitable locally
convex topology on the class of decision functions. As a result, the theorem
applies to nondominated problems as well. An application of the generalized
HS theorem to the testing problem considered in this paper seems not,
however, to be straightforward. Hence, we shall work with the classical testing
version of the HS theorem and show that it can be applied to a class of
nondominated testing problems defined later in this section.

Denote by P, and P, two probability measures on (2, #) absolutely
continuous w.r.t. m and let f, and f, be concave functions [0, 1] — [0, 1]
satisfying f(1) = 1, i = 0, 1. Following Bednarski (1981) and Buja (1980) we
define special capacities v; = v.p as set functions v;: & — [0, 1] such that
v;(@) = 0 and v,(A) = f;[ P(A)] for nonempty A € #,i =0,1.
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Bednarski (1981) and Buja (1980, 1986) [see also Birge (1977, 1980)]
consider maximin testing between neighbourhoods of P, and P, defined by
special capacities in the following way:

of, = {P: P(A) <vi(A):Ac B}, i=0,1.

We shall study a more general testing problem (&, &), where &, =
{Pg: Pe &,g€@G},i=0,1. & can be considered as a neighbourhood of
the whole parametric family of distributions {P,g: g € G}. Assume that
P, N P, = J. The testing problem (£,, ;) remains, clearly, invariant under
the action of G but, in general, the HS theorem cannot be applied since &,
and &, are not dominated by any o-finite measure unless f;(0) = 0, which
means that v; are 2-alternating Choquet capacities provided f; are continuous
in [0, 1] [Bednarski (1981)].

Denote by .#,, the set of all probability measures absolutely continuous
w.r.t. m and take 2, = &, N #,,. In regular cases the HS theorem is applica-
ble to the testing problem (2,, 2,). It will be shown that the HS theorem
applies to (£, &?,) as well. This will be achieved by an application of the HS
theorem to (2,, 2,) and proving the existence of an invariant maximin test
for this problem which is also maximin for (£, &,).

An application to testing approximate binormality will briefly be described
in the last section.

2. Assumptions and some preliminary results. In what follows, we
shall always assume that:

(A1). (2, &) is a locally compact Polish space and & is its Borel o-algebra.

(A2). G is a o-compact, locally compact, Hausdorff amenable group acting
properly on the left of &~

(A3). & is G-invariant, that is gB = {gx: x € B} € # for all B € &.

(A4). m is a positive and o-finite measure on & such that m dominates
each measure gm defined for g € G and B € & by gm(B) = m(gB).

(A5). m is relatively invariant under G.

Proper action in (A2) means that the action is continuous and that the
inverse image of a compact set under the mapping (g, x) — (gx, x) is compact.
27G will denote the space of orbits of G which is given the quotient topology
and II: 2> 2/G will be the canonical projection. Properness of the action
implies [see Andersson (1982)] that 27/G is Hausdorff and locally compact so
that the notion of Radon measures on 2/G can be applied. Moreover, 2/G is
o-compact and paracompact.

Michael (1959) proved that if A: X — Y is an open mapping of a metrizable
space X onto a paracompact space Y and, for each y € Y, the set A~ (y) is
complete, then Y is metrizable. It can be shown that II is open. Z/G is
Hausdorff which implies that {y} is closed. Hence, II"*(y) is complete as a
closed subset of the topologically complete space 2" and, using Michael’s
result, Z/G is metrizable.
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Z7/ @ is separable since it is metrizable and second countable which, in turn,
is implied by its local compactness and the fact that it is a continuous image
(under IT) of a second countable space £ Finally, since 2/G is metrizable
and locally compact, it is topologically complete.

Hence, 2/G is Polish and the theory developed by Bednarski (1981) and
Buja (1980, 1986) applies to measures on 2/G.

The last part of (A4) can be formulated in the form: For all g € G and
Be @, m(B)=0 if and only if m(gB) = 0. This, in turn, leads to the
following equality, which will be useful later:

(1) 2, ={(Pg:Peo,geG}NH4,={Pg:PcAdnNA4,,gcqG},
i=0,1.

(A2), in particular amenability of G, is required in order that the classical
HS theorem be applicable.

By B,(P) = Epy(x) we shall denote the power function of the test y.

Suppose that ¢ is a maximin test at its significance level for (2,, 2,). This
means that for each test ¢ we have the following implication:

If sup{B,(P): P € 2,} < sup{B,(P): P € 2},

@ then inf{B,(P): P € 2,} < inf{B,(P): P € 2,}.

