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RENORMALIZATION AND WHITE NOISE APPROXIMATION
FOR NONPARAMETRIC FUNCTIONAL
ESTIMATION PROBLEMS

By Magrxk G. Low

University of Pennsylvania and University of California, Berkeley

White noise models often renormalize exactly yielding optimal rates of
convergence for pointwise nonparametric functional estimation problems.
Similar rescaling ideas lead to a sequence of experiments appropriate for
pointwise density estimation problems.

1. Introduction. The objective of this paper is to introduce two concep-
tual approaches to nonparametric functional estimation problems, renormal-
ization and white noise approximation. Renormalization takes on its simplest
form for pointwise estimation problems when our observations arise from the
following white noise model:

(1) dX, = f(t)dt + -—dW,,  f<F,

1
Vn
where W, is Brownian motion.

In Section 2, we show how invariance ideas can often clarify rates of
convergence results as n — = for a variety of parameter spaces F. Extensions
and generalisations of these results can be found in Donoho and Low (1990a)
and Low (1991).

Millar [1979] has illustrated the power of looking at nonparametric prob-
lems from the viewpoint of Le Cam’s theory of experiments, with the para-
meter space indexed by an infinite-dimensional Hilbert space. This highly
successful approach led to a simple unified theory for estimating distribution
functions under, for example, sup norm loss. The power of Hilbert space
parametrizations has not, however, been exploited in pointwise estimation
problems arising, for example, from density estimation, nonparametric regres-
sion or estimation of a variable intensity function from a Poisson process. In
fact, it is only recently that Le Cam’s theory of experiments has even been
brought to bear on the problem of density estimation, and then only through a
sequence of one-dimensional parametrizations. Donoho and Liu (1991) how-
ever did pick these one-dimensional parametrizations in an optimal way and
showed the power of Le Cam’s methodology. Romano (1988) has also applied
Le Cam’s theory to sequences of one-dimensional experiments naturally aris-
ing from estimation of the mode.
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The invariance ideas of Section 2 lead naturally to the introduction, in
Section 3, of a new sequence of experiments appropriate for pointwise density
estimation problems. The original inspiration for the consideration of this
sequence of experiments was Donoho and Liu (1991). However it can also be
looked upon as a generalisation ‘of some sequences given by Millar (1979). The
limiting experiment for this new sequence of experiments is the white noise
model considered in Section 2. The main theorem in Section 3 gives a precise
statement of a local asymptotic equivalence of density estimation and white
noise models. The area of white noise approximation is developed further in
Brown and Low (1990) and Donoho and Low (1990).

2. In this section we focus on the following white noise model:

1 .
— dW,, teD.
‘/;{ t
We shall always assume D = (—,) or D = [0, ). (2) induces a statistical
experiment (for each n) when we let f € F c Ly(D). We focus on pointwise
estimation problems.

For these problems it is convenient to introduce a second sequence of
statistical experiments generated by

Bt
f(Bnt) d

o

1
t + — dW,, teD,
vn ot

where @28, = n and f € F. We shall sometimes write Y "(¢) for Y¥,* when the
resulting expression is easier to read.

The importance of this second sequence of experiments will be clear from
the lemma given below and the remarks following it. Its proof is clear and so is
left to the reader.

(2) dy, = f(¢) dt +

(3) dy;" =

n

LEMMA 1. Suppose Y"(t) has a distribution given by (3). Then

(4) Z(t) = a,B,Y"(t/B,)
follows a distribution given by
(5) dZ(t) = f(¢) dt + dW,.

Similarly, if Z(t) has a distribution given by (5), then Y "(¢) defined by (4) has
a distribution given by (3).

REMARK. The lemma establishes a precise equivalence between every pair
of experiments in the sequence of experiments given in (3).

To connect the lemma with the more interesting sequence of experiments
given by (2), we need to take a more decision-theoretic viewpoint and introduce
loss functions. In fact we will allow the loss function to depend on n subject to
the following condition.



RENORMALIZATION AND WHITE NOISE 547

AssuMPTION A.  We restrict attention to a sequence of loss functions /, and
a fixed loss function ! such that () /,: LJ[D] X R - R*,I: LD] X R - R™;
(ii) there is a function g: R X R —» R and a function A: R X R — R such that
if @28, = n, then

F(Bn?)
an

Now let & be an estimator §: L,[D) > R. E}*l (f,5(X()) is then to be
interpreted as taking the expectation under the model

I,  h(an, B)a | = g(an, B fra).

(6) dX, = g(t) dt + % daw,

of the random function /,(f, ). When g = f and m = n, this is the risk of the
estimator 6 with loss function /, under model (2).

