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ESTIMATING REGRESSION PARAMETERS USING LINEAR
RANK TESTS FOR CENSORED DATA!

BY ANAsTAsIOS A. TSIATIS
Harvard School of Public Health and Dana-Farber Cancer Institute

A class of estimates for regression parameters in a linear model with
right censored data is proposed. These estimates are derived by using linear
rank tests for right censored data as estimating equations. They are shown to
be consistent and asymptotically normal with covariance matrix for which
estimates are proposed.

Efficient estimates within this class are derived together with conditions
when they are fully efficient.

0. Introduction. The problem of estimating regression coefficients using
ranks has received much attention in the literature for uncensored data and the
results are summarized very nicely in Hettmansperger (1984). There has also
been some work with censored data for the two-sample problem. Specifically,
Louis (1981) considered estimation of a scale change between two distributions
with the use of a log rank test, whereas Wei and Gail (1983) generalize to other
linear rank tests as well.

We shall consider the general problem of multiple linear regression and show
how linear rank tests can be used as estimating equations. The resulting linear
rank estimates will be shown to be asymptotically normal with variances that
can be estimated consistently. We shall also look at the efficiency of these
estimates under various situations.

1. Model and notation. As in most right censored data problems we shall
assume that there are two underlying random variables T and C, corresponding
to time to failure and time to censoring, of which the minimum is observed.
Ultimately, we wish to make inference on the relationship between the time to
failure T and other concomitant variables, say, Z = (£, Zy, ..., Zy).

We shall consider the linear model

h(Ti)ZBIZi+€i, t=1,..., N,

where, for the ith individual with covariates Z, = (Z,,,..., Z;x), a known mono-
tone transformation 4 of the survival time is linearly related to the covariates
plus error e;, where the e, i =1,..., N, are assumed to be iid with common
distribution function F. '

Since survival times are positive, it is convenient to consider transformations
to the entire real line. The log transformation is often used and the resulting
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CENSORED LINEAR REGRESSION 355

model is often referred to as an accelerated failure time model. From here on we
shall work on the transformed time scale for which the linear model applies. The
primary aim of this paper is to find semiparametric estimates of B _when the
transformation A is known but the error distribution is unspecified. This prob-
lem has also been studied by Ritov (1989), for censored data, where he derives
information bounds in the semiparametric sense of Begun, Hall, Huang and
Wellner (1983).

Another class of semiparametric models which have also received much
attention recently are those where the error distribution is specified but the
transformation function 4 is not. For example, if the error distribution follows
the extreme value distributions, then such a semiparametric model corresponds
to the popular proportional hazards model proposed by Cox (1972). This general
class of semiparametric models has also been studied by Bickel (1986), Doksum
(1987) and Cuzick (1988).

The data that are observed will consist of N iid random vectors

(X,,4,,2,), i=1,..., N,
where X, = min(T}, C;) and

1, T, <C,

A, = failure indicator = { 0, T >C.

The underlying model we wish to consider is

where e; are iid with distribution function F(x) and corresponding hazard
function A(x) = —d log S(x)/dx, where S(x) denotes the survival function

1 — F(x).
The covariates Z,, i = 1,..., N, are assumed to be fixed and bounded. The
censoring times C, i = 1,..., N, are independent random variables whose distri-

bution may depend on the covariates. We shall denote by H;(x) the probability
that C; exceeds x. In order to avoid any nonidentifiability problems, we shall
also assume that (T}, C,) are statistically independent.

2. Using linear rank tests as estimating equations. Linear rank tests for
testing no association to covariates for right censored data have been derived by
Prentice (1978) using a score test for the marginal likelihood of generalized ranks.
Also, Gill (1980) derived a class of rank tests that occur naturally from a
counting process point of view. These tests have been shown to be equivalent or,
at least, asymptotically equivalent; see, for example, Mehrotra, Michalek and
Mihalko (1982), Cuzick (1985) and Andersen, Borgan, Gill and Keiding (1982).

