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BAYESIAN OPTIMAL DESIGNS FOR LINEAR
REGRESSION MODELS!

By Sapr M. EL-KRUNzZ aAND W. J. STUDDEN

University of Gaza and Purdue University

A Bayesian version of Elfving’s theorem is given for the c-optimality
criterion with emphasis on the inherent geometry. Conditions under which
a one-point design is Bayesian c-optimum are described. The class of prior
precision matrices R for which the Bayesian c-optimal designs are sup-
ported by the points of the classical c-optimal design is characterized. It is
proved that the Bayesian c-optimal design, for large n, is always supported
by the same support points as the classical one if the number of support
points and the number of regression functions are equal. Examples and a
matrix analog are discussed.

1. Introduction. Consider the linear regression model y = f'(x)0 + &,
where f'(x) = (f(x), ..., f,(x)), x is the control variable, 8 = (6,,...,0,) is
the vector of unknown parameters and ¢ is a normally distributed random
variable with mean 0 and variance o2 independent of x. We assume that 2" is
a compact set, containing at least 2 points, with Borel field containing all
one-point sets. The regression functions f;, fs,..., f, are k linearly indepen-
dent real-valued continuous functions on the design space £, which are
assumed to be known to the experimenter. As usual, uncorrelated observations

¥1,¥25---,¥, on the dependent random variable y, are taken at levels
X1y X9, ..., %, € Z respectively, and the n-dimensional random vector y =
(y1,--.,¥,) is assumed to have a normal distribution with mean vector X6
and covariance matrix o2I, where X = (f(x,),..., f(x,)) is the n X k design

matrix and I is the n X n identity matrix. We also assume that a prior
distribution 7(0, o2) on 0, o2 is given such that the conditional prior distribu-
tion m(8|0-2) of 0 given o2 is N(u, c2R 1), where R is a given positive definite
k X k “precision” matrix. Under the above assumptions the posterior condi-
tional distribution m(8ly, o2) of 8 given y, o2 is normal with mean vector

(1.1) 0z = E(8ly,0?) = (X'’X+R) '(X'y + Rp)

and covariance matrix ¢%(X'X + R)™!. Thus, if we are interested in estimat-
ing A'0 for some k& X s matrix A of full rank s, 1 < s < k, then under squared
error loss and with o2 either known or E(o{) finite, the best estimator of A’0
is A0 r and the expected posterior risk of A’y is given by

(1.2) E(o®)tr ¥(X'X + R)™' where ¥ = AA.
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Thus, for the Bayes estimator 6 g lor any estimator with covariance structure
proportional to (X'X + R)~! with a specified positive definite 2 X 2 matrix
R], a reasonable criterion of optimality is then to choose X to minimize some
appropriate functional ® of the matrix (X’X + R)™!. For a more complete
discussion of the above model and of the optimality and robustness of the
Bayes estimator 6R, see Pilz (1983), Chaloner (1982, 1984), Duncan and
DeGroot (1976) and Sinha (1970).

We are concerned here with the approximate design theory wherein the
designs are the class E of probability measures ¢ on £ and the Bayesian
information matrix (per unit observation) of the design ¢ is Mz(£) = M(¢) +
(1/n)R, where M(¢) = [, f(x)f'(x)é(dx) and n is the total number of obser-
vations. Thus My(¢) is a positive definite & X k& matrix and Mg(¢) is
proportional to the posterior covariance matrix of the Bayes estimator of 6. We
let Ay = {Mg(£¢): £ € E}). Then the family .# of all Bayesian information
matrices is a convex compact set. It is the closed convex hull of the set
{f(x)f'(x) + (1/n)R: x € 2°} of Bayesian information matrices corresponding
to one-point designs. Moreover, if k2 is the dimension of the vector space
generated by the products { f; fj}i’f j=1 of the regression functions f3, f5,..., f,
then for any design ¢ € E, the Bayesian information matrix My(¢) can be
represented in the form

m 1
M(6) = & 1 7R+ 12082

msh+ls@+1, 0<p;<1, Y p, =1
i=1
If My(¢) is a boundary point of .#%, then A + 1 and k(% + 1)/2 + 1 can be
replaced by A and k(k + 1)/2 respectively. This is an immediate consequence
of Lemma 2.1 in Karlin and Studden (1966).
Usually the optimality criterion ® (to be minimized) is finite on .#; and
satisfies the following conditions:

1. @ is convex on .#, that is, if ¢ and n € E, then for any 0 < @ < 1, we
have

O((1 — a)Mg(¢) + aMp(n)) < (1 — a)®(Mg(¢)) + a®(Mg(n)).
2. @ is nonincreasing in the sense that if M, — M, is nonnegative definite,
then ®(M)) < ®(M,).
3. @ is homogeneous of negative degree p, that is, for any a > 0, ®(aM) =
a Pd(M).
4. @ is continuous and differentiable everywhere on .#5.

The Bayesian optimal design problem is then to characterize the designs &,
which are Bayesian ®-optimum,; that is, ®(Mg(¢y)) = inf, c c®(Mg(£)). The
convexity of .#; ensures that there always exists a Bayesian ®-optimal design
supported by m < h < k(k + 1)/2 points. The main purpose of this paper is
to study a Bayesian version of Elfving’s theorem for the c-optimality criterion
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and discuss some of its implications. This criterion is given by
P(Mg(§)) = cMz'(é)e, ¢£€E,

and corresponds to the case where one is interested in estimating a linear
combination of the form ¢’'0 for some nonrandom & X 1 vector ¢. The famous
Elfving’s theorem for classical (non-Bayesian) c-optimal designs is the follow-
ing.

THEOREM 1.1 [Elfving (1952)]. Let & be the symmetric convex hull of
fZ). A design £* is classical c-optimum [in the sense that it minimizes
c’M (&) over all designs ¢ for which ¢'0 is estimable]l if and only if there
exists a measurable real-valued function £*(x) satisfying |e*(x)| = 1 such that
@ [e*(x)f(x)¢*(dx) = B*c for some positive constant B* and (i) B*c is a
boundary point of &. Moreover, B*c lies on the boundary of ¢ if and only if
inf, M~ (£)e = p* 2

The Bayesian version of this theorem is given in Theorem 3.1. The analog is
to enlarge the set %, using the precision matrix R, to a set # or #* defined
precisely in Section 2. We show in Lemma 2.4 that £ c #* C #. In the
Bayesian context we find &, so that §,c lies on the boundary of #* and then
inf, ¢’Mz'(¢)e = 8,2 The representation of the boundary point gives rise to
the corresponding Bayesian c-optimal design. The classical case given in
Theorem 3.1 corresponds to R = 0 and for “small” R the sets # and #*
are only slightly larger than . The assumption that R is positive definite is
for technical reasons only. All of the geometrical results hold for R nonnega-
tive definite.

Definitions and some preliminary lemmas are given in Section 2. Duality
theory is used to derive a Bayesian version of Elfving’s theorem for Bayesian
c-optimality in Section 3, where emphasis is placed on the geometry inherent
in the Bayesian c-optimal design problem and the parallelism between classical
and Bayesian c-optimal design theory is illustrated. Conditions under which a
one-point design is Bayesian c-optimum are given in Section 4. In Section 5
the class of prior precision matrices R for which the Bayesian c-optimal
designs are supported by the points of the classical c-optimal design is charac-
terized. It is also proved that the Bayesian c-optimal design, for n large
enough, is always supported by the same support points of the classical
c-optimal design ¢* if ¢* is supported at exactly k& distinct points and for a
large class of prior precision matrices R if £* is supported at 1 <m <k
points. In Section 6 the geometry—duality approach is extended for the ¥-opti-
mality criterion which is to minimize (1.2) and a matrix analog of the geomet-
ric result of Elfving is derived and in Section 7 its applications are discussed.

