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ROBUST DIRECTION ESTIMATION

By XuminG HE anD DoucLas G. SIMPSON!

National University of Singapore and University of Illinois

We relate various measures of the stability of estimates in general
parametric families and consider their application to direction estimates on
spheres. We show that constructions such as the SB-robustness of Ko and
Guttorp and the information-standardized gross-error sensitivity of
Hampel, Ronchetti, Rousseeuw and Stahel fit into a general framework in
which one measures the effect of model contamination by the
Kullback-Leibler discrepancy. We also define a breakdown point appropri-
ate for a compact parameter space. Specific results concerning direction
estimation include the optimal robustness of the circular median, the
optimal breakdown point of the least median of squares on the sphere, the
SB-robustness of certain scale-adjusted M-estimators and the SB-robust-
ness in arbitrary dimensions of a class of estimators including the L,-
estimator and the hyperspherical median. The latter estimators avoid the
need for simultaneous scale estimates, and they have breakdown points
approaching 1/2 as the model becomes concentrated. A slight modification
in their definition yields the same theoretical breakdown point as the least
median of squares.

1. Introduction. The study of the stability of parameter estimates for
directional data dates back at least to Watson (1967). Wehrly and Shine (1981)
and Watson (1983) noted that the influence function of the normalized direc-
tional mean is bounded, which indicates that this estimate is robust to a
certain extent. However, Lenth (1981) presented simulations indicating that
for heavy-tailed distributions around the circle the mean estimate loses effi-
ciency relative to, say, the directional median if most of the data are concen-
trated. Fisher (1985) discussed the use of median-type estimators on the
sphere. Ko and Guttorp (1988) pointed out that the influence should be
expressed relative to the concentration of the distribution. They introduced a
notion of scale-standardized-bias (or SB) robustness to adjust for the concen-
tration of the data on the sphere, and they showed that the directional mean
estimate is not SB-robust with their scaling. Outliers in the circular and
spherical data are treated in Barnett and Lewis (1984).

Ko and Guttorp (1988) relied on the construction of a scale-standardized
gross-error sensitivity. With an appropriate choice of scaling, this is a special
case of the information-standardized gross-error sensitivity of Hampel,
Ronchetti, Rousseeuw and Stahel (1986), page 229, which applies to general
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parametric families. The literature contains a variety of other measures of
stability such as the breakdown point and the sup-bias [see, e.g., Huber
(1981)]. In another context, He, Simpson and Portnoy (1990) used a break-
down function to analyze the stability of tests. Certain connections among
these quantities are known. In bne-dimensional estimation, for instance, regu-
larity conditions imply that the derivative of the sup-bias at 0, the bias
sensitivity, coincides with the unstandardized gross-error sensitivity [Huber
(1981), page 15, and He (1989)]. The breakdown point is the amount of
contamination of the model such that the sup-bias becomes infinite. The
purpose of this article is to establish further connections among the various
global and local robustness measures and to fill in some of the gaps in the
current state of knowledge about robust direction estimation.

We observe in Section 2 that the information-standardized gross-error
sensitivity coincides, under sufficient regularity conditions, with a more gen-
eral measure based on the Kullback-Leibler distance between fitted models. If
one generalizes the definition of the gross-error sensitivity slightly, then it
turns out that the gross-error sensitivity is always bounded by the bias
sensitivity with respect to the same metric for the bias, for example, the
Kullback-Leibler distance between parameter values. The bias sensitivity is in
turn bounded by the reciprocal of the breakdown slope, the slope at 0 of the
breakdown function with respect to the same metric. These results hold
without regularity conditions on the class of estimators, and they suggest the
following scheme for analyzing the local stability of an estimator. To establish
the nonrobustness of an estimator in the local sense, it is sufficient to establish
that it has an unbounded influence function. It then follows automatically that
it has unbounded bias sensitivity and breakdown slope 0. Conversely, to
establish the local robustness of an estimator, it is sufficient to establish a
positive lower bound on its breakdown slope. Bounds on the bias sensitivity
and gross-error sensitivity follow automatically. Replacing the usual Euclidean
metric by the Kullback-Leibler discrepancy in these calculations provides an
automatic standardization with respect to the concentration of the fitted
model, which is locally equivalent to the standardization by Fisher informa-
tion. See, for instance, Kass (1989) for further uses of the Kullback-Leibler
discrepancy between parameters and the connection with Fisher information.
A distinct advantage of the Kullback-Leibler discrepancy in the case of
directional data is its parameterization invariance, which means that it auto-
matically accounts for the constraints on the parameters. The breakdown
function machinery described in Section 2 provides a way to define a break-
down point appropriate for compact parameter spaces such as the unit sphere.

The general discussion in Section 2 forms the basis for the more specific
developments in subsequent sections on direction estimation. We consider
rotationally symmetric models for directional data with axis of rotation x and
concentration parameter «. The prototype is the von Mises distribution, which
‘has a density on the unit sphere of the form

1.1 f(x;p, k) =c.e <+, k>0,uesS ,xesS, .
K p p
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Here the normalizing constant is ¢, = kY2 /{@2m)P/2I,_,, o(k)}, where
I (k) denotes the modified Bessel function of the first kind of order 7. Watson
(1983) has provided extensive information about this model. We focus primar-
ily on the stability of estimates of u. Many of our results adapt readily to the
more general class of models of the form fo(kx'w) on the sphere, where f(t)
is decreasing on [0, «).

