The Annals of Statistics
1992, Vol. 20, No. 2, 807-831

MINIMAX ESTIMATION OF A CONSTRAINED
POISSON VECTOR
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Stanford University and Université du Québec @ Montréal

Suppose that the mean 7 of a vector of Poisson variates is known to lie
in a bounded domain T in [0, ©)?. How much does this a priori information
increase precision of estimation of r? Using error measure L ,(%; — 7,)?/;
and minimax risk p(T'), we give analytical and numerical results for small
intervals when p = 1. Usually, however, approximations are needed. If T
is “rectangulary convex” at 0, there exist linear estimators with risk at
most 1.26p(T). For general T, p(T) = p%/(p + AM(Q)), where A(Q) is the
principal eigenvalue of the Laplace operator on the polydisc transform
Q = Q(T), a domain in twice-p-dimensional space. The bound is asymptoti-
cally sharp: p(mT) = p — A(Q)/m + o(m ™). Explicit forms are given for
T a simplex or a hyperrectangle. We explore the curious parallel of the
results for T with those for a Gaussian vector of double the dimension

lying in Q.

1. Introduction. In many estimation settings, there is definite prior
information concerning the values of a parameter vector 7. There may be
bounds on the individual components 7,—‘all 7; lie between 0 and 1”’—or on
particular functionals of the whole vector—*the sum of r; is at most ¢ or
“most 7; are zero.” Many estimation methods have been developed to capital-
ize on such information, positivity-constrained least squares and maximum
entropy being just two examples.

How does one compare the performance of various possible estimators when
such prior information is present? One common, admittedly conservative,
approach is the worst-case analysis: Given some error measure, compute the
maximum expected error over the restricted parameter space, and then seek
the estimator that minimizes this maximum risk. The resulting best or
minimax risk provides (i) a benchmark against which to measure other estima-
tors and (ii) a measure of the value of the prior information (by comparison
with the minimax risk computed ignoring the prior information).

For Gaussian data, a considerable literature has recently arisen relating
such minimax risks to the size and shape of the constraints and to the
structure of the loss function. Some references are given in Section 6. This
paper and its companion, Johnstone and MacGibbon (1990) (hereafter called
IT) consider some corresponding questions for Poisson models. As prototypical
discrete data settings, these deserve study in their own right. In fact, Aldous
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808 I. M. JOHNSTONE AND K. B. MACGIBBON

[(1989), page 17] even argues that Poisson approximations arise in more
contexts than Gaussian approximations.

Here is an evocative, but hardly exhaustive, list of count data settings in
which constraint information is available.

1. Mixture problems in which the proportions of various components are
sought and bounds on the total quantity of material are available; for
example, in various modes of spectroscopy.

2. Spatial process settings in which a bound on the total possible intensity of
the process over a set A may be known, but the distribution of the
intensities amongst members A; of a partition of A may be unknown; for
example, metabolite distribution in emission tomography.

3. Thinning problems, in which Poisson processes of known rates are sub-
jected to an unknown degree of thinning before observation, and it is
desired to estimate the thinning fractions; for example, in shielding of
radioactive sources.

4. Sparse signal settings in which it is known that only a small fraction of the
components of the parameter vector will be nonzero, as, for example, in star
maps.

To be specific, suppose that X is a random vector whose p components X;
independently follow Poisson (7;) distributions. We consider estimation of
T=_(71,..., 7,) with the prior information that 7 € T, a subset of R? = {r €
RP: 7, >0V i}.

We use a quadratic loss function which has been normalized by Fisher
information I(7) = diag(s; !); namely,

L(3,7) = ¥ (8; = :)*/m: = (8(X) = 1)"I(7)(8(X) — 7).

This loss function is a commonly used compromise between mathematical
tractability and statistical relevance; it is discussed further in Section 6. The
expected error or (frequentist) risk is R(5,7) = E, L(8(X), 7). As a measure of
- the information in the experiment, we study the minimax risk

(1) p(T) = inf supR(45, 1)
& 7€T

in both finite and asymptotic settings. If 7' = R?, then the minimax risk
equals p, the number of variables observed. So our main question becomes:
How much does restriction to a subset T C R? reduce the minimax risk and
what is an (approximately) minimax estimator?

Unfortunately, exact analytic description of the minimax rule and risk is
generally intractable, since the minimax rule is a Bayes estimator for a prior
F¥*, the least favorable distribution, which is necessarily concentrated on a
meager set of complicated form. Some analytic work is possible in the simplest
cases, where the support of F* consists of a small number of points (Section
2). However, the bulk of this paper is concerned with deriving approximate
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information of various kinds. These may be grouped under the following
headings:

1. Numerical calculation (chiefly for p = 1) (Section 2).
2. Simpler classes of estimators (Section 3).

3. (Lower) bounds (Section 4).

4. Asymptotic approximations (II).

When T is a small or moderate sized interval [0, m) in R,, or more
generally a hyperrectangle in R?, it is possible to generate the least favourable
distribution, minimax rule and minimax value numerically; explicit details are
presented in Section 2.

The simplicity of estimators that are linear (strictly speaking, affine linear)
in the data makes it natural to ask how much is lost by restricting attention to
this class. Explicit calculations are possible for such estimators, and often
there is not much loss in efficiency; details are given in Section 3.

For larger rectangles and more general sets, approximations appear neces-
sary, either via lower bounds or asymptotics. In each case, a fundamental role
is played by a many-to-one mapping 7: R?? —» R?,

. 2, 2 2 2
(2) T (01, Wy ..., Wy, _1, Wgp) = (w1 + w3, 05, 1+ wzp).

Note that 7 denotes both the function 7(w) and a point in its image, T, the
Poisson mean parameter space. We call the set Q =7 XT) the polydisc
transform of T. The name reflects the fact that the transform of a rectangle
[0,a] c R2, namely

. w2 2 -
{w.a)Zi_1+a)2i$ai,l— 1,...,p},

is termed a polydisc in function theory.

The inverse mapping 7~ ! is a “dimension-doubling’” version of the tradi-
tional square-root variance stabilising transformation for Poisson data. It is
explained further in Section 4. The virtue of the polydisc transform is that it
converts relatively unpleasant optimization problems for T into the well
understood Dirichlet problem for the Laplace equation on (). For example,
Section 4 gives lower bounds for p(T') in terms of the minimal eigenvalue of
the Laplacian on ().

An asymptotic theory is obtained by approximating p(mT) as m — «. If the
variables X; in the original setting are obtained from observing a Poisson
process for a certain time, the asymptotic formulation corresponds to long
observation times on the process. The polydisc lower bound derived in Section
4 is sharp to second order asymptotically. This result is stated informally in
Section 5, with formal statement and proof given in II.