TueEOREM 1. Let (T, fXt) = (f(B,t)/a,), where aZB, =n and for each
estimator 8, let 8, be defined by

Z(B,t)
(7 h(a,,B,)8(Z(¢)) =38, -
aan
Then
(8) ET"‘,,fln(Tnf’Sn) =g(an’ﬁn)E}l( f,8),
(9) sup Ef1,(f,,8,) =&(a,,B,)supErl(f,5),
fn€T,F feF
(10)  inf sup E}L,(f,,5,) = &(ay,B,)inf supE}( f,3).
% f,eT,F " 8 feF
CoroLrARY 1, IfT,F = F, then
(11) inf supEfl,(f,6,) =&(a,,B,)inf supE}I( f,5).
8, feF 5 feF

ReEMARK. Corollary 1, of course, follows immediately from equation (10) of
Theorem 1. It yields g(a,, 8,) as an optimal rate of convergence as long as
inf; sup, . g E}I(f,8) < . Equation (7) also defines a sequence &, which
attains this rate as long as sup,. g EfI(f,8) < .

AppLICATIONS. We now give a few examples of how to apply the above
theorem. Similar results will be given later for density estimation problems.

ExampLE 1. Write f*(x) for the kth derivative of f. Let F(k, M) =
{f & Ly(0,): [f*(x) < M V x} and let

l,=1 satisfy I(f,a)=|f/(0) —al’, where0 <j <E.
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Furthermore, take a, = n*/%*! g = n!/2¢*1 Then 2B, =n, T,F = F
and

l(f(Bnt):’ B, ) _ E’il(f’a)

an' ) n

The assumptions of Corollary 1 then clearly hold and yield

1 )
1nf sup E?|fi(0) -6 W= Wlnf sup E}fi(0) -8l
8n feF(k, M) feF(k, M)
Now let @, = M~1/@k+D g = M2/2k+1 Then T,F(k,1) = F(k, M) and equa-

tion (10) of Theorem 1 yields

inf sup E}| f/(0) - 5" = M@@i+Dy/Ck+Dine gy E}fi(0) - sl
S feF(k, M) 3 feF(x,1)

ExampLE 2. As a simple case of an application with a varying [,, take the
parameter space to be

F(1,M), I(f,a)=(f(1)-a)’, a,=n"3 B,=n"3

and [, (f,a) = (f(n"'/3) — a)? Then g(a,, B,) = (1/a,) and it follows from
Corollary 1 that

1
1nf sup EF(f(n™'%) -8 ) t s lnf sup E}(f(1) -8)%.
o feF(, M) fEFQ, M)

ExampLE 8. Let G(M) = {f € LY -, ): [f'* < M}. Take [, = I such that
I(f,a) = |[f(0) — al”. Let @, =n'* B, =n'2% Then T,G(M)= G(M) and
Corollary 1 yields

1
1nf sup E}|f(0) -5,|" = a7 1nf sup E HNOEE]
bn feG(M)

3. A sequence of experiments. The main theorem in this section is
given in terms of the convergence of a sequence of experiments to the white
noise model of Section 2. In particular, if we let H={h: R > R, [h? < x,
sup,|h(x)| < »}, then the limiting experiment is given by

(12) dX, = h(t)dt +dW, -—w<t<o heH.

This is a representation of the standard Gaussian shift experiment on H
which we shall write as G = {G}: » € H}. In other words, the theorem states
that the distributions of the likelihood ratios for the sequence of experiments
converges weakly to the distributions of the likelihood ratios for the limiting
experiment. A more detailed and complete description for the reader unfamil-
iar with this idea can be found either in Le Cam (1986) or Millar (1979). The
reader should also recall that under G, the distribution of log(dG,/dG,) is
N(—-(fh3*(x) dx)/2, [R¥(x) dx).
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We now introduce our sequence of experiments. First fix a probability
density f, on R such that f, is continuous at 0, f((0) > 0, and sup, f,(x) < .
Corresponding to f, and {«a,);_,, {8,)_,, any nondecreasing sequence of
positive numbers satisfying lim, _,,, @, = » and

(13) _aiB, 1
-
fo(0)n
will be the following sequence of experiments. For A € H, let
h(B,x)
(14) ho= fo(x) dx.

n

h, is finite since 2 and f, are square integrable. Furthermore, the conditions
we imposed on % and f, imply that 2, = O((a,B8,)" 1. If

h
(15) 1+ (fnx) —h,>0 forall x,
define
h(B,
(16) fuhiz) = [1+ 28 ) ey,

Otherwise, let

(17) falk;x) = fo(x).