Section 3 is concerned with the notion of standardized bias robustness for
direction estimates. We suggest standardizing with respect to the
Kullback-Leibler distance. An estimate is said to be SB-robust if its KL-stan-
dardized breakdown slope is bounded away from 0 uniformly in « € (0, ).
Hampel, Ronchetti, Rousseeuw and Stahel (1986), among others, discussed
information-standardized gross-error sensitivity, and our suggestion is also an
adaptation of that idea. A technical benefit of this standardization is that we
can treat the dispersed case (x — 0) as well as the concentrated case (k — ).
In other settings it can occur that no Fisher consistent estimate is SB-robust
with respect to the information standardization [see He and Simpson (1990)
for examples].

In Section 4 we obtain a sharp upper bound on the breakdown point of any
estimator that is Fisher consistent for rotationally symmetric distributions.
This bound implies that the breakdown point must go to 0 as the data become
more dispersed over the sphere. On the other hand, it is possible to have a
breakdown point near 1/2 if the data are concentrated. We give a sufficient
condition for a direction estimate to achieve the bound on the breakdown
point. The directional least median of squares is a leading example.

Section 5 focuses on the circular case and shows, for instance, that the
circular median is the most robust among Fisher consistent estimators of
the central direction. Section 6 allows arbitrary dimensions. We establish the
SB-robustness of a class of concentration-adjusted M-estimators proposed by
Lenth (1981), as well as another class of estimators that includes the hyper-
spherical median and L ,-estimator as special cases. The latter estimators have
the advantage that there is no need for a simultaneous estimate of concentra-
tion. Indeed, they provide a robust direction on which one might project the
data in order to obtain a robust estimate of the concentration. This automatic
scale adjustment is analogous to the behavior of the median in a univariate
location model. All the proofs are given in Section 7.

2. Generalities: Breakdown functions, bias and influence. First,
consider a general parametric family of distributions (F,, u € ©}. In later
sections u will be the central direction vector on the circle or hypersphere.
Suppose that T(F) is a Fisher consistent estimating functional for u, that is,
T(F,) = u for any p € ©. Startingat F = F, , we ask how much contamina-
tion of F is needed to drive the estimate to u # u,. Hence we define the
breakdown function [cf. He, Simpson and Portnoy (1990)]:

(2.1) ek =inf{e > 0: T((1 — &) F + ¢G) = p for some G}.
For fixed u, and pu, larger values of ¢’ correspond to greater stability of the



354 X. HE AND D. G. SIMPSON

estimator T. The breakdown function (2.1) has the following invariance
property with respect to reparameterizations: If g is a one-to-one transforma-
tion, then &}, (g(T), F) = ¢¥(T, F).

We can assess both the local stability and the global stability of an estimator
via the breakdown function. One global measure is &J,, = sup, e}, the
amount of contamination required to drive the estimate to any point in the
parameter space, which might be taken as an invariant breakdown point. It
can be an unduly optimistic measure of stability, however. Scale estimation
provides an example. The standard deviation functional has &f,, = 1 because
the estimator cannot be driven to 0. A better definition of the breakdown point
is
(2.2) e* = sup inf ¢,

TEl LET

where II is the collection of all nontrivial compact subsets of ®, and ¢ is the
complement of 7 in O. This definition is similar to that of Hampel [see
Hampel, Ronchetti, Rousseeuw and Stahel (1986), page 97]. Specializations of
(2.2) to location and scale estimation agree with the usual definition of the
breakdown point. (2.2) also applies to compact parameter spaces like the unit
sphere in R?. It is clear that ¢* <¢j,, in general. Equality holds if © is
compact and ¢ is continuous, which is true of the direction estimates we shall
consider. The inequality can be strict if ® is not compact, as illustrated in
Example 4.1 below.

The breakdown point (2.2) does not require us to specify a metric for the
change in T. For intermediate values of u, we make use of a distance measure
d(pg, p) in order to interpret what it means to drive an estimate from u, to u
and to discuss the local stability of T'. On the sphere d(u,, 1) might be the
Euclidean distance, llu — woll = {2 — 2/ry)*/?, or the angular distance,
cos ™ (Wp,). An invariant measure is provided by the information distance

(2.3) dy(pos i) = {(1 = o) I (mo) (1 — 1o)}?,

where J(u,) is the Fisher information matrix evaluated at u,. This distance is
unaffected by full-rank differentiable and one-to-one transformations of the
parameters, and it adapts to the concentration and shape of the model at u,.
Rao (1973), page 331, called the information distance ‘“a measure of the
intrinsic accuracy of a distribution.” Hampel, Ronchetti, Rousseeuw and
Stahel (1986) made use of the corresponding norm in their definition of the
information-standardized gross-error sensitivity, an invariant measure of local
stability.

Although (2.3) is an appealing measure, it imposes regularity conditions on
the model [see, e.g., Rao (1973), pages 329-331, or Ibragimov and Has ’minskii
(1981), pages 62-64]. Moreover, the standard definition of J(u) fails to
account for the constraint that u is a unit vector in the von Mises model. Of
course, we can avoid this difficulty by reparameterizing in polar coordinates as
in Mardia (1975). However, we prefer to work with the more transparent (in
higher dimensions) rectangular parameterization in which we can easily ex-
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press the projection on the axial direction and the projection on the space
orthogonal to the axis [cf. Watson (1983)].