For our purposes, it will be convenient to consider the counting process
approach. For simplicity, we shall consider the case of a single covariate Z and,
in Chapter 5, indicate how to generalize to multiple covariates. Hence, if we want
to test the null hypothesis, 8 = 0, in our regression model (1.1), then a class of
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linear rank tests can be written as
N
Sv(Wy) = L [Wy(u) dN,(u){Z - Z(u)},
i=1

where if we denote by I(A) the indicator function for the event A, then N,(u) is
the counting process for the ith individual, defined by
N(u)=I(X,<u,A,=1)

and
_ N N
Z(u) = ¥ 2%(w) / ¥ Y,(u),

where Y(u) = I(X; > u). The stochastic function Wy(u) is referred to as a
weight function and its role will be discussed later.

This statistic has a nice interpretation as a weighted sum over the death times
of the observed covariate at the death time minus the average of the covariates
still at risk at that point in time. We can easily generalize to test the hypothesis
B = B, by replacing the times X; with the residuals X; — B,Z;. The resulting
linear rank test would be

N
Sy (W, Bo) = X [Wi(u, Bo) dN(u + BoZ) (2, ~ Z(u, ,)),

where Z(u, By) = LZY(u + BoZ;)/ZY(u + ByZ,).
Using what have now become standard results for such stochastic integrals of
counting processes, we can write Sy(Wy, B,) as

N
g /WN(uyBO) dMi(u + IBOZi){Zi - Z(u,ﬁo)},

where M;(u + ByZ;) = N(u + ByZ;) — [* ANx)Y(x + ByZ;) dx is a martingale
process with respect to the filtration Fy(u, B,) generated by all the survival and
censoring information of the residuals up to error term time u. That is,

Fy(u, By) = o[ I{(X, — ByZ;) < ul, M{(X; - BoZ;) <u},Z;i=1,...,NJ|.

Also, if the weight function Wy (u, B,) is predictable with respect to Fy(u, ),
then the process

S(Wi, By, u) = E S Wi, B0) d (s + o) (2~ 23, B,)

is also an Fj(u, B,) martingale. Using results from Andersen and Gill (1982) and
Andersen, Borgan, Gill and Keiding (1982), it can also be shown that under
appropriate conditions

N_l/zsN(WN’ Bs) —p N(O, 02),

where —, indicates convergence in distribution. The asymptotic variance o2
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can be estimated consistently by

N . .
Y [ WiEu, Bo)V(u, By) dN,(u + BoZ,) /N,

i=1"—

where V(u, B,) is the empirical variance of the Z’s that are at risk at error term
time u, i.e.,

N N
V(u, By) = X (2~ Z(u, o)} ¥i(u + Boz,)/ L Y(u+ BoZ)).

When B = B, the statistic S, (W,, B) is centered at zero. This suggests that
the linear rank test can be used as an estimating equation. That is, we may wish
to consider an estimate B obtained by solving the equation S, (W,, B)=o.
However, the tests we are considering are functions of the ranks of the residuals;
hence, the statistic Sy (W), B) is a step function of 8. Therefore, more precisely,
we define B as any value § for which Sy (8) changes sign. That is, sgn(Sy( B+)=
—sgn(Sy(B —)).

We ultimately want to establish the asymptotic normality of this linear rank
estimate. Since Sy(Wy, B) is a step function, the usual way of expanding
Sy(W, B) about Sy (W, B,) in a Taylor series expansion will not work. We will
instead show that the statistic Sy (Wy, B) is asymptotically linear in a neighbor-
hood of the true value B, as did Jureckova (1969, 1971) for the uncensored linear
rank tests. This will then enable us to establish the large sample properties of 3,
as will be shown in Section 3.

3. Asymptotic linearity of Sy(B). In order to allow for ease of presenta-
tion, we shall consider Wy (u) = 1 (log rank test). However, the results will be
generalized to arbitrary weight functions in Section 4. Also, without loss of
generality let B, = 0. As we noted previously, the problem can always be
transformed to this by considering residuals X; — 8,Z,.