LEMMA. Let ¢ be a size a maximin test for (2,, 2,). If
) sup{B¢( P):Pe 90} = sup{B,P(P): Pe ,@0},
inf{B,(P): P € 2,} = inf{B,(P): P € £},

then ¢ is a size a maximin test for (£, #,).

Proor. (2) and (3) imply that, for each test ¢,
ifsup{B.,,( P):Pe 90} < sup{B,P(P): Pe ,970},
then inf{8,(P): P € 2,} < inf{B,(P): P € £,}.

If sup{B,(P): P e %} < sup{B,(P): P € Py}, then also sup{B,(P):
P € 2} < sup{B,(P): P € #;} and (4) implies that inf{B,(P): P 2} <
inf{B¢(P): P € #}. Hence, inf{B,(P): P € P} < inf{B‘P(P): P e #,}, which
completes the proof. O

(4)

REMARK. This lemma remains true for all pairs of testing problems (2,, 2,)
and (£,, &) such that 2, C &, i = 0, 1, not necessarily having the structure
considered in this paper.

3. Main result. Throughout this section we shall not repeat continually
that i = 0, 1. Whenever i appears it can take value 0 and 1.

Consider first the problem of constructing maximin tests for (2,, 2,). Let
T:(Z, #) - (%, #By) be a maximal invariant under G. Application of the HS



SPECIAL CAPACITIES AND GROUPS 1123

theorem reduces the problem to testing between families of distributions of the
maximal invariant, that is, 27 = (PT~1: P € &/, N .#,}). Consider a related
problem of testing between &7 = {PT~!: P € o/} and define special capaci-
ties v[(B) = f,[P,T"%(B)], B € By, Let further

2, = {Q: Q(A) < vT(A): A € By).

It is an interesting fact, which can generally be useful in the theory of
robust minimax testing, that the equality &/ = 2, holds, under mild as-
sumptions, in a more general setting when T is a surjective mapping (not
necessarily an invariant) and »; is a pseudocapacity defined by Buja (1986).
The inclusion &” ¢ 9, is obvious. The reverse inclusion is equivalent to the
existence of an extension of any probability measure, say P, defined on the sub
o-algebra B, = T~ (By) ¢ # and satisfying P(B) <'v(B) for each B € %,,
to the o-algebra & in such a way that P < v, for all Borel subsets of £
Existence and properties of such extensions, without any boundedness by
capacity condition are discussed by Plachky and Riischendorf (1984). The
general equality &/ = 9, has recently been proved by Buja (1989).

What we really need in the present context are, however, not the equalities
T = 9, but rather the existence of a Huber-Strassen (1973) least favourable
pair (¢, @F) for the testing problem (Z,, 2,) such that @* € Q. If one finds
such a pair, then the Neyman-Pearson tests for (@%, @%) will be maximin not
only for (Z,, 2,) but for (27, 2T') as well (lemma applies). Further, according
to the HS theorem, they will be maximin for (2,, 2,) and, finally, after
another application of the lemma and making explicit use of the test invari-
ance, they will be maximin for (£, #,).

In what follows we shall use the canonical projection II: 2> Z/G as a
maximal invariant. For a comprehensive treatment of the theory used in this
section see, for example, Andersson (1982).

As noted in Section 2, the space 27/G is sufficiently regular to admit the
application of Radon measures and of the theory of Bednarski (1981) and Buja
(1986). Let B be a right Haar measure on G and A, the modular function of
G. Assume that m is relatively invariant under G with multiplier Ag'. This
assumption is not restrictive, since any relatively invariant measure can easily
be modified to have this property. Then, there exists on Z/G the so-called
quotient measure m /B dominating the distributions I1(P,) and II(P;) of the
maximal invariant:

II(P;) = q;m/B, where q;[II(x)] = fGPi(gx) dB(g) and p;=dP;/dm.

THEOREM. Assume (A1)-(A5) hold true. If TI(P,) and 11(P,) are mutually
absolutely continuous and there exists 0 < x, < 1 such that f(xo) = f(x,) = 1,
then for the testing problem (2,,9,) there exists a Huber-Strassen least
favourable pair (QF, Q%) € 9, X D, such that QF € 2F, i =0,1. The
Neyman—Pearson tests for (Q}, Q%) are maximin not only for (2,, 2,) but
also for (£, Z,).
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Proor. It is seen from the proof of Theorem 4.1 of Bednarski (1981) that
there exists a least favourable pair (@%, @F) such that @} < II(P,). Hence,
QF < m/B and Qf(B) < f;,[II(P.XB)] for each measurable B € Q”/G

Let ¥ = dQ /dm /B. Define probability measures P* on (2, #) such that

(5) dP}/dm = pf(x) = ¢} [(x)] p;i(x)/q;[TI(x)].