A simpler way to define an invariant distance is to set d(,u,o, ) equal to
D(f,, f,), where D is a distance between densities. The idea is to view the
fitted model as the functional estimate of interest. If a parameterization with
full-rank Fisher information matrix exists, then certain choices of D are
locally equivalent to the information distance in that parameterization [Rao
(1973), page 332]. Examples are the scaled Kullback-Leibler discrepancy

2.4) dia(rior ) = {2 s, 1B( £ /1) dA}W

and the Hellinger distance

(25) dutuon) = {[(120 =12 ar)

where A is a dominating measure for {F,, u € ©}. The density-based distance
takes care of the bookkeeping, so we need not transform to an unconstrained
parameterization. Moreover, the density-based distance adapts to the concen-
tration in an automatic way.

Given a distance measure d, we define the distance-based breakdown
function

(2.6) e*(8) = inf{s;: d(po, k) = 8}

for 6 € [0,8*) with 6* = sup, c ¢ d(o, w). It is clear that £*(5) is increasing
in 8. A local summary measure, the breakdown slope, is given by

* — |4 *
B (lslI%S (8)/6.

The global summary
(2.7) e* = sup{e*(5): & € [0, 6*))

is the distance-based breakdown point of T. Through an appropriate choice of
the distance, we can recover the breakdown point of (2.2).

ProposITION 2.1. If {u € ©: d(ugy, 1) < 8} is a compact subset of © for
any 8 € [0, %) and increases to ® as & tends to 6*, then (2.7) agrees with
(2.2).

For scale estimation, the choice d(oy, o) = |0 — 0| for ® = (0, ) does not
satisfy the condition of Proposition 2.1, but d(g,, o) = |log(a/0,)| does. The
latter yields the usual breakdown point for scale estimators.

The breakdown function £*(8) is closely related to the supremum bias
function of the estimate 7' with contamination neighborhoods. Following
Huber (1981), page 11, define the contamination bias of T' with respect to a
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distance measure d(-, - ) by

b(e) = sup{d(po, T((1 = 8)F + 8G)): 6 < ¢}.
G

From (2.6) it follows that
(2.8) £*(8) = inf{e: b(¢) = 8},

which implies that 5(¢*(8)) < 8. Hence, if £*(8) > 0 for some & > 0, then T
has a nonzero breakdown point, and moreover, the change in T is bounded by
§ if the amount of contamination is less than £*(5). .

The quantity y* = b'(0), called the bias sensitivity, has been used as a
measure of local stability; it indicates the effect that small contaminations can
have on the estimator [see Donoho and Liu (1988) and He and Simpson
(1990)]. If b(e) is continuous, then b(e*(8)) = 5. Furthermore, if either b(¢) or
£*(8) is differentiable at 0, then y* = 1 /8%, the reciprocal of the breakdown
slope. In general, however, b(¢) and £*(§) might not be differentiable at 0.
Nevertheless, we can measure the local stability of T' via

y*:= limsupb(e)/e and B~ := liminfe*(5)/8,
10 510

the upper sensitivity and lower breakdown slope respectively. They are related
as follows.

Lemma 2.1. (1) y*< 1/B7. (ii) If y* exists, then B* exists, and B* = 1/y*.

The bias sensitivity and breakdown slope are connected with Hampel’s
(1974) gross-error sensitivity, which is defined in terms of the influence
function. Suppose T'(F') is a vector-valued functional of the distribution F. Let

F,.,=(1-¢)F +¢eA,, O<ecx<l,

where A, is the distribution of a point mass at x. The influence function (IF)
[Hampel (1974)] is the directional derivative

IF(x;T, F) = lim(T(F, ) - T(F)}/e.

The existence of an influence function for T is a regularity condition; by itself
it does not imply robustness of the estimator. T is said to be B-robust at F if
the gross-error sensitivity

(2.9) vés = sup [IF(x; T, F)|
x

-is finite [Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. Replacing the
Euclidean norm in (2.9) by the information distance (2.3) yields the informa-
tion-standardized gross-error sensitivity discussed by Hampel, Ronchetti,
Rousseeuw and Stahel (1986), page 229.
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In fact, one can define gross-error sensitivity with respect to any distance
measure without requiring an influence function by setting

(2.10) vée = sup limsupd(T(F),T(F,,))/s.
x el

Under sufficient regularity conditions, y&g = y* [see, e.g., Huber (1981),
page 15]. Here we report the simple fact that if we work with upper sensitivi-
ties, the gross-error sensitivity is always bounded by the bias sensitivity.

LEMMA 2.2. yég<v™

Taken together Lemmas 2.1 and 2.2 imply ydg < y*< 1/8". Hence, if a
particular estimator has an unbounded influence function with respect to
d(-, ), then it also has infinite bias sensitivity and breakdown slope 0. On the
other hand, if the lower breakdown slope is positive, then the bias and
gross-error sensitivities are bounded.