Defining f,(k;x) by (17) when (15) is not satisfied is only a technical condi-
tion. Its only purpose is to make the sequence of experiments given below to
have parameter space H for each n. Note that since sup,|r(x)| < © and «,
increases to infinity, for any given h, f,(k;x) is defined by (16) for all
sufficiently large n. Finally, define P;' to be the probability on R" having
density

(18) an(h;xi)'
The collection {P}: h € H} now defines an experiment for each n.

THEOREM 2. The sequence of experiments {P}': h € H} constructed above
converges weakly to the standard Gaussian experiment {G,: h € H}.

The importance of this theorem is contained in the following corollary
which is just a statement of the Hajek-Le Cam minimax theorem in the
present context combined with Lindae’s theorem [see page 92 of Le Cam
(1986)1.

First, we need to establish some notation which we shall use throughout the
test of this paper. Write 8, = §,(X;,..., X,) to be any decision procedure
based on n independent observations from a density f,(%), where A € H. Also
by E,l(h,35,), we mean the risk of the estimator (in estimating some scalar
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functional of 2) when the density is f,(k). We write 8 (no subscript) to be any
decision procedure based on one observation from the Gaussian shift problem
given in (12) and EFI(h, §) for the associated risk in estimating 4.

CoroLLARY. Let K c H. If 1 is any loss function I: KX R — R, lower
semicontinuous in the second argument, then

(19) liminf inf sup E,l(h,38,) = inf sup EFI(h, §).
n=® 8, peK 5 hek

If K is compact in Ly(R) under the usual norm | f|> = [f? and the loss
function is bounded, the inequality in (19) can be replaced by an equality.

REMARK. Ibragimov and Khas’'minskii (1991)- define a concept of local
asymptotic normality with norming factors A,, where {A_} is a family of linear
operators. The above results essentially fit into their framework if we define
A, by (A_hXt) = h(B,t)/a, for suitable choices of «a_, B..

AprpLICATIONS. We now give two simple applications of Theorem 2 similar
to those found in Section 2. The results given here are not substantially new.
Our main purposes is to exemplify the method and to illustrate by an example
how «,, B, and K can be appropriately chosen. The rates given in our first
example can also be found in Farrell (1972) and Stone (1980). In our second
example we improve on some lower bounds given by Wahba (1975) for estimat-
ing a density function at a point under Sobolev constraints. Ibragimov and
Hasminskii (1984) have previously shown that this rate holds in the white
noise model. We should also mention that Millar (1979) has exploited Theorem
1, with a, = (f,(0)/%n'/2, B, =1 to obtain lower bounds for estimating
distribution functions.

ExamPLE 4. Suppose we observe X;,..., X, ii.d. with density f € F and
we want to estimate f at 0, where we use as a measure of loss [, defined by
(20) 1L,(f,a) =|f(0) —al".

There are two major obstacles to applying Theorem 2 in this context: (i) The
loss function /,, is defined on the functions f,(k; ) whereas the loss function
in the corollary is defined on 4. (ii) As mentioned above, we need to be able to
choose «,,, B, and K appropriately.

To answer these questions we consider particular classes of F. Write f*(x)
for the kth derivative of f. Let F(a,k, M) ={(f: R—>R*; f(0) <a, [f=1,
sup, If ¥(x)| < M}.

First fix some f, € F(a, k, M) such that () f,(0) = b < a; (i) [f¢(x) <M
for all x; (iii) for some & > 0, f,(x) = f,(0) for |x| < &.
~ Conditions 1 and 2 make sure that f, is an interior point of the set
F(a, k, M). Condition 3 facilitates the construction of the perturbations given
below.
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Let
K(c) = {h: |h*¥(x)| < 1, h(x) = O for |x| > c}.
We impose the condition that A(x) = 0 for |x| > ¢ primarily to make K(c)

compact and hence insure strong convergence.
Now let

— (k+1)/Q2k+1)
@, = M 1/(2k+1)( fo(o)) nk/(2k+1)’

B, = M2/(2k+1)( fO(O))_1/(2k+1)n1/(2k“).

A few simple calculations which we leave to the reader [partly made easy by
requiring h(x) = 0 for |x| > c], show that for some N, f,(h;x) € F(a, k, M)
for all &~ when n > N. Note also that 28, = f,(0)n. These same calculations
should also give the reader a good idea of why we' imposed (i) and (ii)

on f,.
The corollary to Theorem 2 then yields
(21) liminfinf sup E,l,(k,8,) > inf sup Efl,(h,3).

noe 8, peKe) % peK)

We shall now connect equation (21) to the problem of estimating f,(h; )
instead of k. Note that

lp(fo(x)(l -+ h(ﬂ"x)), fo(O)(l v ) - (f"a(o)) L(h,9).

a

Hence

h(an)) s )

a

a p

liminf( - ) inf sup E,l (f(x) 1+
woe fo(0)) oy heme 7\

= liminfinf sup E,l,(h,3d,)

n=® dn heKle)

inf sup Ef1,(h,9).