Section 5 also evaluates the polydisc transforms and lower bounds in a
number of important examples, and discusses the connection with isoperimet-
ric inequalities. Finally Section 6 contains references to the literature and
further remarks and Section 7 contains proofs. We conclude this section by
collecting notation and definitions for later use.
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NotaTioN. ZP2 = {n € ZP: n; > 0 for all i}. Derivatives are denoted by D;:
D;u = (3/3x,)u(x), or D, when the variable of differentiation is shown explic-
itly. If ¢ = (,...,,) is a vector field, D - ¢ = L, D;4;.

Let X c R?. Then CX(X, R?) denotes the space of k-times continuously
differentiable functions defined on and having compact support in X (in the
relative topology of X) and taking values in R”. Often this is written simply
as CX(X), or as C¢ when X = R”.

DerFiNiTIONS. (i) We assume throughout that T is relatively open in RZ: T
equals the intersection with R% of some open set in R?. We call T' a domain if
it is R? open and connected. Since the continuity of risk functions ensures
that p(T') = p(T'), we may and shall by convention choose T' so that 7' = int T'.

(ii) The ith face of R?, & = {r € R2: 7, = 0}, is a critical face for T if T

intersects %. Denote by I = I(T) c {1,..., p} the set of indices of critical
faces. Throughout the paper, we restrict attention to the class of estimators

(3) D =D(T) = {5(x): x; = 0 and i € I(T) implies 5,(x) = 0},

since estimators not in D are easily seen to have infinite maximum risk.
(iii) For a (prior) probability distribution F(d7), define the integrated risk
r(8, F) and the Bayes risk r(F) by

(4) r(5,F) = [R(3,7)F(dr), r(F)= infr(sF).

(iv) Let F*(X) denote the collection of probability measures supported in
X. According to the minimax theorem,
(5) p(T) = inf supR(8,7) = sup infr(s,F) = sup r(F).
D T F*T) D FX(T)
A prior distribution attaining the supremum is called least favorable for T.
When T is compact, least favorable distributions exist.

2. Analytical and numerical results for p =1. When p =1, it is
feasible to determine the minimax risk and rules by explicitly constructing the
least favorable distribution. Consider an interval T = [m, m,] with 0 < m, <
my < . Concavity arguments given in II show that the least favorable distri-
bution F,, . is unique, and analyticity considerations imply that it is sup-
ported on a finite number of points in [m,, m,]. Denote by &, the probability
measure concentrated at 7 = b. Let %[ m,, m,] be the class of distributions of
the form F = F(a,b) = £%_,a,z,, where {b;} c[m, m,] and {a,} are proba-
bility masses summing to 1. The Bayes rule &5 associated to such a prior is
given by

1 Tk iabre b

6 (%) = B X —x) T Thjabi e

with the convention (3) requiring that 87(0) = 0 if m, = 0. The least favor-
able distribution F,, ., - belongs to F[m,, m,] for k large enough. The
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optimization problem is then to choose a,...,a;,by,...,b,, constrained as
above, so as to maximize

ri(a,b) =r(F(a,d)) = Zk: a;R(8F, b;).

i=1

For identifying the maximum, we recall an important and familiar criterion:

LEmMA 1. If the support of a prior F(dr) is contained in the set at which
R(8F, 7) achieves its maximum on [my, m,], then F is least favorable and 8 is
minimax.

Analytical descriptions for [0, m], m small. When m is sufficiently small,
it is plausible that the least favorable distribution F,, = on [0, m] would
be given by a point mass at m. For the one point prior F = em, from (8) and
(6), the corresponding Bayes rule 8z(x) = mI{x > 0}. The risk function

R(8p,7) =71 "+ 177 (71— m) (1 —e’ ")

takes values m? and me ™ at 0 and m, respectively. Let mg = 0.57 be the
solution to m =e™™: For 0 <m < m,, R(8p,7) takes its maximum at the
endpoints of [0, m], and so Lemma 1 shows that 5 is minimax.

For slightly larger m, one expects a second support point to appear at 0. For
the two point prior a¢, + (1 — a)e,,, the Bayes rule has

0, ifx=0,
(7 Sp(x) ={m(l—a)e™/[a+ (1 —a)e™], ifx=1,
m, if x > 2.

The risk function of 8 is again available explicitly:
R=R(bp,7) =€ [r+ (8, - 7)° + (m —1)*r ("= 1-1)].

If 65 is to be minimax, then necessarily R(65,0) = R(85, m) and this forces
(8) op (1) =(e™ - 1)_1[—m + (m2%™ + me™ m)l/z].

Along with (7), this determines the value of a. In the Appendix, we verify that
this prior is least favorable for m, < m < m,, where m, = 1.27 is the first
positive zero of the equation

(9) (1 +65(m))* =2+ m2/2.

In summary, we have:

+THEOREM 2. If 0 <m < m, = 0.57, the least favorable distribution F,,
€ms O (x) = mI{x > 0} and p(0,mD) =me™. If my<m < m; = 1.21, the
least favorable distribution F,, = a &, + (1 — a,,)e,,, 85 is given by (7) and
p(0, m] = &% (1) [cf. (8)].
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TaBLE 1
Least favorable distributions and minimax risk on [0, m] as a function of m*

m a, a; ag a4 b, b, by by, px(m)(2) py(m) p/p (<)
0.100 1.000 0.090 0.091 1.005
0.200 1.000 0.164 0.167 1.018
0.300 1.000 0.222 0.231 1.038

0.0 0.330 0.375 1.138
0.0 0.396 0.474 1.197
0.0 0.447 0.545 1.221
0.080 0.483 0.600 1.241
0.133 0.515 0.643 1.249
0.143 0.524 0.655 1.250
0.152 0.533 0.667 1.251
0.159 T 0.542 0.677 1.251
0.164 0.550 0.688 1.250

0.600 0.976 0.024
0.900 0.851 0.149
1.200 0.807 0.193
1.500 0.738 0.262
1.800 0.673 0.327
1.900 0.655 0.345
2.000 0.640 0.360
2.100 0.626 0.374
2.200 0.613 0.387

2.300 0.602 0.398 E 0.558 0.697 1.250
2.400 0.592 0.408 0.173 0.565 0.706 1.249
2.700 0.561 0.421 0.018 0.195 0.0 0.585 0.730 1.248
3.000 0.526 0.422 0.052 0.231 0.0 0.603 0.750 1.245
3.500 0.480 0.441 0.078 0.264 0.0 0.628 0.778 1.238
4.000 0.448 0.461 0.091 0.281 0.0 0.650 0.800 1.230
4.500 0.413 0.435 0.152 0.321 0.040 0.669 0.818 1.223
5.000 0.383 0.425 0.192 0.349 0.056 0.685 0.833 1.216
6.000 0.339 0.420 0.237 0.005 0.384 0.073 0.0 0.713 0.857 1.202
7.000 0.301 0.392 0.265 0.043 0.423 0.113 0.0 0.735 0.875 1.190

0.447 0.131 0.003 0.754 0.889 1.179
10.000 0.226 0.336 0.295 0.143 0.497 0.190 0.035 0.783 0.909 1.160
11.500 0.202 0.322 0.310 0.165 0.518 0.208 0.039 0.801 0.920 1.149

*Least favorable distribution has the form F,, = T%_ja i€p;m» Where for m < 11.5, & < 4. Note
that 1 =g; = B, = B3 = B4 and that the corresponding probability masses a; sum to 1. p(m)
gives a (lower) bound to the minimax risk, p;(m) = m /(1 + m) gives the linear minimax risk.