3. Stability measures for direction estimates. Now consider the esti-
mation of u, the central direction of the von Mises distribution on S,. We
study the stability of the estimates with respect to the Kullback-Leibler (KL)
discrepancy. As

log{ f(x; po, ) /f(2; 1, K)} = k(1o — 1) x,
it follows from (2.4) that

(3.1)  dku(pos k) = 2kA() (o — 1) o = KA(K) |1 = ol

where A(x) = —dlog(c,)/dk =1, ;5. (x)/I, 5_4(«). The KL discrepancy sim-
ply rescales the Euclidean distance to adapt to the concentration about wu,.
Watson (1983) summarized various properties of A(x) including the limits,
lim, ,,A(k) = 1 and lim, , ok /A(x) = p.

In the sequel let &%;(-) be the breakdown function with respect to the KL
discrepancy, and let £*(-) be the breakdown function with respect to Euclidean
distance on S,. Using (2.6) and (3.1),

eka(dVkA(k) ) = £*(8), 0=<8<2.

The global analysis (breakdown point) using the KL discrepancy is equivalent
to that using Euclidean distance, which also satisfies the conditions of Proposi-
tion 2.1. Section 4 pursues this further. To measure local stability, we use the
KL breakdown slope, which is a rescaling of the Euclidean slope

o chlaVRAM) ) B
P I o) 90 oykA(0) | VRAGO)

Adapting terminology of Ko and Guttorp (1988), we call a direction estimator
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SB-robust if
(3.2) inf Bg.> 0,

0<k<oo
which also implies that the KL bias sensitivity and gross-error sensitivity are
bounded uniformly in . In Sections 5 and 6 we show that the directional
median and certain other estimators satisfy (3.2). This entails showing

(3.3) liminfB~/k'/%2 > 0
and
(3.4) limi(l)lfﬂ_/K >0

by the discussion following (3.1). An easy consequence of (4.1) below is that the
directional mean has B* = A(k) which fails to satisfy (3.3), so it is not
SB-robust. This fact also follows from an influence calculation of Ko and
Guttorp (1988) via Lemmas 2.1 and 2.2.

Wehrly and Shine (1981) observed that the unstandardized influence func-
tion of the directional mean is bounded. On the other hand, Ko and Guttorp
(1988) argued that the influence function should be standardized by a disper-
sion measure, because a given amount of change in the direction estimate is
deemed more serious if the data are more concentrated. They defined the
standardized influence function (SIF), ,

SIF(x;T,F,S) =1F(x;T,F)/S(F),
where S(F) is a measure of dispersion on S, and they called T' an SB-robust
estimator over a family of distributions F if

(3.5) sup sup ||SIF(x; T, F, S)| < .
F x

They chose S to standardize the influence as the distribution becomes concen-
trated and restricted F to a class {F: S(F) > s > 0}, ruling out « — 0.

The standardized influence function has an appealing nonparametric flavor,
but the results depend on the choice of S(F). However, we can fit SIF into the
present framework, because, with an appropriate choice of S, (3.2) implies
that the information-standardized gross-error sensitivity is bounded in «,
allowing also k — 0. Essentially the same local criterion arises in an automatic
way from the KL sensitivity; if T has an influence function, then its KL
gross-error sensitivity is y&; = sup,V/kA(«) [IF(x; T, F)I.

Krasker and Welsch (1982), Ruppert (1985), Hampel, Ronchetti, Rousseeuw
and Stahel (1986) and others have discussed standardization of the influence
function by the asymptotic covariance of the estimate itself. The resulting
self-standardized sensitivity favors less efficient estimators, however, so we
prefer the information standardization, more generally the KL sensitivity, so
that the bias is expressed relative to the best asymptotic standard deviation of
regular estimators.

4. Global stability of direction estimates. For the analysis of global
stability, we now consider the breakdown function (2.6) with respect to the
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Euclidean distance d = ||u — u,ll. The breakdown point £* in this case is equal
to &) evaluated at u = —pu,, the breakdown for a direction reversal.

As a first example, we give the breakdown function of the directional mean
estimator, which rephrases Theorem 3 of Ko and Guttorp (1988).

THEOREM 4.1. The breakdown function of the directional mean estimator is

-1

1/2
(41)  e(d) =1 {1+p(1 - (max(0,1-a%/2)f) ")}
where p = A(k) is the length of the mean vector.

This result implies that it takes the same amount of contamination to drive
the estimate to the opposite direction of u, as to any direction w more than 90
degrees apart from u,. It also implies that ¢* = p /(1 + p) decreases from 1/2
to 0 as p ranges from 1 to 0, that is, the estimator is easier to break down if
the data are less concentrated.

ExampLE 4.1. The maximum likelihood estimator (MLE) of the concentra-
tion parameter x has a one-to-one correspondence with the length of the
resultant vector (sample mean vector). Because of the invariance property of
the breakdown function, the breakdown point of the concentration estimate
can be computed from the breakdown function of ||[EX]||, the length of the
resultant vector. The parameter space ® corresponding to it is an open
interval (0,1). Since (1 — e)EzX + eE; X|l = [(1 — &)p + bel, by choosing G
to be such that E;X = bp 'EpX for b € [—1,1], it can be driven to 0 with
e =p/(1 + p). So its breakdown point is ¢* = p/(1 + p). In contrast, one
cannot obtain a unit resultant vector using any fraction of contamination less
than one for a nondegenerated von Mises distribution, so the supremum of the
breakdown function &5,, = 1.

