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AN ASYMPTOTIC THEORY FOR SLICED
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Texas A & M University

Sliced inverse regression [Li (1989), (1991) and Duan and Li (1991)] is
a nonparametric method for achieving dimension reduction in regression
problems. It is widely applicable, extremely easy to implement on a com-
puter and requires no nonparametric smoothing devices such as kernel
regression. If Y is the response and X € R” is the predictor, in order to
implement sliced inverse regression, one requires an estimate of A =
E{cov(X]Y)} = cov(X) — cov{ E(X]|Y)}. The inverse regression of X on Y is
clearly seen in A. One such estimate is Li’s (1991) two-slice estimate,
defined as follows: The data are sorted on Y, then grouped into sets of size
2, the covariance of X is estimated within each group and these estimates
are averaged. In this paper, we consider the asymptotic properties of the
two-slice method, obtaining simple conditions for n!/2-convergence and
asymptotic normality. A key step in the proof of asymptotic normality is a
central limit theorem for sums of conditionally independent random vari-
ables. We also study the asymptotic distribution of Greenwood’s statistics
in nonuniform cases.

1. Introduction. Suppose we are given a sample (Y;, X;)fori =1,...,n
where Y, is the response and X; is a vector of predictors of dimension p.
Kernel regression [Eubank (1988)] is a popular method for estimating
the mean function m(x) = E(Y|X = x) and the variance function v(x) =
var(Y1X = x). However, if p is large, it is well known that the kernel method is
inefficient. This has led to the development of dimension reduction techniques,
including projection pursuit regression [Friedman and Stuetzle (1981), Hall
(1989)], average derivative estimation [Hardle and Stoker (1989)], generalized
additive models [Hastie and Tibshirani (1986)] and so on.

All of the preceding methods involve some sort of nonparametric smoothing.
Li (1991) took an entirely different and promising approach to dlmensmn
reduction, developing sliced inverse regression, or SIR.

The basic assumption of sliced inverse regression is that the distribution of
Y given X depends only on K linear combinations of X, say (67X, ..., 0L X).
This is a quite general formulation. In this paper, we provide relatively simple
conditions under which Li’s two-slice estimate of ® = (6,, ..., 0x) converges at
the rate 0,(n~1/?).
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The following is a short summary of sliced inverse regression. One should
consult Duan and Li (1991), Li (1989, 1991), the references within and the
discussion and rejoinder to Li (1991) for more details and background. The
main idea of sliced inverse regression is to relate the inverse regression curve
E(X]Y) to ©. Li (1991) makes the assumption that for any b € R?, the
conditional expectation E(b7X|07X,...,0%X) is linear in 67X,...,0%X; in
the rejoinder to his paper, Li (1991) discusses the wide applicability of this
assumption. It thus follows (his Theorem 3.1) that the centered inverse
regression curve E(X|Y) — EX is contained in the linear subspace spanned by

GZ'Q x for k =1,..., K, where Qy denotes the covariance matrix of X.
These facts enable us to identify and estimate ®. Define
(1.1) A = E{cov(X|Y)} = cov(X) — cov{ E(X|Y)}.

If (n,,...,mg) are the eigenvectors associated with the K largest nonzero
eigenvalues of I — Q%'/’AQ%'/?, then 6, = Q3'/?y; for j=1,..., K. Since
one can estimate () at rate n'/2, the rate for estimating @ is determined by
how well one estimates A.

Li (1991) discusses two methods for estimating ®. One method is based on
categorizing the response Y into a new response Y, with H > K levels. As
long as the distribution of Y, given X can be minimally specified by the linear
combinations of 87X for £ = 1,..., K, estimation of (1.1) with Y replaced by
Y, is easy and yields n!/2-consistent estimates of ©. In this paper, we focus on
the second method of estimating A, namely Li’s two-slice estimate discussed in
his Remark 5.3, a method which avoids categorization. Let Y;, < -+ <Y,
be the order statistics of the responses and define X;), to be the value of X
associated with the ith order statistic in Y, that is, the concomitant value of
the ith order statistic [Yang (1977)]. Then the two-slice estimate of A is

[n/2]

A _ T

(1'2) An =n! Z {X(2i)* —X(2i~1)*]{X(2i)* _X(2i—1)*) .
i=1

The main goal of this paper is to study the rate of convergence of f\n to A and
the asymptotic distribution of A, — A. In Section 2, we show that simple
conditions entail root n» convergence and asymptotic normality.
Notice that an alternative estimator of A is
n
- _ T
A, =(2n) ' E {X(i)* _X(i—l)*}{X(i)* _X(i—l)*} :
i=2
The proofs in Section 2 show that the asymptotic distributions of f\n and A,
are essentially the same. If we specialize to the scalar case p = 1 and take
X = m(Y) for some monotone function m, then A = E{cov(X|Y)} = 0 and A,
becomes (2n) ! times Greenwood’s statistic:
) n—1 2
i=1
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Greenwood’s statistic was introduced by Greenwood (1946) to test the hypoth-
esis that the X’s are uniformly distributed [cf. Read (1983, 1988) and Pyke
(1965)]. Under uniformity, the distribution of 7T, has been studied and its
percentage points tabulated [cf. Stephens (1981)]. In Section 3, we investigate
the asymptotic distribution of T, for situations where the tail distribution of
Y is regularly varying and exponentla.l-hke Those results not only provide
insight into the main theme of this paper, but also extend the traditional
theory of Greenwood’s statistics which considered mainly distributions with
bounded support.