8.000 0.273 0.380 0.289 0.058
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Numerical descriptions for [0, m], m moderate. As m increases further,
extra support points are necessary between 0 and m. As mentioned above, the
least favourable distribution F,, and hence 6 and p(m) = p((0, m]) can be
determined numerically since an optimization over a fixed number of support
locations and masses is required. Since F,, and p(m) depend continuously on
m (Lemma 10 in the Appendix), the optimization can be done incrementally.
Since a rule is minimax if and only if the atoms of the prior are contained in
the set where the resulting Bayes rule achieves its maximum risk, we have a
check (up to numerical accuracy) that a candidate prior F is indeed least
favourable.

Selected results of the numerical optimization are displayed in Table 1 and
in Figure 1. A fuller version of Table 1 may be found in Johnstone and
MacGibbon (1990). The figure shows the variation with m in the support set
of the least favourable distribution and in the prior masses attached to each
such support point. Note the generally continuous dependence of the least
favorable distribution on the interval [0, m]. Exceptions occur at certain
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F1c. 1. Evolution of least favorable distributions on [0, m] as m increases. Solid lines indicate
(as a function of m) the location of the support points. Vertical distance from solid line to adjacent
dotted line equals prior probability mass at that support point (as a function of m).

critical values at which new support points appear in order to pin down the
risk of the minimax rule. The support points become more widely separated
for larger values of 7: The variance stabilising transformation would produce a
more regular spacing. The asymptotic results for large m of II, summarised in
Section 5, show that this spacing would not be uniform.

3. Linear versus nonlinear estimators.

3.1. Rectangularly convex sets containing 0. We begin with intervals
[0, m] c RL. The minimax risk amongst linear rules 8(x) = a + bx is easily
found to be p;(m) = m/(1 + m) and is attained by 8(x) = mx/(m + 1). The
subscript N added to p(T') emphasizes the distinction between linear and
nonlinear rules. The function u(m) = p;(m)/py(m) is continuous on (0, )
and approaches 1 as m — 0 and «, so that u* = sup,, u(m) < . For the
Gaussian case with squared error loss, this phenomenon was noted by
Ibragimov and Has’minskii (1984).

Table 1 shows the ratio u(m) = p;(m)/py(m), which may be thought of as
the cost due to restricting attention to the linear subclass (cf. also Figure 2).
The table suggests that the ratio never exceeds u* = 1.251. [This sort of
numerically derived upper bound could be verified rigorously along the lines of
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Fic. 2. (a) Linear py(m), nonlinear py(m), lower bound pg(m) = 1/(1 + 5.783/m) and asymp-
totic [pp(m) ~ 1 — 5.783 /m] approximations to minimax risk for T = [0, m] as a function of Vm.
(b) Ratio of linear to nonlinear minimax risks pr(m)/pyn(m).
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the extensive appendix to Donoho, Liu and MacGibbon (1988). In the interests
of conserving space, we do not do this here.] It is remarkable that the bound on
the ratio of the linear minimax risk to the minimax risk for such intervals
appears to be almost (but not exactly) equal to the numerical value of 1.247 of
the analogous bound for Gaussian intervals found by Donoho, Liu and
MacGibbon (1990). In fact, using global decomposition optimization tech-
niques, Gourdin, Jaumard and MacGibbon (1990) showed that u* in the
Poisson problem is contained in the interval [1.250726, 1.250926], while the
Gaussian constant u* is contained in [1.246408, 1.246805].

Since both minimax linear and minimax risks for hyperrectangles [0, 7]
equal the sum of the corresponding coordinatewise risks, it follows immedi-
ately for such hyperrectangles that the ratio of minimax linear to minimax
risks is bounded by p*. Clearly this holds also for infinite-dimensional hyper-
rectangles of the same form for which the minimax linear risk is finite.

The bound u* actually applies to wider classes of sets. Call a set T'€ R?
rectangularly convex at 0 if whenever 7 € T, the hyperrectangle [0,7] c T
also. Examples of such rectangularly convex sets include /9 bodies

P
T, = {’r >0: Y (a;m)" < 1} forg = 1.
i=1

Thus simplexes, ellipsoids and, of course, hyperrectangles are included. For
rectangularly convex sets, the difficulty of T' (in the sense of minimax risk) for
linear estimates equals the difficulty of its hardest rectangular subproblem:

LemMmA 3. If T is compact, convex and rectangularly convex at 0,

pu(T) = sup p([0,7]).

Proor. This is similar to, but somewhat simpler than, the correspon-
ding Theorem 7 in Donoho, Liu and MacGibbon (1990). Indeed, let J(7) =
pr(0,7]) = L ,;7,/(1 + 7,) denote the linear difficulty of [0, 7]. Let m denote the
(unique) maximum of J over T and §,(x) = m;x;/(1 + m;) denote the
corresponding minimax rule. It suffices to show that R(§,,,7) attains its
maximum over T at m, for then

supp.([0,7]) < pr(T) < supR(5,,,7) = R(6,,,m) = p,([0,m]).

But convexity of T' and the maximum property of m guarantee that

d TTm; _
Ozb;J[(l—a)m+sﬁr]s=o=zi:(—’;i—:l—)z—R(&mT) J(m). O

Since pp(T) = px([0,7]) for any 7 € T, Lemma 3 and our Ibragimov-
Has’minskii bound yield:
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ProposiTiON 4. If T is compact, convex and rectangularly convex at 0,
then

pr(T)/pn(T) < p*.