For linear data, it is well known that the breakdown point of any equivari-
ant location estimator is bounded above by 1/2. What about the direction
estimators? This question is partially answered in Theorem 4.2.

Let Q(u) be the set of all axially symmetric distributions about the axis
whose density at x depends only on the value of x'u, and with P{x'u > ¢} >
P{x'n < —c} for all ¢ > 0. It can be shown that for any distribution in @(u), n
is the mean direction.

It sometimes occurs that an estimate is not uniquely defined for certain
distributions. In that case, a selection rule or combination rule is needed for
the multiple solutions in order to uniquely define the functional T. For
estimators that are equivariant under reflection about an axis, one naturally
requires that if F' is axially symmetric, then T'(F) must lie on this axis of
symmetry. Therefore, it is reasonable to require that a direction estimator be
Fisher consistent for Q = {F € Q(u), u € 0}, that is, T(F) = u for any
Fe Q) and p € 0.
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THEOREM 4.2. If a direction estimate is Fisher consistent for Q, and if the
underlying distribution F € Q(u,), then the breakdown point of the estimate is
bounded from above by

(4.2) g=1-(2q,)"",. whereqy, = P{x: x'ny > 0}.

We show how to achieve the upper bound on the breakdown point. Define
fi, to be the maximizer of P(V(u)), where V,(u) = {x: x'u > ¢} for |c|] < 1.
Then £, is Fisher consistent for Q. For symmetric and unimodal distributions,
it is easy to show that its breakdown point for directional reversal is

e¥*>1— {1+ P{x'uy>c} — P{x'u, < —c}}_l.

If ¢ = 0, then ¢* = 1 — (2g,) ! which achieves the upper bound &. In fact, we
have the following theorem. ’

THEOREM 4.3. If an estimate T'(F') is such that Pe{X'T(F) > 0} > 1/2 for
any F, then its breakdown point achieves the upper bound (4.2).

However, the estimator [, as defined above is very unstable in finite
samples. It can mainly be explained by its poor local breakdown property; it is
not B-robust. This is one example where the breakdown point alone does not
capture the robustness of an estimator. The directional least median of
squares (LMS) [e.g., the midpoint of the shortest arc containing at least half of
the data points on the circle; see Rousseeuw (1984)] differs from f£i, in that it
adjusts the ‘“tuning constant” ¢ according to the data; it can be written as
argmin,, c(u), where c(u) = inf{c > 0: P{V(w)} > 1/2}. The LMS outper-
forms fi, in finite sample examples, and also attains the upper bound ¢ for its
breakdown point, as it satisfies the condition of Theorem 4.3.

5. SB-robust estimators on the circle. In this section, we focus on the
circular data on the unit circle. We take angular observations 6,,0,,...,0,
instead of unit vectors. We shall briefly consider the M- and L-estimators of
the mean direction for the von Mises distribution with the probability density
function

(5.1) £(8;k,0,) = c e 000 g e (g, — 1,0, + ).

We restrict ourselves to the estimators which are equivariant under rotation
on the circle. We always take the true mean 6, = 0, unless specified otherwise.
An M-estimator of the mean direction can be defined as the root to

(5.2) S w(6 - T) =0,
i-1

where ¢ satisfies the following two conditions:

(A1) ¢ is odd, bounded and piecewise differentiable with (0) = 0.
(A2) 27 is the smallest period for |y(2)|.
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The estimate is clearly Fisher consistent and can be shown to be asymptoti-
cally normal [see Lenth (1981)]. It is also easy to show that the breakdown
function &%, the smallest fraction of contamination needed to drive the estima-
tor to 8, is given by

[/¢(6 — &) dF(6)]
suply| +| [y (0 — 8) dF(6)]
and the breakdown slope is 8* = Epy'(6)/suply|. These results are valid for
all distributions that are symmetric and unimodal at mean 0. If the density
f(0) is differentiable, then the differentiability of  can be removed, and
B* = — [¥(6) f'(6) d6 /suplyl.

(5.3) ot =

ReEMaRks. (1) Condition (A2) excludes the angular mean estimate whose
breakdown function is given by Theorem 4.1. (2) The breakdown slope of the
M-estimators is maximized at y(¢) = sign(¢), which corresponds to the direc-
tional median. The directional median has the breakdown slope g* = 2( f(0) —
f(m)), which is in the order of k'/? as k = ® and « as k — 0 for the von Mises
distributions, so it is SB-robust.

The M-estimators with smooth score functions satisfy lim, _, .« 1/?8* = 0,
so they are not SB-robust. But with a proper scaling, they can be SB-robust.
For example, Lenth (1981) considered the score function ¢,(8) =
¥(£(6, k))sin 6/t(8, k), where #(8, k) = {2k(1 — cos §)}'/? and ¢, can be any
monotone score function satisfying (A1). It follows as a special case of Theo-
rem 6.1 that this estimator is SB-robust.

Between the mean and median, one may naturally ask how the trimmed
mean behaves. The a-trimmed mean averages over the [(1 — 2a)n] points
between the ath and (1 — a)th quantiles [see Mardia (1972), page 33]. We
show that the symmetrically trimmed mean on the circle is SB-robust for any
a > 0. Intuitively, the trimmed mean automatically scales itself to the concen-
tration of the data.