The Appendix includes a number of technical results, including a central
limit theorem for sums of conditionally independent random variables which is
of independent interest.

2. Asymptotics of A,,. The outline of this section is as follows. In
Theorem 2.1, we show that A, is an n'/?-consistent estimate of A, under
s1mp1e and general conditions. Corollary 2.2 provides an asymptotic expansion
of A, about A in terms of the concomitants &iys- Theorem 2.3 uses this
expansion to obtain an asymptotic normal limit distribution for A. We make
strong use here of Theorem A.4 in the Appendix, which provides limit distribu-
tions for sums of conditionally independent random variables.

Define

m(y) = E(XIY =y),
e=X-m(Y).

Also let &, be the concomitant of the ith order statistic of the Y’s. These
concomitants are conditionally independent with mean zero given the order
statistics of the Y’s [cf. Yang (1977)].
For convenience of notation we will use the absolute value sign to denote
the norm of R* for any finite k.. For B > 0 and n > 1, let II (B) be the
collection of all the n-point partitions —B <y, < -** <y, < B of[-B, Bl.
For a function G defined on R and taking values in R¥, define the smoothness
condition:

n
(21) lim sup n V" Y |G(yy) — G(¥i-p)|=0, VB>,
n=® yer (B) i=2

where r is some positive constant. Recall that a function G on [—B, B] is
bounded variation if its total variation norm

n
lim sup Z IG(y(l-)) - G(y(i—l))l
n=® yell,(B) i=2

is finite. Thus (2.1) is weaker than bounded variation. Condition (2.1) clearly
holds for any r > 0 if G has a bounded derivative on every finite interval. For
a continuous G, (2.1) holds for r > 1.
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TaEOREM 2.1. Suppose that E|X|* < «, that (2.1) holds for G = m and
r = 4 and that for B, > 0, there exists a nondecreasing (real-valued) function
m on (B, ®), such that

m*(y)P{IY| >y} >0 asy— o,

(2.2)
Im(x) — m(y)| <|m(xl) = m(ly)| forx,y € (=, B,) or (By,*).

Then

(2.3) n*2(A, — A) = 0,(1).

ReMARKS. (i) The moment condition E|X|* < » in the above result is
essentially required without further restriction on m. To see this, consider the
case where X = m(Y) for some monotone function m (so that A = 0). If for
some & > 0, P{X > x} = O(x~*7%) as x — o, then it follows from Theorem 3.1
below that n'/%(A, — A) # O,(1), violating (2.3). See the remark after Theo-
rem 3.1.

(ii) Whereas (2.1) is a local condition, (2.2) is a global condition. Note (2.2) is
quite mild under E|X|* < «. To see this, we will argue heuristically by consid-
ering the situation where m does not behave erratically so that /m can in fact
be taken to satisfy m(ly]) = O(m(y)| + |[m(—y)|) as y — «. Since

Elm(Y)|* = E(|E{XIY}|*) < E(E(X|Y}) = EIX|* < =,
it is then plausible to assume also that Em*(|Y]) < . Thus by monotonicity
of m,
lim m4(y) P{IY| > y} < lim m*(y) P{m*(IY]) = m*(y))
y—o y—o o

= lim uP{m*(Y]) > u} = 0.

(iii) Clearly if the components of m are monotone, then (2.3) holds under
E|X|* < .

Proor or THEOREM 2.1. It suffices to consider the case that X is scalar,
the general case being similar. Since X = m(Y) + ¢, we have that

[n/2)
n2(Ry = A) = n 2 Y (m(Yan) - m(Yarr)
i=1

[n/2] .
+n71/? Z [(5(2i)* _5(2i—1)*} - A]

i=1
[n/2]
+2n712 )] {m(Y(zi)) - m(Y(zi—l))}{E(Zi)* — E@i—1y%)
i=1
=C, +Cy + Cs.

C, = 0,(1) by Lemma A.3. Since the concomitants ¢, are independent with
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mean zero given the order statistics, it is easy to see that C, has mean zero
and that its variance is O(1) as long as ¢ has finite fourth moment and
[n/2]
Wn = n_l Z” E(E(zzi)*eéi—l)*) = 0(1).

i=1

By Cauchy—Schwarz it is easy to see that Em*(Y) < E(E(X*Y)) = E(X*) <
w and hence Ee¢* < ® and |W,| <n 'Y7 1E(e) ) = E(e*) < . Fmally, by
Lemma A.1 and Lemma A.3,
[n/2]
C; < 2n~1/2 Z |m(Y(2i)) - m(Y(zi—1))||5(2i)* - 8(2i-—1)*|
i=1

[n/2] N
<207V 26y — ) L |m(Yan) — m(Yaip)| = 0,(1),
i=1

where ¢, is the ith order statistic (not the concomitant) of the &’s. This
concludes the proof. O

We have also proved the following corollary.

COROLLARY 2.2.
w2(R, - A)
[n/2]
_ T
=n"1/?2 E (5(21’)* - 8(2;'—1)*)(5(2;‘)* - 8(2;‘—1)*) - n'?A + Op(]')
i=1

=8, +0,(1).