Thus linear and nonlinear minimax risks are essentially equivalent for I
balls, in sharp contrast to the situation in the corresponding Gaussian setting.
Theory developed by Donoho, Liu and MacGibbon [(1990), Section 7ff] and
Donoho and Johnstone (1989) indicates that near equivalence of linear and
nonlinear minimax risks depends on the relative convexity of the parameter
space and the loss function. Since the polydisc transform of the I, ball is
quadratically convex and the transformed loss function is quadratic, the near
equivalence found in Proposition 4 is not surprising. On the other hand, we
conjecture that the minimax nonlinear risk will be significantly smaller for sets
T whose polydisc transform is not quadratically convex.

3.2. General hyperrectangles. We make a start on extending this theory to
more general rectangles [m,, m,]. When [m,, m,] C R, denote the affine
minimax risk obtained by restricting attention to estimators 6, ,(x) = ax + b
by py(m,, m,). The risk function of an affine linear rule is convex:

(10) R(8,.5,7) =a - 2b(1 —a) + (1 —a)’r + b%/r

and the optimal affine linear rule is quite easily determined (see Section 7 for
the proof).

LemMA 5. Let v =y/m, — {/m,. Then
2

v2%x + \fmym,

v
(11) pr(my,my) = 142 and &*%(x) = T

It is easily checked that m, < 6*(m,) and 6*(m,) < m,, so that * maps
[m,, m,] into itself. Recalling the square-root variance stabilizing transforma-
tion, one sees that (11) closely matches the corresponding results for the
one-dimensional Gaussian shift experiment which it approaches as m,,
my — ©, Indeed Z = 2VX has an approximate N(6, 1) distribution, with 6 =
2Vr. If y/m, = y/m| + v, then the 7 interval [m,, m,] corresponds to a 0
interval I = [z, — v, 2, + v] with midpoint z, = 2\/m_1 + v. The linear mini-
max rule (11) transforms to §*(z) = 2y/6*(22/4) , and Taylor expansion about
z, yields

0*(2) = |20 + (1 + v?) T'(z - 29)|[1 + O(*m )],

where the first term is precisely the linear minimax estimator for estimating
“the N(8, 1) parameter constrained to lie in I [cf. Donoho, Liu and MacGibbon
(1990)].

Comparing linear and nonlinear minimax risks over intervals [m , m,] leads
to a bivariate analogue of the Ibragimov-Has’minskii constant. Although
stated for intervals [m,, m,] C R*, it extends immediately to finite- and
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0.0 0.25 0666 = 15 40 0
1 1 1 1 1 1
1.0+ - oo

0.8 4 4.0

402
0.64 «d% 15
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Fic. 8. Contours of the risk ratio u(m,,m,). The (x,y) axes are defined, respectively, by
m,=x/(1-x)and v =y/(1 —y) wherev = ‘/m_2 — y/m, . Contours obtained in S after interpo-
lation of values from raw ratios evaluated at x = 0.05(0.05)0.85 and y = 0.05(0.05)0.85. Limiting
behavior near boundaries described in the proof of Theorem 7.

infinite-dimensional hyperrectangles. We do not know if there is an extension
of Lemma 3 to a class of sets not containing 0.

PRroPOSITION 6. The function u(m,, my) = p;(my, my)/py(m,, my) is con-
tinuous and bounded on D = {(m;,m,): 0 <m,; < m, < »}.

ProoF. We have already seen that p, is continuous on int D, so to
complete the proof, we show that x has bounded limits as (m, m,) — dD. For
this purpose it is helpful to set m = m, and v = \/_m—2 - \/'m_1 , so that D
transforms to R2 in (m, v) space. We also set y/(m,v) = u(m,(Vm + v)?). We
outline below the behaviour at the four boundaries in turn. Numerically
determined contours of the function u(m,, m,) in (a transformation of) these
coordinates are shown in Figure 3.

Large v. Use the lower bound (16) derived from the polydisc transform,
with domain  equal to the plane annulus between radii r; = \/m; and

ry = ym,. By further restricting attention to only radially symmetric func-
tions, we obtain

pn(m;,my) >1— inf{frz[v’(r)]zrdr/frzvz(r)rdr, veCHr,rl}-
r ry
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The change of variables s = (r — r;)/(ry — r;) transforms the ratio of inte-
grals into

1 rlfw"2 + (ry — ry) fsw'® C(w)
(ry = ry)? rjw? + (ryg = r) fsw? = (r, —r)*’
where w(s) = v(r) € C}[0, 1] and we have used the inequality
(ax +By)/(x+y) <aVpP
in order to define C(w). It follows that py(m,, m,) > 1 — Cv~2 and that
1-(1+2%)7 "
1-Cv™2 ~’

which is independent of m and converges to 1 as v — .
Small v. Consider the two point prior F, = (e, + ¢,,,)/2 and write L, for

the likelihood ratio p,,(x)/p,,(x). As in (6) the Bayes rule é5(x) = p(x)m, +
Po(x)m,, where

(12) w(m,v) <

myLy,

— = =1- )
p——— Pa(x) pi(%)

py(x) =
The error 85(x) — m; = (my — m X1 — p/(x)), and writing E,, Z as E,, L,,Z,
we find

(13) pn(my, my) = (1/2) R(85, my) + (1/2) R(85,, my)
(14) = (1/2)(m; = m1)*m3'E,, py(X).
Comparing the linear and nonlinear expressions (11) and (13) yields

2m,

(1+v3)(Vmy + ymy ) Eppi(X)

The dominated convergence theorem assures that E, p,(X)— 1/2 as
(m,v) - (m,,0) (m, > 0), which entails convergence of w/(m, ») to 1.

Small m. The boundary (m, 0) is covered by previous continuity arguments
except at (0,0). It may be shown that u(m,, m,) - 1 as (m,, m,) = (0,0)
through values 0 < m; < m, by using the prior ¢,,, to obtain the lower bound
pn(my, my) > moe ™2

The Gaussian limit (large m). As (m,v) converges to («, v,) , the Poisson
problem approaches a Gaussian one: p/y(m,v) — pS(v,), where the latter
denotes the minimax risk for squared error loss in estimating { € [—v,, vo] on
the basis of Y ~ N(¢, 1).

More specifically, for fixed (m,v), define Y =2VX — 2/m — v and { =
2Vr — 2Ym — v and denote the distribution of Y by P/™". Let ®, denote the
distribution of an N({,1) variate. Then, for fixed », the experiment
[in the sense of Le Cam (1986)] E™” = {P,™": |{| < v} converges to E™” =
{®,: I{l <v}as m — oo,

(15) p(m,v) <
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Given an estimator 7(X), define a corresponding estimator

{Y) =2/3(X) — 2Vm —v.