2. Definitions and preliminary lemmas. Assume that we are inter-
ested in the estimation of parametric functions of the form ¢’0, where ¢ is an
arbitrary nonrandom k& X 1 vector. Let o be the convex hull of the set of all
vectors ef(x), x € &, € € {+1}, that is,  is the symmetric convex hull of
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f(Z). Thus & is a symmetric convex compact subset of k-dimensional Eu-
clidean space and every vector a € « has a representation

m
(2.1) a= ) ¢pf(x)

i=1
for some positive integer m, p, > 0, x, € £, ¢, € {+1}and " ,p, = 1. From
our assumptions on 2 and f, it is ev1dent that the set ¢ has the origin in its
interior and every half-line through the origin intersects the boundary of & at
exactly one point and so for any nonzero & X 1 vector ¢, there exists a unique
positive constant B* such that g*c € 0= boundary of . The following
simple lemma characterizes the boundary points of the set <.

LEMMA 2.1. A vector a of the form (2.1) is a boundary point of & if and
only if there exists a k X 1 vector d such that |d'f(x)| <1 for all x € 2 and
for each x; from (2.1) one has equality and ¢; = d'f(x;).

ProoF. See Lemma 2.1 of Studden (1968). O

The vector d given in Lemma 2.1 defines the hyperplane {u: u € R¥,
d’'u = 1} supporting ¢ at its boundary a, thatis,du <1 =d'aforallu € £.
Identifying a hyperplane with its inducing vector d, we define

9={d:du<1lforallue & anddu, = 1 for someu, € 3¢}

to be the set of all ‘“normalized” supporting hyperplanes to the boundary of
Z. For every d € 2, define the contact set €(d) = {u: u € 3, d'u = 1} to be
the intersection of the hyperplane d with ¢ and for any point u, € 9., let

={d: du<1=du, for all u € &} denote the set of all supporting
hyperplanes to & at u,. The set 2, is either a single point or a closed convex
set and 9= U ,;,9,. Now let R ’be a given k X k positive definite matrix,
n to be a given positive integer and let us define the following:

1
(2.2) H = {z:z=u+;Rd,de.@andue€(d)},
1 -1/2
(23) 9*= {d*: d* = (1 + ;d’Rd) d,de .@},

1 ~1/2 1
(2.4) H#*= {v: v = (1 + ;d’Rd) (u + ;Rd), de Zandu e ¢(d)]}.

It is important to note the dependence of u and d in the definition of &# and
#*. In addition, both sets depend on the precision matrix R.

For any set 7, we shall use the notation &7 to mean the set /= {ta:
ae,0<t<1)

We show in Lemma 2.4 that £ < #* c #. The sets #* and # will
serve as Bayesian analogs of . The set #* will be shown to be the convex
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Fic. 1. The sets &, #*, and H#.

hull of #*. The set #* is just the ‘“normalized” version of #. The set H
is not convex in general and seems to be more useful in practice than H*,

ExampLE 2.1. In this example we consider the simple linear regression to
illustrate the sets <, # and #*. Let f(x) = (1,x),x€[-1,1], R = !

and take n = 1. The sets &, #* and ¥ are depicted in Figure 1. The set £
is readily seen to be the square with side of length 2. To draw the set #’, we
simply take each point u € 4 and transform to the point h = u + Rd, where
d supports  at u. Note that the representation h = u + Rd is linear in both
u and d; however, they depend on one another. Thus the four sides of the
square transform to line segments since each corresponds to the same d. The
right vertical face has d = (1,0) so it transforms to u + Rd =u + (1,3). In
particular, (1,1) corresponds to (2, 3) as indicated on the figure. Note that
£c #* C # and that & and #* are convex while # is not. The set #*
is just # pulled toward the origin by the factor (1 + (1/n)d’Rd)~'/2. In most
of our examples we have found the set -# to be easier to work with than #*;
in fact, in most cases we do not even consider #*.

We let {x;, p,J", denote the design ¢ which puts weights p, > 0 at the
points x; € &, i = 1,..., m. The following version of the equivalence theorem
for Bayesian c-optimal designs [see Chaloner (1984), Pilz (1983), or El-Krunz
(1989)] will be needed.

Q- Nl

THEOREM 2.1. The design ¢, = {x;, p;}/~, is Bayesian c-optimum if and
only if

(2.5) |£(x)Mz'(&o)el” < Mz (&) M(£) Mz (&o)e  forallx €
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and equality holds for each x;, i = 1,2,...,m, in the spectrum of the design

€o-

LeEmMMA 2.2.  For any nonzero k X 1 vector ¢, there exists a positive constant
Yo Such that

m 1
(2.6) Z e;p;f(x;) + ;Rdo =y, € K
i=1

for some d, € 9 and some positive integer m, where p, > 0, ¢, d/,f(x;) = 1
and L7 p;=1[u, = Z¢;p,f(x,) €d4]. -

Proor. Let ¢, ={x,, p,}L; be the Bayesian c-optimal design, y;2 =
S Mp(£) " M(£)Mp(£9) e, dg = yoMg(¢)) e, & = d,f(x,) € (+1), i=
1,...,m,and u,:= X" & p,f(x;). By Lemma 2.1 and Theorem 2.1 we have
u, €94, d, € 7 (d, is the supporting hyperplane at u,) and

1 1
Yo€ = Mp(£o)do = M(£o)d, + ;Rdo =u, + ;Rdo’
which completes the proof. O

If in (2.6), we let B, = (d/;c) !, then premultiplication of both sides of (2.6)
by d, gives vy = Bo(1 + (1/n)dy Rd,). Note that B,c lies in the hyperplane
d, € 9. Since d, supports the convex set & at u,, then B, > g* if pg* is
defined such that B*c € 4. Furthermore, since y, > f,, then y,c and £ lie
on opposite sides of the support plane d,.

LEMMA 2.3. The set 9 is a compact symmetric convex set in R* which has
9 as its boundary. Moreover, for any nonzero k X 1 vector ¢, there exists a
unique positive constant a such that ac € 2.

Proor. From the definition of 2, we have
(2.7 2 ={d:|d'ul < 1forallu e s£)

from which the symmetry and convexity readily follow. Since & is a compact
subset of R* with the origin in its interior, then (2.7) implies that 9 is also a
compact subset of R*. For any u, € 9%, let a = sup{w'u,: u € #}. Since £ is
compact, then this supremum exists and is attained at some point u, € 4.
and so d = a"'u, is a supporting hyperplane to # at the point u; €944,
Thus, for every u € 4, there exists a positive constant a such that a'u € 9
which implies that any half-line through the origin intersects 2. This and the
convexity of 9 give that any half-line through the origin intersects Z at
exactly one point and 2 is the boundary of 9. Thus, for any nonzero & X 1
vector ¢, there exists a unique positive constant a such that ac € 2 which
completes the proof. O
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LEMMA 2.4. The set #* is a convex set and £C H* c HF.