The study of the asymptotic distribution of S, is facilitated by Corollary 2.2
and the following notation. For a symmetric (p X p) matrix D = (dU®), let
vech(D) = (dY,...,d®Y,d® . . d®P)T be the (p(p + 1))/2 X 1) vector
of the unique elements of D. Let vec(D) = (d, ..., d®Y d@Y,
d®, .., d®P)T be the (p? X 1) vector of all elements of D. There exist
matrices ¥ and I' such that vech(D) = ¥ vec(D) and, for any vectors a, b
with @ = (a®, ..., a®)7, vec(ab”) = T vec(ba”). For any vector A, define the
matrix C = (¢U®) by

AT vech(abT + baT) = AT¥(I + I)vec(abT) = Y Y cUPagWp®),
ik
Define
V(y) = E(ssTlY =y); R(y)= cov{vech(ssT)lY =y}

G(y,2) = Z c(jk)c(l’”)V(ﬂ)(y)V(km)(z),
J.k,l,m

a2 = A cov[vech{V(Y)}]A + ATE[cov(vech(ssT)lY}]A +3EZ(Y,Y).
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THEOREM 2.3. In addition to the assumptions of Theorem 2.1, suppose that
forall 1<i,j<pand 1<kl <(p(p+1)/2 (2.1) holds for r =1, and
G = V@) gnd R*D. Then n1/2(A - A) ~q Z, where, for every (p(p + 1))/2-
dimensional vector A, AT vech(Z ) ~ N, o; 2).

Proor. We will apply Theorem A.4 with s, =n'% m, =I[n/2], & =
o-field generated by (Y7,...,Y,) and

T T
X,i=A VeCh{(E(zi)* - 8(2;‘—1)*)(8(2;‘)* - 8(2;'-1)*) - 2A>-

By Corollary 2.2, n'/2A7 vech(A,, — A) = n~Y2L[*/2X,; + 0,(1). We will con-
sider only the case that n is even. In this framework, (A.9) holds by definition.
Also, (A.12) is easily handled, as

s, L E(X,|%,)
1

[n/2]
=n" 2 Y ATvech{E(s(zl)*s(zl)* + E2i_1)%E@i-1) 2A|9")}
1

=n"12Y A vech{V(Y;) — A}
1

» N(0,A731),
where 3, = covivech{V(Y)}]. It thus remains to verify (A.10) and (A.11). With
X,,=X,, — E(X,,| %), we see that E(X2k|.9') = Var(X,,|.9,), so that by

conditional independence of the concomitants given %, and since E(¢|Y) =
we find that the Lh.s. of (A.10) is

[r/2} B (n/2]
n~' ¥ E(XZ|%)=n"" Z Var(A” vech(e;e7)|Y;} + n7! Z
1

where
&, = I (Yaiy Yai-1)

T T T
= Var{}\ vech(s(Zi)* Egi-1* T E@i-1)%E@i)* )l*%;}
‘?}

=Y zk: ZI Y c(jk)c(lm)V(ﬂ)(Y(Zi))V(km)(Y(zi_1)).

J m

3 k
Z eV )583)*5&;) 1) %

Observe that E|X|* < implies
(2.4) Elel* <o, E|V(Y)°<e and E|R(Y)|<.
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Thus it follows from Lemma A.2 that

[n/2] [n/2]

n~! 21: G (Yaiy, Yoioyy) =271 X G (Yaiy Yai))
1

3 DI VDIDY C("k)c(lm)V(ﬂ)(Y(zi))lV(km)(Y(zi)) - V(km)(Y(zi—l))l
j kB 1l m

—)pO

by the smoothness and finite second moment condition on the components of
V. Thus

[n/2] [n/2]
n~t Y F(Yai Yai-n) =271 L Z(Ya Yan) + 0,(1)
(2.5) !
[n/2]
=n"! El G (Ygi-1y Yai1)) + 0,(1).

Also by (2.4), E|Z(Y,Y)| < «, so that summing the last two terms in (2.5), we
have n"'L["/?g, -  (1/2)EZ(Y,Y). Hence, (A.10) holds with

o2 = E[Var{p” vech(eeT)lY}] +1EZ(Y,Y).

The proof is completed by showing (A.11), which is done in Lemma A.5 in the
Appendix. O

3. Asymptotics of Greenwood’s statistic. An important purpose of
this section is to show that the assumption E|X|* < » in Theorem 2.3 is
essentially necessary. To illustrate the point we consider the naive setting that
p=1and X =m(Y) for some monotone function m. As pointed out in the
Introduction, the asymptotic distributional behavior of _/'in is then closely
related to that of Greenwood’s statistic T, defined in (1.3). The distribution of
T, is generally quite difficult to handle [cf. Moran (1947) and Pyke (1965)]. In
this section, we single out some special cases for which the asymptotic distri-
bution of T, can be precisely determined. As a result, for those cases, we can
monitor the precise behavior of An and in turn gain understanding of the role
of the finite fourth moment condition in Theorem 2.3.

Throughout let X,,..., X, denote a sample of i.i.d. random variables and
let T, be as defined in (1.3). It is easy to observe that when the X’s do not
have bounded support, the extreme values of the sample will have a dominant
effect on the asymptotic distribution of T,. Therefore, to study the asymptotic
distribution of T,, the conditions appropriate are those that describe tail
probabilities of X. In this paper we are obviously not interested in giving a
complete general theory in that regard. With the main purpose described
previously in mind, we consider the situations where tail probabilities of X are
regularly varying and exponential-like.
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In the following, let E;, E;}

+, 1> 1, be ii.d. unit exponential random vari-
ables and define

J J
- ZI: Et—, I= 21 E;.