Since we may write

A N2 1 2 AZA X
£ (1+ 4 (X))

Y Y

T 4

it follows that p N(ml, m,) equals the minimax risk for estimating { i
experiment E™” using loss L™". Since L™*({,¢) = L(,¢) = (¢ - {)2 as
m — o, we conclude that p)y(m,v) - p$(v). Since v — py(m,v) and v — p%(»)
are monotone increasing and continuous, the apparently stronger result that
pn(m,v) = pS(vy) as (m,v) - (»,v,) follows from a “sandwich argument.”
The missing steps in these arguments were kindly provided by Nussbaum and
are sketched in the Appendix: They form a simple and concrete illustration of
Le Cam’s theory of convergence of experiments. O

4. A lower bound. The polydisc transformation established a connection
between minimax Poisson estimation in R and the Laplace equation in R2”.
This section is devoted to establishing the following lower bound.

THEOREM 7. Let T be an R%-open and connected set. The minimax risk is

2

16 p(T) = inf supR(38,7) = ————— =p — A(Q),
(19 (T) = LSRG = 2@y =P~ 1Y)
where Q = 7~ XT) is the polydisc transform (2) of T and A(Q) is the minimum
eigenvalue of the Laplace equation on ).

That is, A(Q2) is the smallest value of A for which the equation
Au(w) = —Au(w), w€e,
u(w) =0, w €90,

has a nonzero solution. Here D; denotes 9/dw; and A = £22,D? denotes the
Laplace operator. This solutlon is unique up to a constant multlple and we
denote by u, the positive solution normalized to satisfy [qu% = 1. As a
shorthand notation, we sometimes write A, (7') for A(z~(T)).

Lower bound. A widely applicable lower bound follows from an extension of
the Cramér-Rao information inequality due to Borovkov and Sakhanienko
(1980) and further studied in Brown and Gajek (1990). Let the prior distribu-
tion F(d) have a density f(r) w.r.t. Lebsegue measure which is C' and has
compact support in (0, ©)?. Then from the multivariate analogs of Theorem 2.1
and Corollary 2.3 of Brown and Gajek (1990), applied to Poisson estimation,

(17)

2

p
’(F)ZWZP—J(f),
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where

(18) I(f) = [Z FHD:f)(r)r; dr.

REMARK. Given a specific candiciélte for a prior, better lower bounds for the
Bayes risk can be obtained from Theorems 2.7 and 2.9 of Brown and Gajek
(1990).

In a worst case analysis, however, one wishes to maximise (18) over a class
of priors. Specifically, let T be an R?”-open set and maximize r(F') over prior
densities with compact support contained in T' N (0, »)?. This yields

2

(19) ) 2p - NT),

p
p(T) = 5+ NT)

where '
(20) MT) = inf{J( f): f€ CH(T N (0,)", f=0and [ f(r)dr = 1}.

Scaling properties of the lower bound. Let & = m: A prior P(do) = p(o)do
on mT induces a prior F(d7) = f(r)dr on T and vice versa. Since D;p(c) =
m ™D, f(7), one verifies easily that

P _ AT

(21) P(mT) > S reMym 2P T Tm

Alternative versions. We now derive equivalent forms of this bound that are
both theoretically and computationally more convenient. Since f > 0, set
f = v? so that (20) is equivalent to

(22) AMT) = 4inf{jTZ | Dyu(7)[*r; dr:v € CX(T), ij2 = 1}.

[In passing from (20) to (22), we have increased the class of test functions from
CHT N (0,©)?) to CJ(T). This does not change the minimization problem
since any v € CX(T') can be approximated by a sequence v, € C5(T N (0, )?)
with [pv2 = [pv% and J(v2) - J(v?). For example, if T C [0, a,]” and & (1) =
(log n)"'log*(nai?Il;7,), then v, = c, kv suffices, for suitable constants c,,
and log*(x) = max(0, log(x)).]

The Euler-Lagrange equation associated with (22) is derived from the
lagrangian H,(v) = J(v%) — (A/4)[rv? by evaluating 8/ds H,(v + ey)l.~o for
test functions ¢ € C3(T N (0,)?). Hence a minimizer v of (22), if it exists,
satisfies

(23) X [r Diu(r) + D(n)] + (A/4)u(r) =0, 7€TN(0,=)".

This differential equation is also associated with the unbiased risk estimate
corresponding to a Bayes rule for the prior v*(r)dr; see II for further
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discussion. Equation (23) is a nonuniformly elliptic equation, as the coeffi-
cients 7, of D?v can become arbitrarily small if & is a critical face of T.
Rather than pursue directly the theory of (22) and (23), we use the polydisc
transform, defined in (2), to recover the classical (and uniformly elliptic)
Laplace equation. o

Role of polydisc transform. We first note that if T is R%-open and con-
nected, then Q = 77 '(T) is open and connected in R?" (Lemma 11). Our
convention that 7' = int T makes Q = 7~ (T') as large as possible: 7~(0, m))
is a punctured disc, but int(0, m)= [0, m), so 7~ '(int T) has the puncture
removed.

A function v(7) defined on T induces a function u(w) = v(7(w)) on Q. It is
useful to associate polar coordinates (r;,6,), i = 1,..., p, with : We then have
%(r) such that u(w) = @(r) = v(r). Since day;_; dwy; = r; dr; d6; =
271dr; de,,

(24) [Qu(w) do = (2m)” [a(r) 1:[r,. dr, = ijTv(f) dr.

In particular, the polydisc transform is volume-preserving: If T and T’
have the same p-dimensional measure, then the 2p-dimensional Lebesgue
measures of 7~ X(T') and 7~ X(T") are equal.

Derivatives are easily calculated:

(25) Dy;_ u(w) = 2 Dy(7)wy;_y, Dyu(w) = 2 Dv(7)wy;,

and hence

(26) fQIDuI2 do =4 jT L (Dw)*r; dr.

ReEMARK. Define g(w) = f(7(w)). In a similar vein we find that
(27) J(f)=4"'n" [ g7 Dg|* = 47w ?I(g),
Q

where I(g) is a multivariate extension of Fisher information for location of

density g (see II).
The Dirichlet problem. We define the class of polyradial functions as

P = {u € L*(Q): u(w) = v(7(w)) for » € Q and some function v: R} - R}.
The polydisc transform expresses A(T) in (22) [via (24) and (26)] as
i 2, 1 2 _
ANT) = 1nf{fQIDu| cueC{Q) NP, fau 1}.

Let W12(Q) denote the Sobolev space consisting of once-weakly differentiable
functions having norm

2
lulffriay = [ 1Dul® + u® <.

The energy functional I*(u) = [o|Dul? is naturally defined on Wi-2(Q), the
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closure of Cy(Q) in W-%(Q). It is related to Fisher information by the
equation I*(u) = I(u?)/4. Define

(28) AQ) = inf{I*(zf);Eu e Wh3(Q), [Quz = 1}.