ProOOF. Let ¢ be any nonzero k2 X 1 vector. From the definition of «, there
exists a positive constant B* such that g*c € d# and from Lemma 2.2, there
exists a positive constant y, = By(1 + (1/n)d,Rd,) such that y,c € #.
From Lemma 2.2 and the definition of #*, it follows that the posi-
tive constant 8, = B,(1 + (1/n)dyRd,)'/? is such that §,c € #*. Since
Boc lies on the supporting hyperplane to « at the point u, for which u, +
(1/n)Rd, = y,¢, then B* < B,, and since R is positive definite, then d; Rd, >
0 and so 1+ (1/n)dyRd, > 1 which jmplies that g* <§, <y, and so
& C #* c H#. Note that the set inclusion is actually “strict in every direc-
tion.” Since « and 9 are compact it follows that #* is bounded and closed
and so compact. To prove that the set #* is convex, it is enough to show that
there exists a supporting hyperplane to #* at every point v € #*. So let

1
uO + ;‘Rdo

Vo =

1
1 —a
\/ + ndORdo

be any point on #*. To show that v'd} < 1 = vgd} for all

1
u+ —Rd
v = —————: € H*,
V 1+ —dRd
n
where
1
_ uo + ;Rdo "
1 1d’Rd ’ ' 1 1d’Rd
+  doftdo + 5 Golido

it is enough to prove that

dyu + ;ll—d’oRd < \/1 + %d’oRd0 \/1 + %d’Rd.
Since R is positive definite, it is immediate that
(2.8) 2d,Rd < dyRd, + dRd
and Schwarz’s inequality implies
(2.9) (d,Rd)® < (d,Rd,)(d'Rd)
with equality holding (in both equations) if and only if d = d,. Combining
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(2.8) and (2.9), straightforward algebra yields

1 1 1
1+ —dyRd < \/1 + —d,Rd, ‘/1 + —d'Rd
n n n
and the result follows since dju < 1. O

REMARK 2.1. From Lemma 2.4 the set 2* is the set of all normalized
supporting hyperplanes to #*. Also, the symmetry of ¢ and 2 implies that
both #* and @* are symmetric. Thus, as in the case of 4 and 2, the set
* is the convex dual of #*, 2* is the boundary of 2* and H#* is the
boundary #*. Thus for any nonzero k X 1 vector ¢, there exists a unique
positive constant «, and a unique positive constant §, such that a,c € I*
and §,c € #*.

Lemma 2.2 thus implies that every nonzero & X 1 vector ¢ has the repre-
sentation

1 2 m 1
(2.10) (1 -+ ;d’ORdO) (Z g;p.f(x;) + ;Rdo = §,c € H*
i=1

for some dy € Z and uy, = L ¢;p,f(x;) € €(d,) for some positive integer
m, where p, > 0, ¢;d,f(x;,) = 1, L7* ; p, = 1 and the unique positive constant
8, is given by 8§, = Bo(l + (l/n)d’ Rd )2 As in the proof of Lemma 2.4, one
can easily show that the set A is a symmetric compact subset of R*; however,
unlike #*, the set # (as mentioned earlier) is not convex in general.
Example 2.1 illustrates this point. Nevertheless, the set -# satisfies other
properties of # and #* as the following lemma indicates.

LemMA 2.5. Any half-line through the origin intersects 7 at exactly one
point and the representation (2.6) is unique.

Proor. Assume to the contrary that there exists u,,u, €d4,d, € 7,,
d, €9, and y > 1 such that z=u, + (1/n)Rd, and yz = u, + (l/n)Rd2
are elements of #. Let B, = (d,z)"! and B, = (d’,z)"'. Then Lemma 2.4 and
Remark 2.1 imply that there exists 6 > 0 such that 6z € #* and 6§ =
‘/_ VBzY . Premultiplication of z and yz by d; and d’, and using the fact
that B; = yB,, we get B,(1 + (1/n)d;Rd,) =1, B1 + (l/n)d’ Rd,) = v?,
B{du; + 1/n)d Rd,) = y and Bd u, + (1/n)d;Rd,) = y. From the last
two equations we have dju, = d’yu; and, combining the last four equations,
we get

L (vd, - d,Y R(vd, - d,) LAV P

— - - = — — u

(2.11) A 2 Ya, 2 B, - v? B, ydau,
<-(y-1%<0

It

with equality holding if and only if y = 1 and dju, = d,u; = 1. Since R is
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positive definite, we get a contradiction from (2.11) unlessd; = d, and y = 1.
This implies u, = u, which completes the proof. O

REMARK 2.2. What Lemma 2.5 says is that for any nonzero £ X 1 vector c,
there exist a unique triple (uy,d,, v,); uy €94, dg € 7, and y, > 0 for
which u, + (1/n)Rd, = yoe € #. Thus the triple (u,,d,, 3,) in the repre-
sentation (2.10) is also unique. That /# is a symmetric compact set which
spans R* follows from this and the symmetry and compactness of #*. Thus
A is a “starlike” set in R* with boundary .

3. Elfving’s theorem, geometry and duality theory. The following
result is the Bayesian version of Elfving’s theorem (mentioned in the Introduc-
tion) for the c-optimality criterion.

THEOREM 3.1. Given a nonzero k X 1 vector ¢ and a k X k positive definite
matrix R, the design £, is Bayesian c-optimum if and only if ¢ has the
representation (2.6), or equivalently (2.10), with ¢y(x;) =p;, i =1,2,..., m.
Bayesian c-optimal designs always exist and inf, z¢'Mz'(é)e = p(e) =
862 = (Boyo) ™"

PrOOF. Any nonzero k£ X 1 vector ¢ has a representation
1
(3.1) u, + ;Rd0 = YoC

withd, € 9, u, € €(d,) and y,c € # for some y, > 0. In addition, Lemma
2.1 gives uy= X" ¢;p,f(x;) for some m >0, p,>0, ¢ =f'(x;)d, and
Y™ ,p; = 1. Inserting the expressions for u, and ¢; into (3.1) shows that

, 1
Y pif(x)f (x;)d, + —Bdo =7y
or
(3.2) d, = yoMg'(&)e.
The proof is based on the inequalities
(3.3)  ¢Mgpl(¢)e = ir§1fc’M§1(§)c > sup (d*c)® > (d¥e)®
. d*e 9*

and showing that the two extremes to these inequalities are both equal to §; 2.

From Schwarz’s inequality

(dc)” (d*c)®
'Af-1 = -0 = TEAT ( £\AF
(B4 oM ()e = P IMa(D)d  aile T M(OT

Since |d'f(x)| < 1 for all x, then

m 1
T pi(df(x,))” + ~dRd| <1
1

(3.5) d"My(¢)d* = 1+ (1/n)dRd\ 2
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and (3.4) becomes
cM;(¢)e > sup (d¥e)’.
d*e 9*
Equation (3.3) then follows and (3.2) readily shows that both sides of (3.3) are
equal to 852 = (Byyo) ™"

We have thus shown that if ¢ has the representation (2.6), then the
corresponding £, is Bayesian c-optimal and ¢'M~'({y)c = inf, /M~ (é)e =
85 2. The converse can be deduced from the fact that equality in (3.5) occurs
only if |d,f(x,)| =1 for all x; in the spectrum of ¢ which implies the
representation (3.2) O

CoroLLARY 3.1. The Bayesian c-optimal design problem minimize
¢’ M5z (¢)e subject to ¢ € E is the dual of the problem maximize (d*'¢)? subject
to d* € 9* and the two problems share a common extreme value p(c) =
362 = (Bovo) ™"

REMARK 3.1. The duality exhibited in Theorem 3.1 and Corollary 3.1 is
essentially the same as (or a special case of) that given in Pukelsheim (1980).