A function f is said to be regularly varying at « with index vy if

f(x) =x"L(x), x>0,
for some slowly varying function L [cf. Feller (1971)]. We now investigate the
asymptotic distribution of 7, assuming that both tails of X are regularly

varying with the same index. Examples of distributions satisfying this are the
nonnormal stable distributions.

THEOREM 3.1. Suppose 1 — F(x) and F(—x) are regularly varying with
index —a < 0. Suppose further that F(—x)/(1 — F(x)) - p/(1 —p)asx — »,
where 0 < p < 1. Write Fx(x) = P{|X| < x} and let its left-continuous inverse
function be Fy, I(x). Then, as n — o,

e

j=1

H1-p) T {(r;)‘”" - ()Y

Jj=1

Proor. First write

1 n—1
2 Z Xz+1 i 2
(Fxl(1-@/n)} i (Xirn = Xa)
1 2 n—k .
) Xiie1 i Xivy — X
(a1 - a/m)) {Z( I
n—1
+, Z ( G+1) (,))}
i=n—k+1

=T, (k) + T, 5(k) + T, 35(k).
By a well-known result in extreme value theory [cf. Proposition 1.11 and
Corollary 4.19 of Resnick (1987)],

( X(l) X(k 1) X(")
Fx(1- (1/n))" "7 Fx(1-(1/n))’ Fxl(1 - (1/n))’
Xin—k+1) )
|X|(1 (1/n))

)
d p gy p 1) l_p gy l_p .
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Applying the continuous mapping theorem [Billingsley (1968), Theorem 5.1],
as n — o,

k-1 “1/a ~1/a) 2

Toalk) + Too(k) 2o 2 £ {(17)77 = (27}
2/a 1/ ~1/a\2
+(1 -7 T {m)7 - ()T

and this limit converges almost surely to

P £ {0 = @) e £ ()T - )

Jj=1

as kB — o since

o

—_ @ _ - 2 _ o
kz1 {(Ffi) - (Fﬁ*l) v } = (Fki+1) 2 —-,:0 ask > o
+

Also note that

X X 2
T k < (n—k+1) (k) }
n,2( ) < { IXI(1 - (l/n)) |X|(1 (1/n))
d {(1 —P)I/a( I‘k+—1)_1/a _Pl/a(rk_l)_l/a>2 asn —
—,.. 0 ask > o,

Thus the result follows from Billingsley [(1968), Theorem 4.2]. O

Thus for the situation that p =1 and X = m(Y), where m is some
monotone function and X satisfies the assumption of Theorem 3.1, we have

s )

1/2 n

_{ Fx(1 1/(21/'2))} 0,(1).

Thus n'/?A, — 0 if a > 4 and is stochastically unbounded if « < 4.

Next we consider a different situation. First assume that F is unit exponen-
tial. By Renyi’s representation of order statistics [cf. David (1981)], denoting by
{E;} a sequence of i.i.d. unit exponential random variables,

k
(Xppl<k<n)=|Y E/(n-j+1),1<k<n|.
1



SLICED INVERSE REGRESSION 1049

Therefore,
n—1 n-1/ R n—1/F 2
2 i+1 i
Z (X(i+1)_X(i)) =d Z ( _+) =d Z (_") .
1 1\l 1 V!
Since S
® (B 2 L
EY (~) _2Y - <,
T\ 11
we obtain
n—1 9 © Ei 2
(3.1) ‘é (X(i+1) _X(i)) —d Zl (_l") .

It is interesting to note that the above elegant argument hides the fact that

(3.1) depends on the exponential distribution assumption in a rather mild way.

In the following we will show that (3.1) holds for a class of distributions whose

tails are exponential-like. Instead of using Renyi’s representation which only

applies to the exponential distribution, we use the domain of attraction theory.
Consider a distribution G such that G(x) < 1 for all x and

(3.2) G(x) =1~ 6(x) = e(x)emp( - [*_de/o()

where c(x) » some positive constant as x — «, ¢ is positive and differen-
tiable with ¢'(x) > 0 as x - ». (3.2) is sometimes called the von Mises
condition. A distribution function G satisfying the condition can be shown to
be in the domain of attraction of the Gumbel distribution; namely, there exist
a, > 0 and b, such that as n — «,

G"(a,x +b,) > exp(—e™¥), —0o <x < ®

[see Resnick (1987), Proposition 1.1]. We will confine to a subclass & of such
distributions G for which ¢(x) > ¢ > 0 as x — =, ¢ is differentiable from

some point on and
. 1 c'(x)
lljrclllol!;lf((b(x) - (%) ) > 0.
For any G € &, it is clear that for A large enough, there exists 6 > 0 such that
G(x +v) x+vf 1 c(t)
33) TG e"p{_f (5(5 G

) dt} < exp(—6x),

x>0,v>A.

The class & contains many distributions of interest, including the exponential
distribution, the Gumbel distribution, a class of subexponential distributions
and so on. However, & does not contain, for example, the normal or the log
normal distributions [cf. Bingham, Goldie and Teugels (1987)].