The important fact M(T) = MQ) is easily verified. By construction, ) and
hence W"2(Q), [o|Dul® and [qu? are invariant under the obvious action of
transformations R, = (R,,..., R, ), where R, denotes a rotation of R?
about 0 through angle 6,. Since the minimizer u of (28) is unique (Theorem
8) and since R,ug, is an equally valid minimizer, it follows that Ryuq = ug
for all 0, and hence that u € P.

Finally, we recall here some basic facts about the Dirichlet problem [see, for
example, Gilbarg and Trudinger (1983), page 214]. Combining these with the
preceding discussion completes the proof of Theorem 7.

THEOREM 8. (i) There is a unique (up to sign) function ug € W3(Q)
achieving the minimum of I*(u) in (28). It satisfies the equation

Au + AM(Q)u=0 in Q.

(i) The minimum eigenvalue AM(Q) > 0 and is simple; the corresponding
eigenfunction u, (or —u) is positive throughout Q.

(iii) The minimum eigenvalue A(Q) is monotone in Q: Q c ¥ implies
AQ) = MQ).

5. Asymptotics and examples.

Asymptotics. A simple scaling argument shows that the bound (16) trans-
forms to p(mT) = p — m~'A(Q). Our main asymptotic result (stated precisely
in II) asserts that this bound is sharp:

THEOREM 9. Let T be R% -open with compact closure and sufficiently smooth
boundary. Let Q = 1~ XT). Then

(29) p(mT) =p - MQ)/m +o(m™?).

Further, the least favourable prior distribution on mT, when rescaled back to
T, converges weakly as m — « to a distribution with density fp(r) = u%(w).

Figure 2 plots the asymptotic approximation (29), from which it is apparent
that the asymptotics are appropriate for moderately large m. This phe-
nomenon is equally present in the Gaussian case.

The theorem also suggests that f, could be used to construct a second
order asymptotically minimax estimator of the form

8, i(x) =2, + m~Tx,(D, f/f)(m ™ 'x)

(see the heuristic discussion appearing in II). This does not quite work due to
singularity of Df/f near the boundary of T, but under smoothness conditions
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on T, an asymptotically second order minimax version of §,, is constructed
in IL

Examples. Separation of variables in (17) can be used to evaluate A({2) and
u, explicitly in a number of interesting cases.

ExampLE A. Intervals in R.. (i) [0, b]. The polydisc transform yields a disc
of radius Vb in the plane:

Q=771[0,8]) = {w: 0? + 03 < b}.

The eigenvalues and eigenfunctions of the disc are given in terms of the
Bessel functions of the first kind of index n, solution to x2J(x) + xJ/(x) +
(x2 — n?)J,(x) = 0 and regular at x = 0. Let v, denote the smallest positive
zero of J (x) [cf., e.g., Abramowitz and Stegun (1972), Chapter 9]. Then the
minimum eigenvalue A , ([0, b]) = b~ 'v2 and the corresponding asymptotically
least favourable density is f;(7) = cJZ(v,7/26~1/%). A close approximation to
fr(7) is given by ¢’ cos®(wr'/26=1/2/2). Figure 2 shows that the asymptotic
approximation p,(m) =1 — 5.782m ™! provided by Theorem 9 is poor for
small values of Vm , but the lower bound provided by (16) and (21) of Section 4
is considerably better. Work of Levit (1987) for the Gaussian case suggests
that the error in p,(m) here would be O(m ~3/2).

(i) [, b,] (with &, > 0). The polydisc transform now gives an annulus
between radii ‘/3: and \/E in the plane:

Q =77Y[b,,b,]) = {0: b; < 0? + w} < by).

Separation of variables produces zero boundary conditions at = = b, and b,,
and the second linearly independent solution to Bessel’s equation, Y,(x), is
now also required. The smallest eigenvalue is found to be A ([b,,b,]) =
x5 (k)/b, in terms of the smallest positive zero x,, of the cross-product
equation
Jo(%)Yo(kx) = Jo(kx)Yo(x) =0, k= (b/by)"".

The roots x, (k) are tabulated in Jahnke, Emde and Losch [(1960), Table 34]
and for these values (¢ — 1)x, (k) decreases from 7 to v, for k € [1,). We
therefore write A, ((by, b,]) = c2/(y/b, — /b,)? with the tables supporting
the conjecture that ¢ decreases from 7 to v, as the annulus fattens from a

ring into a disc. Thus the previous expression for [0, b] appears as a limiting
case. The asymptotically least favourable distribution f(r) = cu?(y7), where

ug(r) = YO(xO,l)JO(xO,lrbl_l/z) - J(xO,I)YO(xO,lrbl_l/z)
is the principal eigenfunction of the annulus.
ExampLE B. Solid simplex in R}. Tg(b) = {r = 0: L{r; < b}. Ty expresses
an upper bound on the total of the cell means. As noted earlier, this is

appropriate when the distribution of intensity amongst p cells of a partition is
sought, when a bound on the total intensity is given. The polydisc transform
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leads to a ball in R2”:

Qg = T_I(TS) = {w: w2+ - +w§p < b}.
We now have A, (Tg(b)) = b~ 'v2_, and the corresponding asymptotically least
favourable density is C

_ p
fr(7) = c(ITIb‘lvf,_l)l Pg2 (171272, ) for0 <l =Y 7, <b.
1

This is obtained from the principal eigenfunction

uo(w) = (w622 _,)" g, _(lwlb~2,_,)

of the Laplace operator on the ball of radius b in R??. This eigenvalue and
u o(w) occur in Berkhin and Levit [(1980), Example 1] and Bickel (1981) in the
corresponding Gaussian minimax estimation problem on the ball Qg.

2

ExampLE C. Hyperrectangle. Tg(b) ={7: b;; <71, <by, i =1,...,p} Tg
corresponds to independent prior constraints on each of the components. The
polydisc transform produces a polydisc:

Qp=7"Y(Tg) = {w: by; <w};_; + 03 <by,i=1,...,p}

However, when T is a product [17_,T}, it is easily seen from the independence
of the components that the minimax problem decomposes into separate uni-
variate problems. Hence A, (T) = X{A (T}) and fp(7) = T1¢f7(7;). Thus if
T =I1,[b;, b,,), everything follows from the case p = 1 discussed above. Thus
A (TR(®)) = ZPx2 /by / 1/b1)/by; and fr(7) is proportional to the product
of the univariate least favourable densities. For a hyperrectangle [0, b] contain-
ing 0, the eigenvalue has the simpler form A ([0, b]) = v2X b 1.