The parallelism between Theorem 3.1 and its classical analog of Elfving’s
theorem is now evident. To see that, let & denote the set of all functions ¢
defined on 2" which take values +1. In Elfving’s theorem we find the unique
positive constant S* such that g*c € 3¢ and the classical c-optimal design is
then the design £* for which [, £*(x) f(x)¢*(dx) = B*c for some ¢* € & in
which case the infimum of ¢’M~(£)e among all designs ¢ for which ¢'0 is
estimable is equal to B* 2 and is attained at ¢ = ¢*. In Theorem 3.1 we find
the unique positive constant §, such that §,c € #* (or equivalently the
unique positive constant y, such that y,c € &#°) and the Bayesian c-optimal
design is the design ¢, for which [4 e(x)f(x)¢,(dx) = u, for some ¢ € &,
where u, € ¢ is uniquely determined by the representation

u, + (1/n)Rd, = y,c
(or equivalently the representation
u, + (1/n)Rd,
V1+ (1/n)d,Rd,

of ¢ and d,, is the supporting hyperplane to - at u, € ¢ normalized so that
0o = 1. The infimum of ¢'M 3 (¢)c among all these designs ¢ is equal to §; 2
and is attained at ¢ = §&,,.

Following similar steps to those by which Corollary 3.1 is derived, one can
easily see that the classical c-optimal design problem is the dual of the problem
maximize (d'¢)? subject to d € 2 and that the two problems share a common
extreme value. Thus finding the classical and the Bayesian c-optimal designs
can be achieved geometrically by visualizing the sets 3¢ and #* or equiva-
lently the sets 4 and -#. Also the design problem and its dual problem are

=4,¢)
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clearly equivalent in the sense that by solving any one of them one can, with
the aid of the unique representation (3.1), obtain a solution of the other and so
in addition to the intuitive appeal of the above geometrical approach, it may be
possible to solve certain covering or dual problems both in theory and in
practice. For more discussion of this and the approximation theory interpreta-
tion of the above results, see El-Krunz (1989).

We now prove the following simple result which gives the condition under
which the Bayesian and the classical c-optimal designs coincide. Further
applications are given in later sections.

CoROLLARY 3.2. Let £, = {x;, p;}, bea classical c-optimal design and let
Bo be such that B,c € dF. Then &, is a Bayesian c-optimal design if and only
if Rd, = ayc for some ay > 0 and some d, € Z .

Proor. Since &, is a classical c-optimal design, there exists ¢, € {+1},
i=12,...,m, such that X7 ¢, p; f(x;) = Boc from Elfving’s theorem. If ¢,
is also a Bayesian c-optimal design, then it follows from Theorem 3.1 that
Boc + (1/n)Rd, = y,c, where d, € ;. and vy, = B¢(1 + (1/n)d,,Rd,)
which implies that Rd, = a,c, where a, = n(y, — By) = Bod,Rd, > 0. On
the other hand, if Rd, = a,c for some a, > 0 and some d, € Z, ., then
Boc + (1/n)Rd, = (B, + ay/n)e = y,¢ which implies that

m

1
Y epf(x;) + ;Rdo = 7YoC
i=1

and so ¢, is a Bayesian c-optimal design. This completes the proof. O

ExampLE 3.1. Continuing with Example 2.1, consider the problem of ex-
trapolating, say to x, > 1, that is, take ¢ = (1, x,)". One can readily check that
the classical design puts weight @ and 1 — « at —1 and 1, where a = 271(1 —
x51) and the minimum variance is x3. In the Bayesian case we use the same
two points with @ = 2(2 — x;!) and the Bayes risk is (3)2x2.

This same example illustrates Corollary 3.2. Thus, if in the extrapolation
case, we take R so that R(‘l’) = ao( xlo) the design stays exactly the same. This

is the case if R = k(q ! ), where & > 0, p > 0 and px, > 1.
X0

ExaMpPLE 3.2. Assume that

’

X

V1422 V1 + 22

f(x) = : xe.Q”=[—1,1]..

This model actually arises from the simpler standard linear regression model
(1, x) except that the variances are not assumed constant. More details can be
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found in DasGupta and Studden (1989). One can easily see that

£§(2) = {(a +V1-a® ):ae [%1]}

and that the boundary of  consists of £(2°), —f(Z"), the line segment joining
the two points (—1/v2,1/v2),(1/v2,1/V2) and the line segment joining
the two points (—1/v2, -1/v2),(1/V2, —1/V2). Note also that £(2") U
(—f(2)) is the part of the circle a® + b2 =1 for which || <a. For any
nonzero k X 1 vector ¢, we want to characterize the entire class of Bayesian
c-optimal designs. So for each x € (—1,1), let u = (z,u,) = f(x). Then
1/V2 < u, <1 and the supporting hyperplane to  at u is u itself. Thus it
follows from Theorem 3.1 that the one-point design ¢, is a Bayesian c-optimal
design if and only if

1 7!
(3.6) u= yO(I + ;L—R) c,

where vy, is chosen such that yo(I + (1/n)R) 'c € f(Z°), that is, yy' =
+[I(I + 1/nR) 'ell. Let R = ((r;;))? ;_, and let
1 1

and

1
2y = — —rpe, t
2 o126

1 1
+ - .
n"u Co

Then (3.6) implies that the one-point design ¢,, x € (—1,1), is a Bayesian
c-optimal design if and only if |2;| > |z,| and x = 2,/2,.

Theorem 3.1 also gives that the Bayesian c-optimal design puts weights
1—-p,p, 0 <p <1, at the two points —1, 1 respectively if and only if

1 1
vz 2| 1
(3.7 YoC =P 2 +(1-p) 2 + —Rd,,
1 1 n
V2 V2

whered, = (0,vV2Y, v, = B,(1 + (1/n)d,,Rd,) and B, = (d;¢)" . Since djyc =
V2¢,, where ¢ = (c;, ¢c,), then for the Bayesian c-optimal design to be sup-
ported at the two points —1,1, we must have ¢, # 0. Thus the Bayesian
c-optimal design puts weights 1 — p, p, 0 <p < 1, at the two points —1,1
respectively if and only if

n 14 ¢y - ¢ n 1 ¢
-—— [— JR— -— < —_— -——
2 cy c, T2 T T2 2 cy
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in which case

1(c 1(c 1
= —|—ryp — + == +1}.
b n 02"22 I'ig 2\ e,

Finally, using the same theorem, one can easily demonstrate that the design £,
which puts all of its weight at the point x = 1 is a Bayesian c-optimal design if
and only if 0 < 2z, < 2, or 2z, <2, <0, and

¢y n ¢
N T P = 0;
() 21 2) o

2

the design £_; which puts all of its weight at the point x = —1 is a Bayesian
c-optimal design if and only if 0 < z; < —2z, or —2, < 2; < 0, and

ﬁr —-r <—ﬁl+ﬁ or ¢, =0
0222 12 = 2 02 2 .

4. One-point designs and alternative formulations. In the classical
theory of optimal design, a one-point design ¢, cannot be a classical c-optimal
design unless B*c = +f(x,) € 0. for some x, € 2 and some constant B* +
0. For the Bayesian theory of optimal design, it follows from the unique
representation (3.1) of ¢ that the one-point design ¢, is a Bayesian c-optimal
design if and only if u, = +£f(x,) for some x, € 2" This will always be the
case if 32 £(2) U (—£(2°)). The following result is given in Chaloner
(1984) and Pilz (1983).