Suppose henceforth that both F(x) and 1 — F(—x) are in & with pairs of
functions (c,, ¢.,) and (c_, ¢_), respectively, in the representation (3.2). Also

v
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let 6 and A be such that the inequality in (3.3) holds for G(x) equal to both

F(x) and 1 — F(x). We consider the asymptotic distribution of T,
1 X1y — X2

LEmMma 3.2. For ¢ € (0,1) with IF~%&)| vV |[F~Y1 — &)l > A, we have

n—k
hm hmsupP{ Y (Xuey - X(i))z > 77} =0,

(3.4) ke now i=[n(-o)]
' [ne] )
hm lim supP{ Y (X — X)) > 17} =0
n—o i=k
for all n > 0.

ProoF. We shall only prove (3.4). Define X® = XI(|1X| < A) and X® =
X — X®, Clearly,
n—k n—k

2 2
Z (X(i+ n - X(i)) <2 Z (X((iA+)1) - X(‘ﬁ’)
i=[n(1-¢)] i=[n(1-¢)]
n—1 _ _ 2
+2 Z (X((iA+)1) - X((i%)) .
i=[n(1-¢)]

It follows from (3.3) that X[, _.; =, F~'(1 — &). Thus

n—k
P { (X - X$) > 0} < P(Xguaoep > A} - 0,
i=[n(1-¢)]
showing that L7_% (X&) — X{)* >, 0 as n - «. Thus, to show (3.4), it
suffices to show that
n—k _ _ 2
(3.5) hm limsup ) E(X((iﬂ)l) - X((,%)) =0.

koo nse i_(n(-e)
Integrating by parts,

— — 2 o — —

B) _ W) = Q) _xy®
E(XY), - X)) 2[0 “P( XL, - XY > x} da.
But, by (3.3),

{X(l+1) - X((l%) > x} P{X(i+1) - X(l) > x, X(l) > A}
= f Xivny — Xy > %|Xy = v} dFy (v)

0

L

Fx+v) "™

7o) dFy (v) < exp(—(n —i)dx).
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Hence
n—k _ 2 n—k ® )
Y B(X®,-XP) <2 ¥ [ xe iy
i=[n(1-e)] _i=ln-en 0
2 nzk 1 2 =21
= SE 2: o .2 S'_EE:'E,
i=tna ey (R = 0)* P

from which (3.5) follows. O

LeEmMA 3.3. For every fixed k > 2,

k-1 n—-1

2 2
Y (Xiwn—Xp) + X (Xern— X))
i=1 i=n—-k+1

k k
_ — \2
~g ¢_ L (~loglj +logT3,)" + 6, ¥ (—logIj'+ logT};,)"
Jj=1 Jj=1

Proor. The proof follows from the fact [cf. Proposition 1.1 and Corollary
4.19 of Resnick (1987)]

X + F~Y(1/n) Xy + F~(1/n) Xy — FY(1-(1/n))
¢_ 90y ¢_ ’ ¢+ ’
X(n—k+1) - F_l(l - (1/n))
v b,

—g(=logl'y,...,—logTy, —logI'f,..., —logI}") asn — o,

and the continuous mapping theorem. O

LEMMA 34. LetE; i>1, bei.i.d. unit exponentlals and T; = L/E;. Then
to(=logT; + log T;, )% », Z5_(~log T; + log T, ) as i - .

Proor.

E..\T E?,, 1
B(-tog 5 + g 5. - o1+ 22| < 22| - m(a e 5
J

J J

w1l tJ71 r'(j-2) t/-3
=2 - _tdt==2 N . _“ﬁ
Lﬁruf T(j) Lru—zf
2

“G-oG-y PP
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Thus

hd 1
EY (—logT; +logT, <2Z -0 ask > x,
j=k( ’ “) TS U-DG-2)

showing the lemma. O

THEOREM 3.5. Suppose both F(x) and 1 — F(—x) are in & and F~! is
continuous. Then

T, > b, L (“log I +1ogTfh,) + 6 L (—log Iy + log I}5,)".
j=1 j=1

Proor. Let £ > 0 be as in Lemma 3.2. Now write

n—1

2

T,= X (Xorp — X))
i-1

k—1 [ne] 2 [n(1-¢€)]—-1 2
= 2 (Xisp — (z)) + Z (Xarn—Xp) + X (Xern — X))
i=1 i=[ne]+1
n—~k 2 n-1 2
+ Y (Xaen—Xp)' + X (Xa+n — X))
i=[n(1-¢)] i=n—k+1

5
= Z Tn,m(k)’
m=1

Since, by Lemmas 3.3 and 3.4,
k-1

T, (k) + T, (k) =4 b }:( log I+ log I'},)"
=1
k- 2
+¢+Z( logl‘j2+logFj‘}1) asn—ow
Jj=1
¢_ L (~logIj +logI7;,)*
j=1

+¢, L (~logI'+logI};,,)" as ko,
j=1
it suffices to show [cf. Billingsley (1968), Theorem 4.2] that for any n > 0,
hm lim sup P{T, (k) > n} =0,

n-—>o

llm P{ T, s(k) >n} =0,
11m hmsupP{ T, 4(k) >n} =0,

n—oo

which follows readily from Lemma 3.2 and an application of the following
result. O
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LeEmMA 3.6. Suppose F is boundedly supported. Then
-1
:_LZ_:I (Xrn = X)) =5 0
if and only if F~1, the left-continuous inverse of F, is continuous.