Isoperimetric inequalities. Classical inequalities derived for A({}) as a func-
tion of ) yield statistical information via (29). For example, the Faber-Krahn
inequality states that amongst domains in R™ with a given volume, A(Q) is
minimised when () is a ball. For further discussion and references, see Payne
(1967) and, in the planar case, Kuttler and Sigillito (1984). Since the polydisc
transform is volume-preserving [cf. (24)], it follows that among all intervals T
in [0, =) of a given length b say, p(mT ) is maximised (to second order in m) by
setting T = [0, b]. It is easy to see also that T = [0, b] is most difficult even
among sets T that are a finite union of disjoint intervals of total length at
most b. More generally, the simplex Tg(d) is most difficult asymptotically
among all sets in R? of equal volume composed of a finite union of connected
open sets.

6. Discussion. The dependence of the minimax risk py(T') on the con-
straint set T has been intensively studied in the finite-dimensional Gaussian
translation model in recent years. Numerical and analytical results for small
intervals T c R' were given by Casella and Strawderman (1981). Asymptotic
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approximations for large T (or small noise level) are given by Levit (1980,
1982, 1985), Berkhin and Levit (1980) and Bickel (1981). The works of Levit
and Melkman and Ritov (1987) consider non-Gaussian situations also. The
Gaussian minimax risk py(T') was later shown to have an unexpected and
important role in nonparametric estimation problems over compact infinite-
dimensional parameter spaces in comparing the behaviour of linear to nonlin-
ear estimators [Ibragimov and Has’minskii (1984); Donoho and Liu (1988);
Donoho, Liu and MacGibbon (1990)].

REMARKS 1. This paper considers only the error measure
(30) L(d,7) = Z(si_"'i)z/"i-
i

For this loss function, the trivial estimator §(X) =X has constant risk
throughout the parameter space, which partially compensates for the lack of
any group invariant structure [see Clevenson and Zidek (1975) for further
discussion]. It seems plausible, however, from the work of Brown (1979) and
Levit that the role of the polydisc transform, principal eigenvalue of Laplacian
and form of asymptotically second order minimax estimator will be insensitive
to choice of loss function within a class of the form ¥ ,w[r;/?%(§; — 7,)] for
suitable weight function w: R — R,. For losses of the form X ,w(§; — 7)),
results will be qualitatively different: For asymptotic results for compact
T c (0, »)?, see Levit (1982).

REMARK 2. The loss function L(8,A) = X;A;7%5; — A;)? is not defined
when any A; = 0, so that it is only strictly meaningful to consider parameter
spaces T C (0, »)?. Consider, for example, the case p = 1, T = (0, m). The
work of Section 2 shows for some values of m that no least favorable
distribution exists; rather only a sequence of approximately least favorable
priors P,,, whose weak limit has an atom at 0.

Note, however, that since risk functions are continuous in 7, the minimax
value of p(T') depends only on T. Thus the difficulty is not serious; but for
completeness, we show in the Appendix (Remark A.1) that it can be accommo-
dated by introducing an artificial decision problem, equivalent for the purposes
of minimax analysis, in which T may intersect RZ% .

ReEMARK 3. This paper elaborates the mathematical connection between a
p-variate Poisson estimation problem and a 2p-variate Gaussian problem, but
the statistical connection is still somewhat obscure. Brown’s heuristic analysis
[(1979), Section 2.3] shows that the variance stabilising transformation r = 71/2
leads to a location-like estimation setting. Indeed, setting y(x) = §'/%(x) and
assuming 7 large gives

X (8(x) = )" = r ¥ (x(x) + 1)’ (v(2) — 1)’ = 4(x(x) - )",
The mathematics here says that r, which is inherently nonnegative, should be
thought of as the radial components of a bivariate location vector.
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REMARK 4. The role of the polydisc transform in this paper is to carry over
standard analytical and statistical results from the Gaussian to the Poisson
setting. The transform can be expected to play this role in various other
Poisson decision theoretic contexts. Examples include admissibility for both
point and loss estimation procedures related to the loss function (30); some
successful applications are discussed by Lele (1990).

REMARK 5. Do there exist analogues of the polydisc transform appropriate
to other parametric families of distributions? Here it has functioned as a sort
of ‘“‘dimension-sensitive’’ variance stabilising transformation: In the Poisson
case, it is derived from the usual square-root transformation, but doubles the
dimension of the new parameter space. Here is one result from work with
Soren Johansen. For a regular family of densities p.(x)v(dx) on R, the
analogue, for information-normalised loss (8(x) — 7)'I(7)X(86(x) — 7) of the
quantity (18) appearing in the Borovkov—Sakhanienko bound is

I(f) = [ (Dif/f)* T X () f(7) dr,

where I(r) is the usual Fisher information E_[dlog p (X)/37]® and I7!
denotes 1/I. One might describe as a ‘“‘generalised polydisc transform” any
mapping o — (7,0) which (i) preserves Lebesgue measure: f(r)d7rdo =
c,8(w)dw [where g(w):=f(r(w))] and (ii) maps J(f) into (scalar) Fisher
information for location J(f) = c,[|Vg/gl’g. Some examples of such map-
pings include:

@7=(2+ " +0%2)"% 0 =0/lo| when I"%(7) = 7272/ (and m > 1,
m € 2).

) 7 = (0; + ©,)% 0 = w;/a(w; + ©,)*" ! when I"(7) =7272/% (and a >
2, a € R).

() 7=e“1%2 o = w,e”“17“2 when I"X(7) = 272

Note, for example, that I~(r) = ¢t2 when 7 is the mean of a gamma
distribution.

REMARK 6. This paper is ‘‘parametric’’ in the asymptotic sense that as the
amount of information increases (m — «), the number of parameters p
remains fixed. Donoho and Johnstone (1989) study an alternative asymptotic
model (for Gaussian data) in which the number of parameters grows with the
available data, allowing various possible limiting signal to noise behaviors. In
this ‘“‘nonparametric’ setting, only first order asymptotic results appear, but
Fisher information still plays a critical role, and the shape of T' has a profound
influence on the relative performance of linear and nonlinear estimators.

APPENDIX

ProoF oF THEOREM 2. It remains to show that the two point prior ag, +
(1 — a)e, specified in the theorem is minimax. The strategy for minimaxity is
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to show that
72" dR /31 = 2(m — 85(1))(m + 85(1) — 27)

(31)
- 28p(D)72+ (L + 7)m? + e"(72 — m?)

changes sign at most once from negative to positive on [0, m]. At zero, IR /37
will be nonpositive for 0 < m < m, (= 1.27), where m, is the first positive
zero of the equation (1 + §7(m))?> = 2 + m2/2. For m € [m,, m,], nonnega-
tivity for R /07 at 7 = m follows from (8), and careful study of the first four
derivatives of the right side of (31) shows that dR/dr has at most one sign
change on [0, m].