LemMa 4.1. If the design space 2 and f are such that 05 C £(Z°) U
(—£(Q)), then every Bayesian c-optimum design is a one-point design for
some xy € X

The above lemma states a simple sufficient condition for the existence of
Bayesian c-optimal one-point designs. A necessary and sufficient condition,
however, is that the point u, € 3¢ in the unique representation (3.1) of ¢ be
an element of +f(2°) and so if the prior precision matrix R has some
convenient structure, one-point designs can often be Bayesian c-optimum.
One-point designs are of special interest because they are exact designs which
are easy to implement and which keep the experimental effort minimal. What
we are interested in here is to characterize the set of precision matrices R for
which the one-point design ¢, is Bayesian c-optimal for a given nonzero k X 1
vector ¢ and a point x, € 2 for which f(x,) € 3. Consideration of this
problem led to an alternate formulation of the design problem given in
Theorem 4.1. The following lemma will be needed. For a proof, see El-Krunz
(1989).

LEmMMA 4.2. Let x and y be given k X 1 nonzero vectors and let R be an
unknown k X k positive definite matrix. Then a positive definite solution in R
to the matrix equation RXx =y exists if and only if X'y > 0. The general
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solution is R = yy'/x'y + UAU', where U = (u,,...,u,) is an arbitrary or-
thogonal matrix for which (u; = x/|x| and A = diag(0, Ay, ..., A,), where
Ay, ..., A, are arbitrary positive real numbers.

Let ¢ be any nonzero k X 1 vector and let u, € 3¢ with corresponding
design &,. For each d, € , let B, = (d;;e) 1. Without loss of generality, let
us assume that g, > 0. Let us define 2 to be the set of precision matrices R
for which the design ¢, is Bayesian c-optimal, that is, % is the set of all
positive definite matrices R for which uo + (1/n)Rd, = y,c for some d, €
9, and some vy, > B,. For every d, € , let #, denote the set of all
pos1t1ve definite matrices R for which u, + (1 /n)Rd = vy,c for some y, > B,
or equivalently (1/n)Rd, = (y,c — u,) for some Yo > Bo- Let 4, be the set
of all matrices UAU’, where U = (u,,...,u,) is an arbltrary orthogonal

matrix for which u;, =d,//d\d, and A = diag(0, Ay, ..., A,), where
Ags ..., A, are arbitrary positive real numbers. Since (yye — uyYd, = v,/B8, —

1> 0, then it follows from Lemma 4.2 that

n(ve€ — ug)(ye€ — ug)
#, ={R:R= UAU’,
2 { (ro/Bo) -1

(4.1)
Yo > Bo and UAU’ € 4,

and Z= U, guoﬂdo. Thus we have the following result.

THEOREM 4.1. Let ¢ be any nonzero k X 1 vector and u, € 0% have
corresponding design &,. The design &, in Bayesian c-optimal if and only if
Re .

Assume that ¢ = u, = f(x,), that is, we are interested in the estimation of
£'(x,)0 for some x, € 2 and that f(x,) € 3. Then B, = 1 and (4.1) becomes
Rq,= (R: R =n(y, - )ec' + UAU', v, > Lland UAU’ € .4 }

={R: R = agec’ + UAU' ay > 0 and UAU’ E/’{zo}’

0

(4.2)

which is independent of n and so we have the following result.

CoroLLARY 4.1. If ¢ =u, = f(x,) € 0F for some x, € X, then the one-
point design ¢, is a Bayesian c-optimal design if and only if R € #=
U dye PN where .9Pd is given by (4.6). Moreover, %# does not depend on n,
that is, R is a “cone.”

ExampLE 4.1. This example is described in Chaloner (1984) and Pilz
(1983). Assume that the design space 2 is such that f(2°) is the unit ball,
that is, f(2°) = 3= {u € R*: w'u = 1}. Then it follows readily that all the
Bayesian c-optimal designs are one-point designs. Since the supporting hyper-
plane at any point u, € ¢ is u, itself, then it follows from Theorem 3.1
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that the one-point design £, is Bayesian c-optimum if and only if
(I + 1/n)R)(xy) = yoc or equivalently f(x,) = y,(I + (1/n)R)"'c, where
vo is chosen such that y (I + (1/n)R) !¢ € 0¢, that is, yg! =
+I(I + A/n)R) el If ¢ = f(x,) €0 for some x, € Z, then it follows
from Corollary 4.1 that the one-point design ¢, is Bayesian c-optimum if and
only if Re = a,c for some a, > 0, that is, s, 1s a Bayesian c-optimal design
for all prior precision matrices R for which ¢ is an eigenvector.
This suggests a more general simple result. The proof is straightforward.

LEmMA 4.3. If the vector ¢ is such that the support plane to <, at
Boc € 0¥, is proportional to c, then the classical design &, is Bayesian
c-optimal for all prior precision matrices R for which ¢ is an eigenvector. If
Rc = Ac, then

A -1
(4.3) infe’Mzg!(€é)e = (Bg + ———2) .
¢ nllell

REMARK 4.1. Take the set of points of contact of ¢ with either the sphere
inscribed in or circumscribing #. If B,c is any of these points, the conditions
of Lemma 4.3 hold. If b denotes either radius, then (4.3) can be rewritten as
Bo2(1 + A/nb?H)~ L

ExampLE 4.2. Consider the quadratic polynomial regression model for
which f(x) = (1, x, x2), x € 2’ =[—1, 1]. Then the set « is the convex hull of
the parabolic arcs +f(x) = +(1, x, x2), x € 2. The “upper face” of  is the
two-dimensional convex set

3
(4.4) €= {ug:uy=p,f(—1) — p,£(0) +psf(1),p; >0, Y p;=1
i=1

andd, = (-1,0,2) is the hyperplane supporting ¢ at the whole face €. Thus
the sphere of radius b inscribed in & touches « at exactly one point ¢ € ¢
and d, = c¢/b% We shall assume without loss of generality that B, = 1. Since
dyc =1, then b2d;d, =1 which implies that b=1/V5 and so ¢ =
u, = b2d, = (—1,0,2). From (4.4), it follows that p, =p; = % and p, =
and so it follows from Lemma 4.3 that the design ¢, which puts weights p; = 3,
Py = 2 and p; = § at the three points —1, 0 and 1 respectively is Bayesian
c-optimum for all prior precision matrices R for which c¢ is an eigenvector and

50\
cMp'(€y)c = inf ¢Mg'(é)e = (1 + —) ,
(el n

where A is the eigenvalue of R corresponding to the eigenvector ¢. The sphere
circumscribing # touches the boundary of  at the four points ¢, = (1,1, 1),
c,=(1,-1,1),¢3=-¢,=(-1,-1,-1) and ¢, = —¢, =(—1,1, - 1), and
has radius V3. Thus for ¢ = +c¢,, the design ¢, which puts all of its weight at
the point x = 1 is a Bayesian c-optimal design for all prior precision matrices
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R for which ¢ is an eigenvector and

A -1
inf ¢ Mz (¢)e = |1+ —1) ,
¢el R (f) ( 3n
where A, is the eigenvalue corresponding to the eigenvector ¢ of R. For
€ = *c,, the design £_; which puts all of its weight at the point x = —1isa
Bayesian c-optimal design for all prior precision matrices R for which ¢ is an
eigenvector and

e Ay )“
nglfcMR (&e .(1 + 3.
where A, is the eigenvalue corresponding to the eigenvector ¢ of R.

One can use Corollary 3.2 to characterize the set of all prior precision
matrices R for which the Bayesian c-optimal design and the classical c-opti-
mal design coincide. For example, if we are interested in estimating the highest
coefficient in this example, that is c '0 for ¢ =(0,0,1), then the classical
c-optimal design ¢* puts weight 1, 3, 7 at the points —1, 0, 1 respectively and
d, = (-1,0,2). Thus it follows from Corollary 3.2 that ¢* is also a Bayesian

-optlmal design if and only if Rd, = a,c for some ay > 0. If we let R =
IIr”||, j=1, then ry; =2r,, r,= 2r23 and r;; < 2rz;. Since R is positive
definite, then if r;; = 2r;3 and rj, = 2ry3, then the condition r;3 > 2ry,; is
trivially satisfied and so the Bayesian and the classical c-optimal designs
coincide for all prior precision matrices R for which r;; = 2r;3 and ry, = 2ry,.