The stochastic integral that will be computed from here on will be truncated
at the value T*, which satisfies the condition that for some £ > 0,

(38.1) P(X;>T*+¢)>¢ >0 foralli.

The truncation is similar to that used by Andersen and Gill (1982). Other
conditions that will be assumed in order to prove the results in this paper are as
follows.

Conditions.

(A) The density of the error term in model (1.1), f(x) = dF(x)/dx, exists
and is bounded by K, for all x < T™* + £.

(B) The density of the censoring random variables C; is also bounded. That
is, h(x) = —dH,(x)/dx < K, forall i and x < T* + £,
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NoTE. (A) and (B) together imply that the density of X; = min(T}, C,) is
bounded. This follows because the density of X, is equal to f(x)H,(x) +
h(x)S(x), which is less than K, + K, for all i and for x < T* + &.

(C) There exists a function 6(u) such that

A(u+€) — Mu) — eN(u)| < 20(u)

for u < T* and |e| < §;
'/T*|6'(u)[du < o0,

where A(u) is the hazard function of the error in model (1.1) and A'(u) =
dA(u)/du.

(D) The covariates are bounded. Without loss of generality we shall assume
that |Z,| < 1 for all i.

Although the covariates Z;, i = 1,..., N, are fixed constants, we shall assume
that they satisfy the following stability conditions, which are again similar to
those given by Andersen and Gill (1982).

(E) There exists a continuous function p(u, 8) for values of 8 in a neighbor-
hood of 8 = 0, B such that

sup {IZ(U,B) - #(U:B)” -p 0,
BEB, u<T*+¢
where Z(u, B) = LY, Z,Y(u + BZ;) /LY. \Y(u + BZ;).

(F) There exists a continuous function A(u, 8) such that

=1

N
sup l N~ Y (Z - Z(u,ﬁ)}zY,-(u + BZ;) —A(u,B)H -p 0.
BEB, u<T*+¢

The asymptotically linear approximation of Sy(8) near 8 = 0 is motivated by
the following relationship:

S(B) = § J" av(u+ B2) (2~ Z(u, B)
_ é fiT;{dNi(u + BZ;) — Nu) du Yi(u + BZ)}{Z; - Z(u, B))
(32) = é [ aMi(u+ p2) (2~ Z(u, B))
(3.3) + ﬁ I (Mu+ BZ) ~ Muw)) duY(u + BZ){Z, - Z(u, B)).

i=1"—
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The integral (3.2) can be written as

(3.4) Z fT*+BZLdMi(u){Zi_Z(u_ BZinB)}

i=1" —®

= ¥ [" a(w) (2 - Z(w)) = 5,00)

whereas (3.3) can be approximated by

N T _
L8[ ZY(u+ BZ){Z ~ Z(u, B)}N () du

=Bf" {T(2~ Z(u. ) Y(u + pZ)}N(u) du.

Hence, by (3.4) and condition (F) we would expect Sy(8) to be asymptotically
close to

Sn(B) = Sy(0) + NBg(0),

where g(0) = (7", A(u,0)\'(u) du in a neighborhood of B = 0. We shall make
these ideas precise shortly, but basically if we can show that Sy(B) and SN( B)
are asymptotically equivalent, then the estimates 3, 8* (where j is the value of
B where Sy(B) changes sign, and where Sy (8*) = 0) will also be asymptotically
equivalent. We note that N'/?8* = N~1/25,,(0)/g(0), which clearly converges in
distribution to a normal with mean 0 and variance 62(0)/g%(0), where ¢%(0) =
JT A(u, 0\ (u) du is the asymptotic variance of the log rank test. Hence, if we
can show that N'/%( — B*) -, 0, then this would imply that N'/%(f) con-
verges to the same distribution as N'/%(B*). Arguing as in Jureckova (1969,
1971), it would suffice to show that

(3.5) sup N_1/2|SN(B) - S~N(B)| -p0
|B|I<CN~'/2
for any C > 0.

The derivation of (3.5) will be in two steps. In Theorem 3.1 we shall show
pointwise convergence. That is, for any fixed d,

N~VHSy(N~'2d) — Sy(N~%d)} > p0.