Lemma 10. py((m,, m,)) and the corresponding-least favorable distribu-
tion F,, ., depend continuously on (my, ms,).

Proor. Since pp(T') is monotone with respect to subsets of T, it follows
that for (m';, m’,) in a given neighbourhood N of (m,, m,), there is an upper
bound k, to the cardinality of the support of F,, ... In fact, k, is derived
from F, .5 where [m7}, m}] is the union of all the intervals derived from
(m'y, m'y) in the closure of N. Continuity of py([-, - ]) then flows from continu-
ity for r, (-, -). The uniqueness of the least favourable distribution F,, ..,
then ensures that it depends continuously (in the weak topology on probability
measures) on (m';, m’,), though extra constraints are needed to eliminate

redundancies in the coordinate description using (a, b). O

Proor oF LEMMA 5. From (10),

sup R(aa,b"") =a® + (f1Vf2)(a,b),

[mq, m,]

where f;(a,b) = m,[(1 — a) — bm;']% First fix a and optimize over b: The
quadratics b — f;(b) intersect at b% = m m (1 — a)®. One checks that the
minima b; of f; are positive and lie, respectively, inside (b,) and outside (b,)
the interval [6_, b_]. Since f{ > f3, it follows that

min (f, V £,)(b) = fi(bs) = (1= a)*(ymz - ym,)

Optimizing a® + (1 — a)?*»? over a yields a* = v2/(1 + v?). O

2

Convergence to Gaussian experiment in Proposition 6. Let P, denote a
Poisson distribution with mean 7, @, ,, = P,,12, (4,22 and @, an N({, 1)
distribution.

‘1. The sequence of experiments 2,, = {Q, ., l{| < v} converges weakly to
2, =1{Qy,y, I{| < v}. In view of Le Cam’s (1986) Lemma 10.2.1 and Proposition
6.3.7, this would follow if there exist random variables 7,, such that for
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|¢] < v, the log likelihood ratio

= —¢ 20
— =iy + 5
dQ; o 2
in Q, ,, probability, and #(7,,|Q, ,) — N(0, 1). This follows from calculation
and the fact that if X, ~@Q,, =P, 7o=(m'?+v/2)? then g, =
(X,, — 79)/ V7, »p N(O,1).

2. In fact, 2,, converges strongly to 2,: This relies on Theorem 6.2 of
Le Cam (1986), the continuity of the mapping { — N({, 1) and its inverse (with
respect to total variation norm), the standard inequality relating Hellinger and
total variation distance

(1/2)|P - Q|| < H(P,Q){| P + Q|| - HX(P,Q)}""*
and the identity

'Hz(Qflym’le,m) = 2{1 - exp{—(l/S)({l - ;2)2}>

3. To establish convergence of risks, use the framework and notation of
Le Cam [(1986), Chapter 7.4]. The decision space is {{: |{| < »}. The uniform
lattice T' is C[—v,v] with the supremum norm and the L-space L may be
identified with signed measures on R with total variation norm. The loss
functions I, ((d) = {o(d — ¢) = (d — {)* and [, ,(d) = L™*(d, {) belong to T
and

1 m =1 0ll,— 0 asm — .

All decision procedures have a Markov kernel representation and hence are
randomized estimators. Thus

py(m,v) = inf sup @, 0!, ,

o |fl<v

and p$(v) is the corresponding quantity with m replaced by 0. Denote by T
transitions L — L. Strong convergence means that

A2, D) = max{ inf sup ||Q; . — @, oT ||, inf sup | @, , — Q{,mT"} =o(1).
T Kl<v T ll<v

Let T,, be the transition attaining the first of these infima. Then
Q. ml,m = Qp,0Tmls0 + Qo (Lym = Ur0) + (Qm = @r0Tm) ol 0
and
1€ mo(Lem = L0)| <liem = L0l = 0(1),

(@ m — Q0T )Ly 0] < S‘;P 19, m — Q0T ll ;0] = 0(1)-

Thus

The reverse inequality is proved analogously, and this completes the proof. O
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LemMa 11. () If T is R% -open, then Q = r~X(T) is open in R?”.
(ii) If T is connected, then so is ).

Proor. Part (i) follows from‘tl‘ge simple inequality
(32) lol,lol <M = |r(0) -7()]> < 8M%w — ol
(i) If 7(¢) is a path from 7(w) to 7(@), then, using polar coordinates

(r;,0,)7., on R?", a path from w to @ is given by r(t) = 7}/%(¢t), 6(¢t) =
(1 - t)Ol + tei. D

REMARK A.1. As before, let x; = 1 if i indexes a critical face of T and 0
otherwise. In the ith new decision problem, we observe X conditional on
X > k; and estimate 7; with loss function .

(8, - 1,)%, ifiel,

Li 8i’ 'Ti =
1 ) e it + d(7,)(8; — *ri)z, ifiel,

where ¢(7,) =1if 7, =0and =771 — e ") if 7, > 0. The point is that the
risk function of §,(X), for 7, > 0, satisfies

Ry(8;,7) = E1[L1i(8i(X)’Ti)|Xi = Ki] = E‘T(Bi(X) - Ti)z/Ti’

since by our convention §,(x) = 0 if x; < k;. Summing the risk functions in
the p new decision problems yields a risk function R(8,7) = L, R,(5;,7)
equaling R(8, 1) on (0, ©)? for § € D(T). If follows that the minimax value for
R, equals that for R. On the other hand, R,(5,7) is well defined for 7
T N R?, and so Bayes rules for priors supported on T make sense. By a
double application of the minimax theorem, it follows that

sup ri(P) = infsupR(8,7) = inf sup R(d,7) = sup r(P).

P*(T) D T D TnN(0,x)? P*(TN(0,x)P)

It is shown in II that P — r(P) is strictly concave on P*(T'), and hence that
a maximising P, the least favorable distribution, is unique. For P € P*(T),
define p(x) = [I1,e it iP(d 7). Note that if i does not index a critical face,
then p(x) < = even if x; = —1. It is easily checked that the Bayes rule §, in
D(T) for R(8, ) corresponding to P has the representation

(33) 0pi(x) =p(x)/P(x —¢;) ifx; >k, and p(x —e;) >0
and 0 otherwise. Of course, this agrees with the Bayes rule for R(§,7) if

P € P*(T n (0,%)?). Furthermore, if P, converges weakly to P in P*(T), and
P((0,%)?) > 0, then 8p (x) — p(x) for all x.
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