5. Bayesian c-optimal designs on the support of classical c-optimal
designs. In the last section conditions on ¢ and R were given so that the
classical and Bayesian c-optimal designs coincided. In this section we consider
the more general problem of when the support points of the designs are the
same. It was noticed in Chaloner (1984) that this happened in certain polyno-
mial examples for large n. If n is large one expects the designs to be close. The
fact that the supports are identical for large n is not entirely clear. We show
this to be the case for any ¢ when the classical design is on a “full set” of %
points. Recall % is the number of regression functions. The general result is in
Theorem 5.1.

Assume that the design ¢* = {x¥, p¥}™, is a classical c-optimal design.
Then it follows from Elfving’s theorem that there exists &f € {+1}, i =
1,2,...,m, and a positive constant B* (= B,) such that X7 efp¥*f(x}) =
B*c € af Thus it follows from Lemma 2.1 that X ¢} plf(x*) € & for any
set of nonnegative weights p,, ps,...,p,, for whlch Ym.p;,=1 Thus it
follows from Theorem 3.1 that the design ¢, = {x}, p,}/*, ‘which puts weight
p; > 0 at the points x¥ € 2, i = 1,2,..., m, is a Bayesian c-optimal design if
and only if

m

(5.1) 2 eXp£(x¥) = (1 + —d’ Rdo) Y eXprf(xr) — —Rdo
i=1 i=1
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for some dy € Dys,. Let F; = [e¥f(x}),..., e} f(x};)] be a k X m matrix of
full rank m andlet F, = [¢*,, f(x% 1), ..., €} f(x})] be such that F = [F,, F,)
is a nonsingular k X k matrix, that is, if m <k we add k£ —m arbitrary
points x* with corresponding weights p* =0, i=m +1,...,k, so that
F = [e*f(x¥),..., &} f(x})] is nonsingular. We also let p* = (p},...,p), P =

(py, -0y, F71= [ﬁzl; where F® is an m X k matrix and b =
(F,R™'F;)~'1, where 1 is the m X 1 vector of ones. It was shown in El-Krunz
(1989) that for (5.1) to hold, the prior precision matrix R must satisfy the

condition

(5.2) F®Rd,=0 forsomed, € D,

or equivalently

(5.3) R-'F(F/R"'F,) '1=d, forsomed, € Dy,

in which case (5.1) becomes
54 (1 1 b |p* ! b
(5.4) p=(1+1b)p* - b,

From the equivalence of (5.2) and (5.3) the choice of F, is irrelevant. Note also
that if m = k, then (5.3) becomes F'~'1 = d, which trivially holds because
e*d, f(x¥)=1,i=1,2,...,k, and d, is the unique supporting hyperplane to
& at the point B*c. Thus we have the following theorem.

THEOREM 5.1. Let ¢* = {x}, p}}™, be the classical c-optimal design and
let B* be such that B*c € 3. Then the design &, = {x¥, p}J", is Bayesian
c-optimal if and only if (5.3) and (5.4) hold.

COROLLARY 5.1. Let &* = {x¥, p¥}_, be the classical c-optimal design, B*
be such that B*c € 34, d, be the unique supporting hyperplane to & at the
point B*c €4 and &f = dof(x;), i=1,2,...,k. Then the design &, =
{x*, p,}%_, is Bayesian c-optimal if and only if

1 1
(5.5) P= (1 + ;d’oRdo)p* - ;—F'IRdO.

Let us define the set % to be

szk’ if m = k,
(56) #={{R:ReRi,, R-1F,(F{R™'F,) "1 = d, for some dy € Dpe.),
if m <k,

that is, 2 is the set of all positive definite £ X k matrices if m = k and # is
the set of all positive definite matrices for which (5.3) holds if m < k.
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Also define
F'R(F)™', ifm=k,

(5.7) R* = .
(F{R'F))™", ifm<k.

Then condition (5.4) becomes
p= (1 + l1’R*1)p* - lR*1,
7 n n
which can be written as

1 m 1 m
; Z1 )_;er{;’ 1=1,2,...,m.
i

i

(5.8) b;=

We then have the following result which is very useful in characterizing the set
of all matrices R for which the Bayesian c-optimal design ¢, is supported at
the same support points as the classical c-optimal design.

COROLLARY 5.2. Let £* = {x¥, p¥}, be the classical c-optimal design. If
R € %, and

m
(5.9) Y rx % <pf (n+ Z ”), i1=1,2,...,m,
Jj=1 i,j=1
then the Bayesian c-optimal design puts weights p, > 0 at the points x¥ € &,
i=1,2,...,m, and the p; are given by (6.8),i =1,2,...,m

CoOROLLARY 5.3. For any R € &, the Bayesian and the classical c-optimal
design coincide, that is, £, = £, if and only if L7} = pf LT, 1%

COROLLARY 5.4. Forevery R € &, there exists a positive integer n, = n,(R)
such that the Bayesian c-optimal design &, is supported on the points of the
classical c-optimal design ¢* and the weights of &, are given by (5.8) for all
n = n,.

Corollary 5.4 is of special importance. For example, if the classical c-optimal
design is supported at exactly . distinct pomts as in the case of extrapolation
or estimating the highest coefficient in polynomial regression, then the
Bayesian c-optimal design is supported at the same points of the classical
c-optimal design for n large enough. The same is true for any R € & if
m < k, where Z is expected, in general, to be a very large set. In fact, it was
shown in El-Krunz (1989) that % is a nonempty, unbounded set which is the
union of closed convex sets with respect to the usual topology defined on the
set of all positive definite k2 X k matrices. If, for any given positive integer n,
we define £ = {R: R € & and support (£,) = support (£*)} to be the set of
all positive definite matrices R for which the Bayesian c-optimal design £, is
supported at the same points as the classical c-optimal design, then 2™ is
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also a nonempty unbounded set which is the union of convex sets and the
sequence {#™)} is an increasing sequence in n and lim,_, #™ = %. For
moderate values of n, however, the Bayesian c-optimal design is not necessar-
ily supported at the same points of the classical c-optimal design. This should
be clear; the following is an example.

ExampLE 5.1. Assume that the design space 2 consists of three points
x4, X, X3, Where f(x;) = (1,0), f(x,) = (1, 1), f(x;) = (0,2) and assume that

¢ = (1, 3). Since
1 19\ 1(g
2°° 5(2) * '2‘(1)’

then the classical c-optimal design puts equal weights at the two points (0, 2)
and (1,1). Also since #Z= Rj,,, that is, the set & is the set of all positive
definite 2 X 2 matrices, then for any positive definite 2 X 2 matrix R =
(r;; lz j=1, it follows from Corollary 5.2 that the Bayesian c-optimal design puts

weights p,, p, at the two points (0, 2) and (1, 1) respectively if and only if

(5.10) —4n < 3ry; +2r; —ree < 4n

in which case

1
P = +"8’n‘(3"11+2"12_"22) and p,=1-p,.

1
2
Thus #™ ={R: R € R}, —4n < 3r;, + 2r;, — ry, < 4n} and so for any
prior precision matrix R € Rj,,, one can choose n large enough to force
condition (5.10) to hold. However, if n is fixed, then for those matrices
R € R, for which condition (5.10) does not hold, the Bayesian c-optimal
design is no longer supported at the two points (0,2) and (1, 1). If we define
a = 3r;; —ry; and b = ry, — 3ry,, then using Theorem 3.1, it follows that the
Bayesian c-optimal design puts weights at the two points (0, 2) and (1, 1) if
and only if @ € (—4n + b,4n + b); it puts weights at the two points (1, 0Y and
(1,1Y if and only if @ € (—3n, —2n); it puts weights at the two points (0, 2Y
and (1,0) if and only if @ € (—3n — 3b, —2n — 1b); it puts all of its weight at
the point (1, 1) if and only if a € [-2n, —4n + b]; it puts all of its weight at
the point (0, 2) if and only if @ > max{4n + b, —2n — 1b}; and it puts all of its
weight at the point (1,0) if and only if a < max{—3n — b, —3n}.