This can then be used to show uniform convergence at a fixed finite number of
points that form a mesh from —C to +C. That is, if we form a mesh d,,..., d
from —C to C, then we can show that

maxN*I/QISN(Nfl/zdi) - S~N(N_1/2di)l —p 0.

t<m

m

Finally, in order to complete the proof of uniform convergence, we must show
that N™'/2Sy(B) as a function of B cannot fluctuate too greatly within any
interval in the mesh. More precisely, if we take the mesh size equal to § then we
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may show that for any & > 0, there exists § > 0 such that
(36) lim p{ sup NS, (B*) — Sy(dN"V2)| > e} -0
N=owo L gn-12<p*<(d+8)N-172

for any |d| < C. This will be done in Theorem 3.2.

THEOREM 3.1. For any fixed d
N-V2(Sy(N~2d) — §,(N~%d)} -5 0.

ProoF. Theorem 3.1 will be proved by a series of lemmas. As we have
already noted, Sy (N~'/%d) can be written as a sum of (3.2) and (3.3). We shall
establish that N~1/2%((3.2) — Sy(0)} —p 0 by the use of Lemmas (3.1) and (3.2).
Lemma (3.3) will then be used to show that N~/%(3.3) — N'/2dg(0)} —p 0.
This will complete the proof of Theorem 3.1 since Sy(N~%d) = Sy(0) +
NY2dg(0). O

LeEMMA 3.1. Let B8, denote a sequence of constants converging to 0. Then

N1/2[§ /T* dM,(u + BnNZ){Z, — Z(u, By) )}

i=1"—o0

(3.7) ,,
_ f:o dM(u + BNZ)(Z; — p(u, By)}

converges in probability to 0, where u(u, ) is defined in condition (E).

Proor. We note that (3.7) is equal to R(T*), where

N u —
Ru) =N Y [* aM(x + ByZ){Z(x, By) = n(x,5,)}

=1~

is an Fy(u, By) martingale. Therefore, by using the version of Lenglart’s in-
equality [Lenglart (1977)] given by Andersen and Gill [(1982); Appendix I, 1.2]
we get that

P(IR(T*)| > ¢} < 8/é*+ P[N-l Y [ (2, By) - n(u, By))

i=17 -
XNu + ByZ,)Y.(u + ByZ,) du > 8 |.

By condition (E), we can find a value N(¢, K') such that, for any N > N(e, K),

P[SupusT*{‘Z(u9 :BN) - "’(uy BN)'} > K] <e
Hence, with probability exceeding 1 — ¢, the integral above cannot exceed

K2A\(T* + ¢) whenever N > N(e, K), where A(u) denotes the cumulative haz-
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ard function

Au) = f_uook(x)dx — —log{S(u)).

Note. This is true as long as N is sufficiently large that B, is less than £.
This, of course, creates no problem as 8, goes to 0 and we can choose the larger
of N(e, K') or N(£) such that By, < £ By assumption, A(T* + £) is finite, since
S(T* + £) is bounded away from 0. Hence if we choose K < {§/A(T* + £)}/2,
then

N e \
P[N_l Z[ {Z(u’BN) _.U'(u,ﬁzv)} Au + ByZ,)Y(u + ByZ;) du > 8] <e

i=17 o0
for N> N(e¢, K).
The proof is complete by choosing § = 3. O

LEMMA 3.2.
(3.8) N-W{Z J© dM(x + ByZ) (2~ Z(x, By)) - SN(O)} ~p0.
— o0
Proor. Expression (3.8) can be written as

N-W[Z 7 @M+ BuZ) (2~ Z(x, By))
~X [ aMi(x + BuZ) (2~ n(, BN)}]
(39) N2 [T M+ B2 - (B
" @)z - w0}

+ N—1/2[Zf_T;dMi(x){Zi - u(x,0)} - SN(O)].

By Lemma 3.1, the first and third terms in the summand converge in probability
to 0. Hence, we need only to show that the second term, (3.9), converges to 0 in
probability.