Proor. Notice that F~! is continuous if and only if S, the support of F, is
a compact interval. The only if part if trivial. To prove the if part, let k£ be any
positive integer and @, o, ..., @;, ; be defined by
k—i ]

i
Q.= ; inf(S)+Esup(S), 0<i<k.

Also let p,, ; = F(Q,, ;). Under these assumptions,

X

(npe) p Qi 8Sn >, 0<i<k.

Thus
n—1 9 k-1 2
Z:l (X(i+1) - X(i)) = 'Zo (X(["Pk,j+1]) - X(["-Pk,j]))
1= Jj=

k-1 S) — inf(S)}?
- EO(Q’”“ Q) - {sup(S) _ inf($)}"

Since the left-hand side is independent of %, the conclusion of the if part
follows upon letting & — . O

Finally we remark that in our proofé, exponent 2 in T, can be replaced by
any finite number no less than 1 and all the results will remain correct with
minor modification.

APPENDIX

Technical results. We include in the Appendix the technical results as
well as some technical details required in Section 2.

LemMa A.l. Suppose that Z,,...,Z, are an i.i.d. sample and r is a
positive constant. Let Z;, be the ith order statistic. Then
nY (| Zgny | +1Zyy[) = 0,(1)
if and only if x"P{|Z] > x} - 0 as x — .

Proor. We deal only with the largest order statistic. It follows that for any
v>0,

P{Z, < vn'/"} = P Z < vn'/"},

which tends to one if and only if x"P{Z > x} > 0 as n — . On the other
hand, it is obvious that P{Z,, > —vn'/"} - 1. This ends the proof. O



1054 T. HSING AND R. J. CARROLL

LemMMA A.2. Let H and G be real-valued functions on (—w, ) such that H
is bounded on any compact set and G satisfies (2.1) with r = 1. Suppose that p
and q are constants in (1,) with 1/p + 1/q = 1 and for which E|G(Y)IP < »
and E|H(Y)|? < ., Then

(A1) a7t _Z_:z(IH(Ym)I +|H(Y(i_1,)|)|G(Y(,~,) - G(Y;-p)| >, 0.
(A.1) also holds under (2.1) withr = 1, E|G(Y)| < © and H = 1.

Proor. For any 0 <& < 1/2, there exists a compact set such that the
probability that both Y, and Y, _5, belong to the set tends to 1. By this
and the assumption that H is bounded on any compact set, the proof is based
on the following two facts:

[n(1-8)]
(A2) nt Y |G(Y,) - G(Yyy)| >, 0, 0<b<i,
1

[né

and (by Holder’s inequality)

[ns]
;in}) limsupP{n_1 Y IG(Y(i))Ip > c}
- 1

n—o

[r&]
+ ;in}) limsupP{n_l Y IH(Ya))Iq > c}
hd n-—oo 1

(A.3) "
+ lim limsupP{n'1 Y |G(Y(i>)|p > C}
50 pow [n(1-8)]

n
+ lim limsupP{n_1 o IH(Y(i))Iq > c} =0 ¢>0.
2 [n(1-)]

-0 n—o

We now show (A.2). Fix § € (0,1/2). Let F be the distribution function of Y
and F~! the left-continuous inverse of F. Define A, = K5y > F~Y(B)} and
B, = {Y,_s, < F7'(1 — B)} for 0 <B < 5. For some >0, E(A,) > 1
and E(B,) — 1. Thus (A.2) follows from

[n(1-8)]
nt ¥ |G(¥) - G(Ye-1)|A.B, =, 0,

[né]

which, in turn, follows from (2.1) with » = 1. Next we show (A.3). The proofs
for the four terms tending to zero are identical. To demonstrate we consider
only the first term. Thoose 8 > 0 such that

(A4) ElGY) Iy < F-Y(B)} <e.
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For this B there exists 0 < § < 1/2 such that
(A.5) P{Y(5y > FY(B)} 20 asn o,
Then

[rd]
= Eow)f > <)
[r8] »
< P{Ygusp > F7H(B)} + P{Y([nsp <FYB),n ' L |G(Yu)| > c}
1

= P{Y([nsp > F_I(B)} + P{n_l Z'll |G(Yz)|rI{Yz <FY(B)} > c}.

These terms converge in probability to zero by (A.5) and (A.4), respectively.
This shows (A.3) and concludes the proof. O

The following result uses slightly different ideas.

LEMMA A.3. Let G be a real-valued function on (—o,) and let r be a
positive constant. Suppose that for all B > 0, (2.1) holds and for some B, > 0,
there exists a nondecreasing function G on (B, ) such that

G'(y)P{Y|>y) >0 asy—o

and

1G(x) - G(9)] <|G(lxl) — G(lyD)]

(A6)
forx,y € (—00’ _BO) or (BO’OO)‘

Then for each s > 1,

n=*/r _Z_:2|G(Y<i)) - G(Y_p)| =, 0.