ExampLE 5.2. Consider the cubic polynomial regression model, where
f(x) =@, x,x2 x3), |x| <1, and assume that ¢ = (0, 0,0, 1), that is, we are
interested in the estimation of 6,, the coefficient of x>. It can be verified that
B*e = Li_efpff(x}), where p* =14, ef= -1, e5=1, 6§ = —1, &f =1,
pY¥=pf=4%, p5=pi=1% and the x}’s are the “Chebyshev’’ points —1,
— 3, 3 and 1. Thus from Theorem 1.1 the classical c-optimal design £* puts
weights §, 3, 3 and § at the points —1, — %, 1 and 1 respectively, d, =
0,-3,0,4Y and #Z=R],, and so for any positive definite 4 X 4 matrix
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= ((r;;))} ;-1, there exists a positive integer n, such that R € #™ for all
n = n,. From (5.6) of Corollary (5.1), it follows that

n 4(3ry 2[(3ry
n1=g+-3— T—r24 +§_(T_r14)_(3"23_4"34) )

n 4(3ry 2[ (3ry
‘n2=§—§ 2 — Ty +§_4(T_r14 —(37‘23—47‘34) ’

(5.11) no 4(3r, 27 . 3ry,
n3=—3-——3: 2 — Igy _§_4T_r14 _(3r23_4r34)7

n 4(3ry 2[(3ry
n4—€+§ T—r24 _§_T_r14 = (8rys — 4rg,) |,

where n; = np,, i = 1,2,3,4. Thus if all the n,’s in (5.11) are positive, then
R e #™ and the Bayes1an c- optlmal des1gn fo puts weights p;, p,, p; and
p, at the Chebyshev points —1, — %, 1 and 1, respectively. Moreover, from
Corollary 5.3 and (5.11) the Bayesian and the classical c-optimal designs
coincide if and only if R € Rj,,, 3rj, = 4ry,, 3ry, = 4r,, and 3ry; = 4rg,.

6. Bayesian W-optimal designs. In the previous sections, we considered
the case where one is interested in the estimation of a single parametric
function of the form ¢’0 for some nonrandom % X 1 vector c¢. The generaliza-
tion of this is the estimation of a linear combination A’0 for some % X s
matrix A of rank s < k. Under squared error loss, the linear Bayes estimator
for A0 is A9 r> Where 0 r is given by (1.1) and the Bayes risk is proportional to
tr ¥(R + X'X)"!, where ¥ = AA’ is a k& X k matrix of rank s < % and R is
the prior precision matrix. Thus, in terms of the Bayes information matrix, we
are interested in m1mm1z1ng the optimality criterion functional ®(Mg(¢)) =
tr WMz '(¢) over the set E of all approximate designs. This criterion is called
V-optimality. The main purpose in this section is to extend the results of the
previous sections on c-optimality for ¥-optimality and to give a matrix analog
of Elfving’s theorem for Bayesian ¥-optimal designs. The treatment in this
section is similar to that of c-optimality and the details will be omitted. So let
e(x) = (g(x),..., e,(x)) be a vector of s real-valued functions defined on the
design space 2" and define # as the smallest convex set of 2 X s matrices
which contains the matrices f(x)e'(x) for all x € 2 and all functions & for
which |e(x)| < 1 for all x € 2, where by | - |, we mean the usual Euclidean
norm. Treating the matrices in & as vectors in the ks-dimensional Euclidean
space, it is not hard to see that ¢ is a symmetric convex compact subset in the
ks-dimensional Euclidean space and that any half-line through the origin
intersects 0 at exactly one point. Thus, for any nonzero k X s matrix A,
there exists a unique positive constant B* such that B*A €4<. Let R,,,
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denote the set of all £ X s matrices and define
D={DeR,:trD'U < 1forall U € £ and
tr D'U, = 1 for some U, € ¢}

to be the set of all normalized supporting hyperplanes to the surface of &£,
where here we again identify the hyperplane {U € R, : tr D'U = 1} with its
inducing £ X s matrix D. For every D € 2, define the contact set €(D) = {U:
U €9« and tr D'U = 1} to be the intersection of the hyperplane D with <.
For any point U, € 0¥, let 9y, ={D€ 2:tr DU <1=+trD'U, forall U €
&} denote the set of all supporting hyperplanes to « at U,. The set Dy, is
either single point or a closed convex set. Now let R be a given k X k positive
definite matrix, n be a given positive integer and as in Section 2, let us define
the following:

1
H = {Z ER,Lxs: Z=U+ ;RD,,D € Qand U € {(D)},
1 -1/2
g* = {D* € R, : D* = (1 + ;trD’RD) D, De .@},
1 —1/2 1
H* = {Ve Rpxs: V= (1 + ;trD'RD) (U+ ;RD),

De Qand U € g(D)}.

As in Section 2 there exists a unique positive y, such that y,A € # and y,A
has a representation

1
(6.1) ¥oA = Uy + —RD,,

where U, = ¥ p,f(x,)e'(x;), e(x;) = Dyf(x,;) and D, is the supporting hyper-
plane to ¢ at the point U,,.

Using results analogous to Lemmas 2.1-2.5 and Theorem 2.1, the following
theorem can be proven. It is the matrix analog for Bayesian ¥-optimal design
corresponding to Theorem 3.1. '

THEOREM 6.1. Given a nonzero k X s matrix A and a k X k positive definite
matrix R, the design ¢, is Bayesian V-optimum if and only if A has the
representation (6.1) with £y(x;) = p;, i = 1,2,..., m. Bayesian V-optimal de-
signs always exist and

inf tr AMz'(¢§)A = tr AMgY(£,)A = p(A) = ,
teE BoYo

where B;! = tr D, A.
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COROLLARY 6.1. The Bayeszan V-optimal design problem to minimize
tr AM;"(¢) A subject to ¢ € E is the dual of the problem to maximize (tr D¥'A)?
subject to D* € 9* and the two problems share a common extreme value.

Theorem 6.1 is the Bayesian analog of a result of Studden (1971) for
classical ¥-optimal designs which is stated in the following theorem.

THEOREM 6.2. The design £* is a classical V-optimal design if and only if
there exists a function e(x) satisfying l|e(x)| = 1 such that (i)
Jor£(x)e’'(x)E*(dx) = B*A for some scalar B* and (ii) B*A € 3. Moreover,
B*A € 04 if and only if inf, tr AM~Y(¢)A = g* 2.

Although Theorem 6.1 is mathematically attractive, the application of this
theorem is, at present, somewhat limited. However, the above theorem can be
useful in partially characterizing those R’s, for a given value of n, for which
the Bayesian W-optimal design &, is supported on the same support points of
the classical ¥-optimal design &*.