Formulae (15) in Andersson (1982) easily imply that [, p*(x)dm(x) = 1 so
that P* are properly defined probability measures. It is also 1mmed1ate1y clear
that Q* = I[I(P¥). Further, one has to show that P} < v,, that is, P*(A) =
JarLi(x)p¥(x) dm(x) < filJa I(x)pAx) dm(x)] = f[P(A)] for all A e 4,
where I, is the indicator function of A. Using formulae (15) from Andersson
(1982) one can write

P(A) = [ a()i(2)/ai(u) dm/B(w),

PH(A) = [, af(W)hi(2)/qi(w) dm/B(u),
where I1(2) = u and h#(2) = [;1,(g2)p,(gz) dB(g).

Denote h#(2)/q(u) by k{(u). Obviously, 0 < kA (u) < 1 foreach u € 2/G.
It must be shown that, if for each measurable B € 2/G,

() fa7(w) dm/B(u) <1 [ q,-(u)dm/ﬁ(u)],
then '
() [, kA dm/B() <1 [ ai(w)ku) dm /().

Assume, for a moment, that kf(u) = £3_,a,I,(x) is a simple function
and A, are disjoint. Then (7) takes the form

n

(8 Y a,QF(Ay) Sfi[kglpin_l(Ak)]'

B=1
Denote @f(A,) by e, and P,II"%(A,) by d,, £ = 1,...,n. Then (6) implies
e, <fi(d,), k=1,...,n,
e, te<f(d,+d;), k,J=1,...,nandk =+,
(9 :

e;tey+ - +e, <fi(d+dy+ - +d,).
Inequality (8) is equivalent to

H(ay,...,a,) = Y, aze, —fi[z akdk] <0
E=1 E=1

which must hold for all a,,...,a, such that 0 <a, <1 for all % [since
0<kMu)<1],Xepa, <1 and deak < 1 [since the left-hand sides of these
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inequalities are equal to P*(A) and P,(A), respectively]. Concavity of f
implies that H(a,,...,a,) is a convex functional and (9) means that H takes
on negative values in all vertices of the n-dimensional cube [0, 1]*. Hence, H
takes on negative values in all points of the cube, which proves (8).

If £#(u) is not simple, it can be approximated by a nondecreasing sequence
of simple functions, say A j(u), as a measurable function. Then, for each j, one
has the inequality

[ o7 W) da/BCu) < £ [, i)y w) /)|

Passing to the limit (j — «) and using the Lebesgue monotone convergence
theorem we get (7).

This completes the proof of the first part of the thes1s It remains to prove
that the Neyman-Pearson tests for (@}, @) are maximin for (£, #,). For a
suitably chosen version of the density dQ’l" /dQ%, the Neyman-Pearson tests
for (Q%, Q%) are G-invariant and maximin for (2,, 2,). Let ¢ be such a test.
To complete the proof it suffices to show that equalities (3) hold true and to
apply the lemma from Section 2. We have sup{B,(P): P € 2} = sup{B (Pg):
P e o« N 4,,g € G} = sup{B,(P): Pe%n/ } = sup{B(P): PEMO}
where we used formula (1), the i invariance of ¢ and the fact that (@3, Q*) isa
Huber-Strassen least favourable pair for (2,, 2,) and Q% € 2F c &/ [ c 9,
(As mentioned previously we even have & = 9,.) The second of equalities
(8) can be proved in a similar way. This completes the proof.

Two remarks are in order here: (i) In view of our result, in order to find
maximin tests for (%), &), one needs only to solve the testing problem
(9, 2,). This can be done through an application of Theorem 5.1 of Bed-
narski (1981) preceded by finding dII(P,)/dII(P,) which, in turn, is given by
general formulae of the Stein type [see, for example, Andersson (1982) and
Wijsman (1985)]. (ii) In the particular case of generalized contamination
neighbourhoods considered, for example, by Huber (1968) and Rieder (1977),
the assumption of mutual absolute continuity of II(P,) and II(P;) and of
fixy) =1 for some x, <1 is not necessary. The existence of Qf and QF
absolutely continuous w.r.t. m /g is implied, in this case, by absolute continu-
ity of II(P,) and II(P,) w.r.t. m/B [cf. Hafner (1982)]. Pure e-contamination
case is here a special case.