Proor. If Y is boundedly supported, then the result follows easily from
the condition (2.1). Suppose that the support of Y is unbounded. It suffices to
show that

[n(1—8)] .
(A7) n/m Y |G(Yy) - G(Yeoy)| =0, 0<8<3
[n3]

and, for ¢ > 0,

[n&] s
;in(l) limsupP{ s/ Z lG(Ya)) G(Y(i—l))l > c}

(A.8)

-0 pow

n
+ lim limsupP{n‘s/’ Y |G(Y(i)) - G(Y(i_l))ls > c} =0.
[n(1-8)]
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(A.7) is proved in much the same way as (A.2), hence we only prove (A.8).
Choose 6 > 0 small enough so that EA, — 1, where A, = I{Y,5; < —By}. By
(A.6) and the monotonicity of G, we have that

[né]
n=s/r Z |G(Yy,) - G(Y(, 1))| A, <n>®/" IG(Ya)) G(Y([nap)l

which tends to zero by Lemma A.1. The other tail can be handled the same
way. This completes the proof. O

THEOREM A.4. Let {s,} be a sequence of positive constants, { X, k} a triangu-
lar array of random vanables fork=1,...,m, and n =1,2,3,..., and &,
a sequence of o-fields. Define X,, = X, — E(X,, W F). Fmally, assume that

(A9) X.15---» X, m, areconditionally independent given &, ;
m, .
(A.10) 5.2 L E(X%| ) -, o
1
m, _
(A1l) foreveryc >0, s;2) E{kaI(IXnkl > csn)|.9,;} -, 0;
1

mn
(A.12) s, 'Y E(X,,| %) =_ some distribution G.
1

Then the limiting distribution of s,;'L7"X,, is the convolution of G and
N(0, o?).

ReEMARK. (A.11) is a conditional version of the classical Lindeberg condi-
tion. In this paper, the major difficulty in applying Theorem A.4 is the
verification of (A.11); see Theorem 2.3 and Lemma A.5. It is interesting to
compare Theorem A.4 with other existing conditional central limit theorems,
in particular, central limit theorems in the contexts of martingales and ex-
changeability. For example, a major difference between this result and a
well-known martingale central limit theorem, Theorem 3.2 and Corollary 3.1
of Hall and Heyde (1980), is that there the roles of (A.10) and (A.12) are in
some sense reversed, making the limit distribution a mixture instead of a
convolution; see Hall and Heyde (1980) and Taylor, Daffer and Patterson
(1985).

PrOOF OF THEOREM A.4. Let 52 = L*E(X2,|%,) /02 By (A.10), it suffices
to prove the theorem for T, = 5, lymaX, .. Write

Z,= exp{(it/sn)mgnE(XnklZ)}-
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The characteristic function of T, is

. - itXnk
Elexp(itT,)} = E{Z, exp| . — =A,+B,,
P 1 n
where
M itX .
An=E Znexp ZEexp §"k)_19;}])’
1 n
. itX
B,=EZ,D, = EZ,| [1E|{exp g"”) 9;}
1 n .
Mn itX,
—exp| Y E exp( F k) —137,',” .
1 n
Define
m, itX, X, t2X2 ]
C,=exp| ) E{exp ,k)— _ rk — 9,',}
1 sn n 2sn J

Since E(X,,|.%) = 0, we see that

2 m,
Z,C, exp{— 2t—sz 21 E(X2, y)}] =E(e"'"72,C,),

A,=E

so that
|A, — e"**/2E(Z,)| < e=**/2E(|Z,| IC, — 1]) = e~**/2E|C, — 1I.
Thus, in view of (A.12), the theorem follows if we prove that C, —»; 1 and

D, —; 0. Now observe that with probability 1, both C, and D, are bounded
for eacim fixed ¢. C, is bounded since

m itX, iX,, t2X?
Z{ ( k)_1_~k+ ~2k

1 Sn 2sn
The second term of D, can be considered in exactly the same way, showing
that |D,| < 1 + exp(¢20-2). Thus L, convergence of C, and D, is equivalent to
convergence in probability. We therefore first show that log(C,) —, 0. Now,
for ¢ > 0,

n

21413
2] if x| < o
. ——, iflx| <c5,;
ixt L ixt  x2t? 652 ’ »
P 5, 5, 252 x2¢2

if |x| > ¢§,,.
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Thus
1 ™n X2, 1t
llog(C,)| < =z X { (1Z,el < c5,) |
6 1 .\ sn
m,, ~ ~2 t2
+ ¥ E{I(1X,, > c5,) —5— 93,}
1 n .
co'zltl3 t2
< Z E{kaI(IX Wl > c3,) }

By (A.10) and (A.11), the second term converges to zero in probability. Letting
¢ — 0 shows that log(C,) —, 0. Next we show that D, —, 0. For each ¢ > 0,
there exists 0 < § < 1 such that if |x| < &, then Iexp(x) —1— x| <é&lx|. Fix
such a (¢, 8) pair. Let G, = maxlsksmnIE{exp(tink/s ) — 1|.%}|. Using the
inequality |T1{x; — I{"y;| < Trx; — ;| for Iz, ly;l <1 and the fact that
E(X,,|#,) = 0, we have that

ID,II(G, < &)
mn itX,,, ] itX,,,
<Y expLE exp| — - 1|% )| — E{exp| — F (G, < 8)
1 n n
™ itX ]
=) expEexp( ,"k)—l,?,;} -1
il n _
itX
-E exp( g"” - 1|ZHI(G, < 6)
m, v m, B ca2t?
<e) E{exp "k) —192} S?ZE(X,?JZ):
1 n n

Again usmg the fact that [D,| <1 + e’ , this means that |D,| < ea?t2/2 +

1 + et )I(G > §). Since & was arbltrary, it suffices to show that G, —, 0.