THEOREM 5.1. Suppose that F is unimodal and symmetric about 6 = 0 on
(—,m). The breakdown slope (with respect to 6) of the a-trimmed mean
estimate is given by

(54) B = (f(0) ~ f(m)(£()sin8,) " [* cos(6) dF(6),

where 0, is determined by [J= dF(8) = 1/2 — a. Moreover,
(5.5) limk~28* = (1 — 2a)/® (1 —a) > 0 and 111%,(13* = (2/m)"?

with ® Y1 — &) denoting the ath upper quantile of the standard normal
distribution, so the estimate is SB-robust.

Analogous to the median for the linear data, the directional median turns
out to be the most SB-robust estimator for the circular mean.
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THEOREM 5.2. Suppose that the density function f(8) on (0,2m) of the
underlying distribution is symmetric and unimodal about 6, then among all
estimators that are Fisher consistent for distributions that are symmetric and
unimodal about 6, the directional median achieves the highest breakdown
slope. It also attains the breakdown point bound (4.2).

6. SB-robust estimators on hyperspheres. We have seen SB-robust
estimators for the circular data in Section 5. In this section we first show that
the Lenth M-estimators are SB-robust in any dimension. We also give a class
of SB-robust M-estimators that does not rely on the concentration parameter
k explicitly and has a built-in scaling. This class includes not only the direc-
tional L,-estimator but also the spherical median [Fisher (1985)]. In the case
of p =2, Ko and Guttorp (1988) established that the L,-estimate (circular
median) is SB-robust in the sense of the standardized influence function, but
they did not handle the higher-dimensional cases. We establish the stronger
property of SB-robustness in the sense of the breakdown slope, and allow
k — 0 as well as k = . One way to combine the SB-robustness with high
breakdown point of the direction estimates is provided at the end.

Generalizing Lenth (1981), an M-estimator of the direction is taken to be a
solution to

n
(6.1) Y p(«'2llx; — pll) = minimum,
i=1

where p is so chosen to provide an estimator with the desired robustness
property. We shall call such an estimator a Lenth M-estimator, in contrast to
a more general formulation of M-estimators which in functional form mini-
mizes En(|lx; — ull; ) for a two-variate n function.

THEOREM 6.1. Assume that p(r) is increasing and differentiable on (0, )
with a bounded derivative p'(r) = y(r), then the Lenth M-estimate is SB-robust
at the von Mises distributions.

As argued in Lenth (1981), the factor «!/2 provides the right standardiza-
tion in the estimate. However, the parameter « is usually unknown in practice
and needs to be estimated separately or simultaneously. Some suggestions
made in Lenth (1981) can be directly generalized to higher dimensions.

It is possible, however, to obtain SB-robust estimators of wu, without
knowledge of k, nor even estimating it. One example is the popular L,-estima-
tor by taking p(r) = r in (6.1). The following theorem shows that estimators
that minimize a criterion locally equivalent to the L, are SB-robust. One
might use these as preliminary estimates of the direction on which to project
the data to get a robust estimate of «.
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THEOREM 6.2. Any estimator that minimizes En(|| X — pl) over u € Sp is
SB-robust at the von Mises distributions if m satisfies the following conditions:

(B1) n(r) is increasing on (0, 2).

B2) In(lx —yID — n(llx — 2ID| < nlly — 2ID for any x,y,z € Sp, or
(B2') 7 is differentiable with bounded derivative on (0, 2).

(B3) lim,_ yn(r)/r = b for some constant b > 0.

(B2) requires that n(]lx — y|)) be a metric on Sp. (B3) simply specifies that
the 7 function must be locally equivalent to n(r) = r which gives the well-
known L, -estimator. The hyperspherical median [see Fisher (1985)] which
minimizes E cos™(X’'u) is an example of an SB-robust estimator by Theorem
6.2, as n(r) = cos™ (1 — r?/2) satisfies (B1), (B2) and (B3).

As « becomes larger, the distribution concentrates more on the true direc-
tion w,; therefore, it is intuitively clear that it is the local behavior of the 7
function that matters most. The proof of Theorem 6.2 is given in the Section
7. The proof of Theorem 6.1 is completely parallel.

Now, what about the global breakdown point for these estimators? Take the
hyperspherical median for example. It can be shown that its breakdown point
is

e*>1— gmm - E[cos_l(x’p,o)]}‘l.

This lower bound tends to 1,/2 as k — ». As k — 0, it expands to 4« /72 + o(k),
compared to 4k + o(x) for the upper bound ¢ of (4.2). For the L,-estimate, one
can show that it has breakdown point approaching 1/2 as k — «, but a
suboptimal breakdown point for finite k. A minor modification of either of
these estimators can yield the optimal breakdown point.

Let M = {u: P(X’' > 0) > 1/2}. Basically, M is the half-space that contains
favorable directions. Define w(F) to be the minimizer of Ezn(||X — ul) among
{u € M}, where n satisfies the conditions of Theorem 6.2. Then it has the
breakdown point £* = g, but retains the SB-robustness established by Theo-
rem 6.2.