Assuming that By > 0, (3.9) can be written as

A N_l/z[\[;\’: fT* dM;(x){n(x — BnZ;, Bx) —p,(x,O)}]

i=1" -

B +N‘1/2l T [ (x) (2, - [.L(JC,O)}]

(i z,<0) "T* +BnZ;

c —N‘W[ [ dM,.(x){Zi—u(x—BNZi,BN)}]-
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Terms A, B, and C integrated up to time u are all Fj(u,0) martingales.
Hence, the variances of these terms are:

Var(A) = N~! Z J7 {1z ~ BuZi By) — 1(%,0))°A(x) P(X, > x) dx,

=1" "o

VarB) = N7' ¥ [Tz (2,00 M=) P(X, > x) d,
{i: Z,>0}

Var(€) =N T [T (Z— u(x - BuZi, By)A(x)P(X, > x) dx.
{i: Z,<0} "T"+BnZ;
Since the |Z|’s are bounded by 1, by assumption (D), this implies that
Var(A) < 4N~} Z f A(x)S(x)H,(x) dx < 4[ Mx)S(x) dv < 4.
=1 —00

Therefore, by the continuity of p(u, 8) and the dominated convergence theorem,
Var(A) converges to 0 and hence A converges in probability to 0.
The variance of B is less than

N E [T SR <4 T M) a

which by assumption (A) is less than 48, K,. Hence Var(B) converges to 0 and
thus B converges in probability to 0. Similarly, we can show that C converges in
probability to 0, which completes the proof. O

LEMMA 3.3. The integral (3.3) satisfies the following property:

N 7 M+ B M) Y+ B2 (7~ P )
(3.10) 17-w
— B (80) + 0,1)),

where g(0) = [T A(u,0)A'(v) du, and 0,(1) is a term which converges in proba-
bility to 0.

Proor. Expression (3.10) can be written as the sum

(311) ByN~! Z 72X (u+ BuZ) (2 Z(u, By) IN(u) du

=1" "

(312)  +N7! é f_T;[{)\(u + ByZ:) — Nu)} — BuZN(u)]

XY, (u+ IBNZi){Zi — Z(u, .BN)} du



CENSORED LINEAR REGRESSION 363

We note that (3.11) is equal to

(313) B[

— o0

N
[N_l ; (Z:- Z(u, BN)}ZYi(u + BnZ;) |N'(u) du.

Using assumption (F), we can show that the integrand in (3.13) converges in
probability to g(0).
By assumptions (C) and (D), we see that for N sufficiently large and u < T*

{A(u + ByZ) — Mu)} — ByZ N (u)] < BRO(u);
hence (3.12) is bounded by

(3.14) 2683 [ 10 (N ¥ + ByZ) )

The integrand in (3.14) is positive with mean equal to

* N %
fT |0(u)|{N‘1 Y S(u + ByZ)H,(u + BNZ,.)} du < fT 10(w)| du,
— o0 i=1 ~ o0

which is bounded by assumption (C). Therefore, the integrand in (3.14) is
bounded in probability. Thus, (3.13) and (3.14) establish (3.10), and the proof of
Lemma 3.3 is complete. The proof of Theorem 3.1 is completed by letting
By =N"V%d.O

In order to complete the proof of uniform convergence of N~'/25y(8) to
N~128,(B) as described in (3.5), we must establish relationship (3.6). This will
be accomplished by putting a probabilistic bound on the maximum change that
can occur for the statistics Sy(8*) as B* varies from dN~'/2 to (d + §)N~ /2,
We note that the statistic Sy(8*) is a function of the ranks of the residuals
X, — B*Z,. Hence, as B* varies from dN~/2 to (d + §)N~/2, a change in the
statistic Sy(8*) occurs whenever any of the ranks of X, — 8*Z,, i =1,..., N,
change.

Therefore, we can bound the maximum change of the statistic by computing
the number of pairs of ranks that will be interchanged times the maximum
change of the statistic for each such interchange.