7. Bayesian W-optimal designs on the support of classical W-
optimal designs. Assume that the boundary representation

(7.1) B*A= ) prf(af)e'(xf), |e(xf)|=1,pf >0, ¥ pF =1,

i=1 i=1
holds with m < &, that is, the classical ¥-optimal design £* is supported at
m < k distinct points x¥,...,x*. If m <k weadd k — m arbitrary points x}
with corresponding weights p} =0, i =m + 1,..., %, so that F =

[f(x7),...,f(x})] is nonsingular. Let T = F‘1 and let l(x) = Tf(x) denote the
vector of Lagrange functions for the points x, ..., x}. If we multiply (7.1) by
T and let TA = B, we get

(7.2) B*B = Z pil(xf)e (xF).

Since [(x}) =34, =1,2 k then it follows from (7.2) that g*b, =
lJ

D! 5(x*) 1=12,.. here B’ denotes the ith row of B. Thus it follows

that

k -1 ,
(7.3) B*=(Zlbi|) . Pr=Fb| and e(xf) =byb,| "

Note here that if m in (7.1) is less than &, then b, =0,i=m + 1,...,k. In
this case we let [b,|” 1~ 0and e(x*)=0 whenever Ib | = 0. Let us a.lso deﬁne
B, = B;!B, where B! is the diagonal matrix with Ib |7 as its ith diagonal
element 1=1,2...,k.

The followmg result characterizes the matrices A with a classical ¥-optimal
design supported on a given set of points x¥, x¥,..., x}.

LEmMMA 7.1 [Studden (1971)]. If Fis nonszngular then a classical V-opti-
mal design £* is supported on x},x%,...,x} if and only if there exists a k X s
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matrix B such that

) I'(x)ByByl(x) <1 forallx € &
(i) A = FB.

The following result follows from Lemma 7.1 and Theorem 6.1.

CoroLLARY 7.1. The design ¢, which puts weights p, > 0 at the support
points x¥, i = 1,2,..., k, of the classical V-optimal design ¢* is Bayesian
V-optimum if

1 : 1
(7.4) PA, = (1 + ;tr AOR*A’O)P*A'0 - ;R*A’O,
where R* = TRT', A, = (e(x),.. ., e(x¥)) and P = diag(p,, ..., p,}.
REMARK 7.1. Note that the matrix R* is defined slightly different than in

Section 5. If s = 1, then &(x}) = +1,i=1,2,...,m, and e(x¥)=0,i =m +
1,...,k, and so Corollary 7.1 reduces to Corollary 5.2 and (7.4) becomes

1 m 1m
(s PP ;.le(x;k):s(x;‘)r;;) =5 L eGhems,
. . j=
1=1,2,....m
which is (5.8).

REMARK 7.2. If s = k, then it follows from (7.4) that R* is diagonal and so
trAgR*Ay = tr R*AA, = tr R*. Thus we have the following result.

CoRrOLLARY 7.2. Assume s = k. The design ¢, which puts weights p;=0at
the support points x}, i = 1,2,..., k, of the classical V-optimal design £* is
Bayesian V-optimum if

(i) R* = TRT' is diagonal,

(7.6) . 1 1
(i) P = (1 + —trR*)P* — —R*.
n n

ExampPLE 7.1. Assume that the design space 2" is the k-dimensional unit
ball 2’= {x € R*: x'x < 1} and consider the multiple linear regression model
E(y) = 0x, x € 2 and assume that A is a & X k matrix of full rank k. From
the equivalence theorem for classical ¥-optimal designs, we know that £* is a
classical ¥-optimal design if and only if

(7.7 zneaé(trM"l(f*)\IfM_l(f*)M(f) =tr M~ 1(&%).

Since ¥ = AA is a positive definite %2 X £ matrix, then there exists an
orthogonal matrix U = (u,,...,u,) such that UAU’ = ¥, where A =
diag(A;,...,1,). Let F=U and assume that M(¢*) = FP*F'. Then
tr WM~Y(£*) = £%_,),/p} and so if we choose p}* to be proportional to VA, it
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follows that cp =1;, ¢ =Xt /A;, tr WM~ (¢*) =Tk c?p¥ = c? and
tr M~ YE)TMUE*)M(E) = c2tr M(¢) < c? for all ¢ € E with equality hold-
ing if £ = ¢*. Thus it follows from (7.7) that £* is a classical ¥-optimal design.
Now the design ¢, which puts weights p; > 0 at the points x¥ =u;, i =
1,2,...,k, will be Bayesian V¥-optimal design, if the precision matrix R
satisfies the conditions:

(i) R* = U'RU is diagonal and R has the same eigenvectors as ¥ and
R* = diag(rf,...,r¥).

@) pi=

AP e

In other words, if we choose the p,’s in such a way that p, > 0, £*_,p, =1
and p; + (1/n)r} is proportional to y/A;,i=1,2,...,k.

The above approach is similar to the one adopted by Pilz (1983). His
approach is based on the idea of maximum compactness of the eigenvectors of
the Bayesian information matrix. For instance in the case A = I, he assumed
the existence of an optimal design whose information matrix has the same
eigenvectors as the prior precision matrix R and chooses the p,’s in such a
way to make a maximum number of the smallest values p; + (1/n)r* become
equal, where r*, i = 1,2,..., k, are the eigenvalues of R.

In the case of polynomial regression with A being a k& X k& matrix of full
rank, it is well known that the classical ¥-optimal design £* puts weights at %
distinct points and p} o y/k,;, where K = ((k;)f ;_, = T¥T'. Thus, if R* =
TRT' is diagonal, then the design £,, supported at the same support points of
the classical ¥-optimal design £*, is Bayesian W-optimal if (7.6) holds.

ExampLE 7.2. Consider the quadratic regression model with f'(x) =
(1, x,x2%y, x €[—1,1] and assume that A = I. The classical ¥-optimal design
&* puts weights p¥ = 1, p% = 3 and pf =  at the points x} = —1, x§ =0
and x¥ = 1 respectively and we have

o -3 3
B=F1=T=11 0o -1]|,
o 3 3
_0 1 L
V2 V2
AN, =B 1 0 1 d B* L
R 5) 7z | ™ P
1 1
0 —_— —_—
- @ ﬁ.J




BAYESIAN OPTIMAL DESIGNS FOR LINEAR REGRESSION MODELS 2207
From Corollary 7.2, it follows that
{R € R3 g TRT' = diag(r{,ry,ry) and
(7.8)
3
rfo Birprinad
i=1

is in the set of prior precision matrices R for which the Bayesian ¥-optimal
des1gn £, puts weights p,, p, and p; at the points xf = —1, xJ = 0 and
= 1 respectively, and

b, =

13 1
—Z )P; —rF, 1=1,2,3.
n 1=

REMARK 7.3. Assume that A is a 2 X & matrix of full rank % and that the
classical ¥-optimal design £* puts weights p¥ > 0,i = 1,2,..., k, at exactly %
distinct points x¥, x3,...,x5. Let & denote the set of all positive definite
matrices R for which R* = TRT’ is diagonal and let R* = diag(r{, r;*). Then
it follows from Corollary 7.2 that if

1 1
(7.9) pi=|1+ X rf|pFf—-—rF=0, i=12,..,k
n 2 n

then the design £, which puts weights p; at the points x*,i =1,2,...,k,isa
Bayesian ¥-optimal design. Since % is finite, then it follows from (7.9) that for
any R € %, there exists n, which depends on R such that (7.9) holds for all
n>ngy Thus, if R€ % and n is large enough, there exists a Bayesian
Y-optimal design on the support of the classical ¥-optimal design and the
optimal weights of the Bayesian W-optimal design are given by (7.9).
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