But for any fixed ¢ > 0,
2[t|

< — max EIX
§ l<k<m,

wl | 72)

n

2s,clt|

-~

Sn

2|¢|

max E(IXnkII(IX,,kI > cs )l?’)

S, l<k=<m,

2s,clt| N

-~

Sn

20t e .
o 5 21 E( 2l (1X 0l > csn)l.?,',).

By (A.10) and (A.11), the second term converges in probability to zero for any
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fixed c; letting ¢ then go to zero concludes that G, —, 0 and hence D, -, 0.
This completes the proof. O

LEMMA A.5. Assume that the conditions of Theorem 2.3 hold and let
$,,m,, %, X,; be as defined in the proof of Theorem 2.3. Then (A.11) holds.

Proor. Note that
X, =U;+ Uz - Us,

where

U, = AT VeCh{s(zi)*a(gi)* - V(Y(zi>)}?

Uy =A" VeCh{5(2i—1)*5(T2i—1)* - V(Y(Zi—l))};

Ug=AT VeCh{E(Zi)*E(TZ‘i—l)* + 8(2i—1)*8(T2i)*}

= NTW(I + T)vec{e iy« 651y }-

To prove (A.11), it suffices to show that for 1 < j, k < 3, and for any n > 0,

[n/2]
Kj=n"' ¥ E{UZI(Uyl > nn'/?)| %} -, 0.
1

For j=k=1or j=Fk =2, we have
K; < 2Pt ¥ B|(led* + V(7))
i=1

x{I(lei? > nnt/2/2) + I(V(Y)| > 7n'/2/2)}|¥],

which converges in probability to zero by dominated convergence since Ele|* <
® and E|V(Y)? < .
If j=1, k=2 (and similarly for j =2, k = 1), since U; and U, are
independent given %, we get
[n/2]
Kip=n"' ¥ E(UA%)E(I(Ugl > nn'/?)| 7}
1

[n/2]
= n"t L AR(Yen)AE({I(Usl > nn'/?)| 7}
1

Again applying Lemma A.2, we have K, = K5, + 0,(1), where

[n/2]
Kipy = n~! E ’\TR(Y(2i—1))AE{I(IUi2| > nn1/2)|5;;};
1

Kyps| < n1 Y WTR(Y,)AE{I(| A vech(ee — V(Y;))| > nn'/?)},
1

which converges in probability to zero since E|R(Y)| < » and by an applica-
tion of dominated convergence.
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For j =3, k=1 (and similarly if j =3, & = 2), first recall that U,
r,z,clm )ag{)*e((m) %~ Since &g, and ey, ), are independent given .9’,',,
we have

e

I

S

L
™
™
M
M -
«

c(lm)c(rS)V(ms)( Y(2i B 1))
1 1/2
XE{eBh« 68+ (U] > nn'/?)| F, ).

By an application of Lemma A.2, in (A.13) we may replace Yy;_;, by Y5, in
which case (A.13) is bounded by

n

ntY Y Y Y XY |c(l'")c(’3)|E<|V(mS)(Yi)Egl)Egr)l
Il m r s

1
XI(|A"{e;ef = v(Y;)}| > nn'/2)|Y;},
which is easily seen to converge in probability to zero.
For j = 1, k = 3 (and similarly for j = 2, k = 3), it suffices to show that for
any n > 0,

[n/2]

nt Y E{[ATvech{e@»*eéi)* B V(Y<2i>)}]2
1

XI(|)¢T vech(s(Zi)*g(zi_l)*)| > ,qnl/z)lg;} >, 0.

Using the fact that I(1X;X,| > ¢) < I(IX,| > ¢'/?) + I(|X,| > ¢'/?), by consid-
ering individual elements it suffices to show that 7,,, —, 0, T,,, -, 0, where
for any (I, m,r),

[n/2]
_ 2
! Z {{5(20*5((5’:))* - V(lm)(Y(Zi))} I(IE((zrz))*I > "71/2”1/4»%}'

[n/2]
_ 2
' Z {{5(20*5((57))* = VO™ (Y} I(1e5-1y41 > "71/2"1/4)|‘5 "}’

Since
<n'Y E{{eﬁ”sﬁ'") - V”'"’(Yi))zl(|8§')| > n1/2n1/4)|Yi},

1

we clearly have T,; —, 0 by the conditions Ele|* < o, EIV(Y)|® < and
dominated convergence. Again, applying Lemma A.2 we have

[rn/2] 2
T,,= nt Z E{{5f§-1)*5((§?—1)* - V(lm)(Y(2i—1))}
1

XI(je-pys| > n'/2014)| F} + 0,(1),
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where the first term has expectation converging to zero by dominated conver-
gence since E|R(Y)| < oo,
Finally, for j = k = 3, it suffices to show that for any (I, m,r, s, u)
[n/2] oo
n~t Y E{E((Q)*E((Z”:))* EG-1)* 63— 1y I(|E((éli))*| > 171/2”1/4)|*9;¢} -, 0.
1

This is a consequence of the Schwarz inequality and dominated convergence
since Ele|* < . O
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