® heK)

Furthermore since 4, = O((a,8,) "), it follows that

I 'f( on )p'f El(f()(1+h(ﬁ"x) h)a)
1min mn sup X —n,|,0,
n—e \fo(0) ] o heke O\ a,

> inf sup E,LGlp(h,S).
5 heKle)

n

I\

Now let ¢ — » and note that a, = M~ /@& +D(f(0))*+D/@k+Dpk/Ek+1D) gngd

we get

lim lim inf M~P/CGk+D( £(0)) P*/ @V pk/@+Dinf sup E,1,(f.(k),3,)

c—o®% n—ow® 8, heKle)

> lim inf sup EfI,(h,5).
c=® 3 peK(e)
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Note that since for & € K(c), f,(h) € F(a, k, M) this last equation immedi-
ately yields on taking sup; .y f(0)

lim inf M ~P/@k+ Vg =pk/Gk+ Dy pk/@+Dinf  sup  E.l,(f,8,)
n—oo 2 S feF(a,k, M)

> lim inf sup EZl,(h,3).
¢=® 3 pheKe)

(22)

ExampLE 5. Let F={f: R >R, f>0, [f=1, f absolutely continuous,
Jf'® < 1}. Wahba (1975) found a variety of sequences of estimators, say {6,},
satisfying
(23) 0 < limsupn'/? sup E,(f(0) — 3,)” < .

feF

n—o

Furthermore, Wahba (1975) showed that for any ¢ > 0,
(24) lim sup n*/?* inf sup E( f(0) — 6,,)2 > 0.
F

n—w 3, fe

We will now use Theorem 2 to show that the best asymptotic rate of conver-
gence for a sequence of estimators is n'/2, In other words,

(25) lim inf n'/2 inf sup E,( £(0) — 5,)% > 0.
n—® an fEF
First, take
Vs, -Yex< -1
1 15 15
fol®) =4 el
(%) =
% - X, % <x < %y
0, el >

Then [fo(x)dx = 1 and [f'*(x)dx = 1/2. Let
1 1
g lxl, lxl <3
8 ) 8
g(")"{o, el > L.

Then [g'*(x)dx = 1/4. Let K ={0g: 0 < 6 < 1} and a, = n'/%, B, = n'/2/4.
Then a2, = f(0)n and for large n,

f.(6g;x) €F,
where f,(h; x) is defined by (16). Moreover, f,(6g;0) = j(OX1 +
(68(0)/a,,)X1 + o(1)). Hence

2

nl/4 2
lim inf inf sup E -
(26) s (fo(O)) o EATO) =2

> inf sup EZ(0g(0) - 8)*> 0.
1

0<0<
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4. Proofs.

Proor oF THEOREM 1. Lemma 1 immediately yields
X(Bat) ))

ni-n

(27) E} (LT, f,8,(X(2))) = E};l (T f,d (

Now by (7), h(a,, B,)8(X(®)) = §,(X(B,t)/a,B,) and it follows that (27) is
equal to

(28) E}(T, f, h(a,, B,)3(X(2))).
By Assumption A,
L(To Fs h(ay, B)3(X(2))) = g(an, B,)U( f,8(X(1))).
Hence (28) is equal to
(29) g(a,,B,)E{(f,8) [which is the same as (8)].

This establishes (8). (9) follows immediately upon taking sup’s. Likewise, (10)
follows on taking inf’s.

Proor oF THEOREM 2. Let X;, i =1,...,n be iid. each with density f,.
Let
h(B. X))

(30) Qn=2(a——hn),

1o (R(B.X) ’
(31) Rn—EZ(T—hn)‘
Simple calculations show that
(32) lim EQ, = 0
(33) lim var Q, = [h%(y) dy,
(34) lim ER, = § [h*(y) dy,
(35) limvarR, = 0.

n—oow

Finally note that since &, = O(a,8,)™ ),

(36) Em—hn —0( B)=o(n‘1) forj >3
and so
(37) g [T2225) 6 k= 0,1).

1 fo(X)
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It then follows immediately from the asymptotic expansion given in (37) and
the results in (32)-(35) that the experiments {P}: h € H} converge weakly to
the standard Gaussian experiment {G,: h € H}. O
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