4. Maximin testing approximate binormality. Application of statisti-
cal procedures to data is often preceded by testing goodness-of-fit. However,
the question to be answered is not whether the distribution of data is exactly
the same as that assumed in the model. One would rather like to know
whether the difference between the true distribution and the model is small
enough to preclude serious errors in the inference based on the model which is
only approximately correct. Using powerful and consistent tests leads to
rejection of the null hypothesis if the sample size is large enough and does not
give a satisfactory answer to the question considered.
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So, it would be of interest to provide tools for testing approximate goodness-
of-fit. This will be our aim in this section in the context of testing binormality,
the assumption commonly made in the analysis of bivariate data.

Denote by X = [X,..., X, ] a (2, n) random matrix. The columns X; of X
are interpreted as independent observations. Let .#, be the standard gauss-
ian measure on R? and let F be another, nongaussian distribution on R2.
Take G = UT'(2) X R% R? —» R? with the action gY = CY + b, where UT(2)
is the group of upper triangular matrices with positive diagonals Y € R?,
C € UT(2), b € R? Then {(#,8)®", g € G} and {(Fg)®", g € G} constitute
the null and alternative hypotheses in a G-invariant problem of testing exact
binormality against this particular alternative. Maximin solutions of such
problems with F being bivariate uniform and bivariate exponential have been
given by Szkutnik (1988).

In the usual approach to problems of existence and construction of robust
tests one assumes independence and often also identical distributions of
observations [cf. Huber (1965), Huber and Strassen (1973)]. Departures from a
postulated model are described as departures from the distribution of single
observations and, in such cases, the least favourable pair of distributions for
product measures is a product of least favourable pairs for single observations.
We cannot follow this idea if we take &, = {(Pg)®": P < vy, 4,8 € G} and
&P, ={(Pg)®": P < v;p, g € G} since, for a single observation, the only size a
test is the trivial one. Also the problems of applicability of the HS theorem and
of construction of maximin tests for (2,, 2,) with 2, = &, N .4, and &,
defined as above, seem to be nontrivial and remain open.

We adopt another approach by taking P, = .#;°", P, =F°®", & =
{Pg: P <v;p, g € G} with G acting on R®** according to gX CX + bl
where 17 = (1,...,1) € R". This and the results developed in the precedmg
sections lead to testmg between neighbourhoods of the distributions of a
maximal invariant.

Take f(x) =[(1 —¢)x + 8,] A 1 with 0 <¢; < §; < 1, which leads to gen-
eralized contamination neighbourhoods and let F' be the uniform distribution
over [0, 1]? or bivariate exponential distribution with the probability density
function ¥(¢,, &,) = exp{—¢&; — &) for &, &, > 0. Maximin tests for (2, 2,)
can be constructed with a method described in detail by Hafner (1982). They
are based on the truncated ratio of densities of central distributions which has
been found for bivariate uniform and bivariate exponential alternatives by
Szkutnik (1988). According to our theorem these tests are maximin for
(£, #) as well.

We omit the details here and show only some exemplary results obtained on
the basis of a numerical study. Let us fix ¢, = 8, = 0.05 and take &, = 6, =
0.25 in the first and ¢, = §, = 0.50 in the second case. Note that this corre-
sponds to assuming pure e-contamination neighbourhoods of the hypotheses.

. For n =10 and bivariate exponentla.l center of the alternative we get
nonrandomized tests for 0.08 < a < 0.20 in the first and for 0.06 < a < 0.12
in the second case. Corresponding minimum power varies increasingly in the
intervals [0.54, 0.72] and [0.36, 0.44], respectively. For a outside the indicated
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intervals randomization is necessary. This corresponds to segments of straight
lines in graphs of the risk curves [cf. Hafner (1982)]. For comparison, the
minimum power of maximin tests between central families, corresponding to
a=0.06, 0.12 and 0.20 is 0.86, 0.93 and 0.96, respectively [cf. Szkutnik
(1988)1. ‘

For n = 25 and bivariate uniform center of the alternative we get nonran-
domized tests for 0.06 < « < 0.18 in the first and 0.06 < a < 0.14 in the
second case with corresponding minimum power in the intervals [0.53, 0.73]
and [0.36,0.47], respectively, while the minimum power of maximin tests
between central families, corresponding to a« = 0.06, 0.14 and 0.18 is 0.87,
0.98 and 0.99.

Three important facts should be mentioned explicitly. First, the only thing
necessary for maximin testing between &, and &#; is a maximin test for
testing between transformation families of central distributions and its risk
function. Second, in spite of the rather large contamination level and small
sample sizes in the above examples, the minimum power is quite reasonable
and the tests obtained in this paper can be used for testing binormality against
two different types of alternatives. Third, since we take as a hypothesis a
neighbourhood of the product measure, the tests are robust against violating
the i.i.d. assumptions.
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