7. Proofs.

Proor oF ProposITION 2.1. We write £*(6*) for (2.7). For any = €I,
there exists 8, € (0, 8*) such that = C {u: d(u, uo) < 6,}. Thus
inf &f <&*(8,) <&*(5%).
newe
On the other hand, £*(8) < inf{e}}: d(uy, p) > 8}, and {u: d(pg, p) < 8} is an

element of II, so £*(8) < sup, cyinf, c e’} for every & € (0,5*), which
completes the proof. O
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Proor orF LEmMMA 2.1. (i) It is sufficient to show that y*> M > 0 implies
B~ <M™! The case M = 0 is trivial. Suppose y*> M > 0. Then there is a
sequence {g,} with ¢, | 0 such that b(s,) > Me, for v sufficiently large. Hence,
by (2.8), and for v sufficiently large,

e*(Me,) = inf{e: b(e) > Me,} <&,.
As ¢,]0,
£*(8) e*(Ms,) 1
<

lim inf < liminf——22 < —
e s e M., T M

(ii) If y* is infinite, it is clear that B* has to be 0 by definition. Now
suppose that y* < «. Observe that ¢*(8)/8 = inf{a: 6(5a) > 8}. Since b(¢) has
derivative at 0, we have for any ¢ > 0 and z € (0,(1 — ¢)/v*),

b(8z) =(1-c)d +0(8) <é
for sufficiently small 8. Hence liminf;  ,*(8)/8 > (1 — ¢)/y*. Letting c |0,
we obtain 87> 1/y*.
On the other hand, for z = (1 + ¢)/y* and ¢ > 0,
b(6z) =(1+¢c)d+o(8) =6
for sufficiently small 8. Therefore, limsup;, ,e*(8)/6 < (1 + ¢)/y* for any

¢ > 0. So lim sup, | ,£*(8)/8 < 1/v*.
Putting things together, we get y* = 1/8*. O

Proor oF LEMMA 2.2. Let T.(G) = T((1 — &)F + €G). Then
sup limsupd (T(F),T,(A,))/e < limsup supd(T(F),T.(A,))/«

x el0 el0 x
< limsup supd(T(F),T.(G))/e. O
£l0 G

ProoF oF THEOREM 4.2. Consider G = (1 — ¢)F + ¢H, where H puts point
mass at the opposite direction of u,. As & > &, G € @(—p,). By Fisher
consistency, T(G) = —pu,, a direction reversal occurs. So ¢* < &. O

Proor oF THEOREM 4.3. A direction reversal requires
(1 -&)P{X'(—po) >0} +e>1/2 or e=1-(2g,) ' O

Proor oF THEOREM 5.1. We compute the breakdown slope from the local
contamination bias function. Let H = (1 — ¢)F + ¢G and 6, be the median of
H. Also let 6, and 6, be the lower and upper trimming points for computing
the a-trimmed mean estimate. Their dependence on ¢ and a is suppressed. We
shall only consider the case with 6, > 0.

The least favorable contaminant G should have mass on (6,6, + 7) to
drive the median 6, as far from 0 as possible. Furthermore, it should have no
mass in (6, 0,) to make the trimmed mean the largest. So we can choose G to
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have point mass at 6,, as moving all mass in (6,, 8, + 7) to the point 6, will

have no effect on the trimmed mean. The sup-bias is attained at such contami-
nation distribution G with 6,’s determined by

1-of

(1- s)[:°dF(0) —1l_gq

T AR(0) + ¢ = L,

0

and

(1- a)[:zdF(B) ~1l_a

Direct calculation gives

limg, /e = {2 £(0) = £(m))} ",

lim (6, +6,) /¢ = (£(8.)) ' [3£(0) /(F(0) — f(m)) — % + a]
and
lim (6, = 6,) /¢ = (£(8,))7'[3F(0) /(f(0) — f(m)) +  —a].

The sub-bias b(e) is then given by
/p sin 6 dF(6)

(7.1) b(e) = tan™! I cos 0 dF(0)

where D = (6,, 6,).
By direct calculations,

y* = limb(¢) /e = {( £(0) - f(m)) [ cos0dF(0)} f(0)sin 8, .
|0 (—6,,6,)

By Lemma 2.1(ii), we have B* = /y*. The rest of the theorem is straightfor-
ward. O

Proor or THEOREM 5.2. Assume 6, = 0. The optimality in breakdown
point follows immediately from Theorem 4.3. For the breakdown slope part,
we show that for any Fisher consistent estimator the breakdown function
satisfies

e <1-— {1 + 2af(0) — 2[:_“;0(0) de}_l.

It then follows that B* < 2(f(0) — f(w)), the breakdown slope for the direc-
tional median.
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Let the density function f on (0, 27) be symmetric and unimodal about the
direction 6 = 0. Contaminate f by

g(8) =& (1 —¢)(f(0) —f(6)), for6 < [0,2a]
and -

g(0) =e (1 —¢&)(f(6—2a) —f(0)), forbe[2a,7+al,
but g(8) = 0 elsewhere. Note that

[()Z"g(e) do =c"1(1 - 8){2a £(0) — 2f:_af(0) do}.

So, for g to be a density, ¢ must be 1 — {1 + 2a f(0) — 2/ f(6)d6}~ .
Clearly, h = (1 — &) f + eg is axially symmetric and unimodal about 6 = a.
Therefore, any Fisher consistent estimator can be driven to a under this
e-contamination. This completes the proof. O

Proor oF THEOREM 6.2. Take b =1 in (B3). Breakdown to w under
e-contamination requires that for some distribution G on S,
(1 - &)Epn(IX — pll) + eEgn(IX — ul)
< (1 =) Epn(IX — poll) + eEgn(llX — poll).
Therefore, the breakdown function is
En(IX — nll) — En(IIX — w,ll)
max,, [n(ly — wl) = n(ly = wol)| + En(I1X = ull) — En(IX — ,ll)’

where the expectations are under F(x; u,, k) unless specified otherwise.
Under the conditions (B2) [or (B2')] and (B3),

max,, [n(lly — pll) = n(ly = rol))| -

%
8”2

lim sup
B o “l‘l' - M’O”

for some constant c. It therefore suffices to show that
En(I1X = ul) — En(IIX — poll) .
>c

(7.2) lim inf lim inf

e K2 = poll® ‘
and
En(IX — pl) = En(IIX — ol
(7.3) tim inf tim ing Z7UE 2D 7 En(IX ~ pol)
k=0 ppg kllw = woll

for some constant ¢, > 0.
Let H =1 — py,. By Lemma 7.1, (7.2) is equivalent to

= lim [VE{(x*2n(I1 X — poll) HXX'H}v — E{'/*(IIX — pmoll) X'o}]
>c¢,>0

for v € S, such that || Hv|l = 1 or equivalently v'u, = 0.
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By Lemma 7.2,
v'E{K3/2‘n(||X - P«o”)HXX'H}v
1
= S E{e (20T = Xeo) )(1 - (X))}

Since 2k(1 — X'uy) = x2_, as k — ®, with (B3) one obtains by direct verifica-
tion
E{Kg/zn( /2(1 — X,/Jv ))(1 _ (X’IJ« )2)} 5 E(Z3/2) _ 2\/§F(p/2 + 1)
’ ’ I((p - 1)/2)

where Z ~ x2_,. Similarly,

’ V2T (p/2
E{"/*n (I X ~ oll) X'no} — E(Z"/?) = ﬁ '
Therefore,
2V2T(p/2 + 1) V2T (p/2) 1 V2T(p/2)

(p-DIf((p-1)/2) TW(p-1)/2) p-1T(p-1)/2)
which proves (7.2).
Again from Lemma 7.1. (7.3) is equivalent to En(|U — po|DU’'n, < 0 for a
uniform variable U on S,, which is immediate by the monotonicity of 7
function. O

LEMMA 7.1
En(I1X — ul) — En(IIX — u,ll)
= WV E(n(IX — pol) HX' XH)ollp — uoll?
— 3k E{n(I1X = pol) X'mo}llu — noll® + o(k®lln = uoll*)
forany v € S, with vn, = 0.

Proor. By rotation and reflection, one has

(74)  [n(llx = pl) dF(x; 0, 6) = [n(lx = poll) dF(x; 1, ),

where dF(x; u, k) = c.e** dS(x) with dS(x) being the uniform measure on
S,. Then

En(IIX — pll) — En(I1X — woll)

= [n(llx = poll)(e=' =40 — 1) dF(x; o, x)
o<} Km m
(15) - ¥ “n;E{n(”x — moll) (&' (1 — 10))"}

m=1 :

kEn(I1X = pol) X' (1 — o) + 362 En(I1X — mol){X' (1 = o))’
+o(k%llu = moll®),
where the change of sum and integral can be justified by Fubini’s theorem.
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Write x = Hx + (x'ug)po with H = I — p i/, being the projection onto the
space orthogonal to u,. Also note that

2 (w = o) = (Ha) (n — o) — 2(2'mo)lle — noll®.
After some simplification, (7.5) becomes
kE{n(I1X = mol)(HX)'}(1 = mo)
(7.6) +3k% (1 = po) E(m(I1X — pol) HXX'H} (1 — o)
— 3k E{n(I1X — uoll) X'nollln — moll* + o(x2llu — woll?).
By symmetry, the first term vanishes. Observe that
H(p — po) =1 — o + 3l = ol
IH(p = mo)ll = lle = woll + O(lln — nol®),
we have
H(p = po) = v H(n = po)ll = vlln — ol + O(lln — woll?).
Therefore, (7.6) reduces to
sk VEM(I1X — pol) HXX'H}vllp — ol
— 3k E{n(I1X — woll) X'nollle — moll* + o(k2llu — woll?).

By Lemma 7.2, the first term here is invariant in v. O

Lemma 7.2. If F is axially symmetric about u,, then for any bounded
function +(r),

1
VEx{r(Xno) HXX H)o = —— Ep{r(Xn)(1 = (X'n,)’))
for any v € S, with ||Hvll = 1 or equivalently v'n, = 0.

PrROOF. By symmetry, U = | HX || 'HX is independent of ||HX||. Further-
more, U is uniformly distributed on the (p — 1)-dimensional unit sphere
orthogonal to 4. So v'(EUU’)v is invariant in v and equal to Ez2 = (p — 1)71,
where z is any component of a uniform variable on S,_,. Therefore,

VEp{r(X'uo) HXX'H}v = Ep{r(X'n,)|HXI*}v'(EUU")v.
The lemma follows by writing ||HX||> = 1 — (X'uy)% O
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