We shall first show how to bound the maximum change of the statistic at an
interchange. Note that whenever an interchange in ranks occurs as 8* increases
from dN~'/2 to (d + 8)N~'/2, it must occur between neighboring order statis-
tics of the residuals X; — B*Z, i = 1,..., N. Let’s order the residuals (X; —
B*Z),i=1,..., N, and denote the corresponding covariate and failure indicator
of the ith ordered residuals as Z,(8*) and A (B8*). The statistic Sy(B8*) can
then be written as

N
ZA(i)(B*){Z(i)(B*) - Z(i)(B*)}: where Z(i)(ﬁ*) = E‘Z(/)(,B*)/(N —i+1).

If the next change in ranks occurs between the j and (j + 1)st ordered residuals,
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then the new statistic Sy(B8**) would be equal to
Jj-1 _ B
2 A0(BIZa(B*) = Zf(B*)} + Ao B {Zis1(B*) — Z,,(B*))
i=1
+ A(j)(ﬁ*)[z(j)(ﬁ*) - {Z(j+2)(B*)(N _j - 1) + Z(j)(B*)}/{N _J}]

N
+ ) A,(B*) {Z(i)(B*) - Z(i)(B*)} .
i=j+2
Hence, the difference in the statistic before and after the interchange in ranks is
equal to

(3.15)  {Ajun(B*) = BB} Zsn(B*)(N —j = 1) /(N = j) - Z,,(B*)}
+ A(j+1)(B*)Z(j+1)(B*)/(N _J) - A(j)(:B*)Z(j)(,B*)/(N _])

If both A ;) and A ,,,, are equal to 1, then (3.15) is equal to (Zjsry — Zy)/
(N —j), whereas, if Ajy=1and A, =0, then (3.15) is equal to [Zsy —
{Zj+9(N —j— 1)+ Z,}/(N - j+ 1)]. Finally, if Ay=0and A ;,,, = 1,then
(3.15) is equal to (Z;, ) — Z,,)/(N — j + 1). For any of these cases, since the
Z’s are bounded by 1 in absolute value, then the change in the statistic is
bounded by 2/(N — j), where (N — j) is the number of residuals at risk at the
point where the interchange takes place.

REMARK. If there is no censoring, then the change in the statistic must be
positive. Therefore, for the uncensored problem, the statistic Sy(B*) is mono-
tone. This fact can be used to establish uniform convergence of N~/28,(8) to
N7~128y(B) rather easily, as is done in Juredkova (1969, 1971). However, when
censoring is introduced, or for other weight functions Wy (u), the statistic
Sy(Wy, B) is not necessarily monotone in B. This necessitates a more complex
proof for uniform convergence.

Recall that the value T* was chosen so that P(X; > T* + £) > ¢ > 0 for all i.
Hence, with arbitrarily large probability we can find N large enough so that
NIEN I(X; > T* + ByZ,) > /2. Since the statistic is computed for values of
residuals which are less than T* + B, Z,, this means that the number of residuals
at risk will exceed Ny,/2 whenever an interchange in ranks takes place. Hence,
with arbitrarily large probability the change in the statistic is bounded by
(4/y)N~L

The next problem is to find a bound on the number of interchanges that will
occur as B* varies from dN~/% to (d + §)N~'/2. An interchange between two
pairs of values (i, j) will occur for the value g, ;j such that X, — 8,.Z, = X, —
Bi;Z;, or B;; = (X i — X)/(Z; — Z;). Therefore, an interchange (of pairs) occur-
ring for values of B* between dN~'/? and (d + 8)N~'/2 implies that dN~1/2 <
Bi; <(d+ 8)N"2or

(3.16) dN"V(Z; - Z;) < (X, - X;) < (d + §)N~%(Z, - Z,).
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The total number of such interchanges is therefore equal to

M= % ZI(Aij)y

i=1 j+i

- where A;; denotes the event (3.16).
We are now in position to establish (3.6), which we state as a theorem.

THEOREM 3.2. For any € > 0, there exists 8§ > 0 such that

lim P{ sup N~Y28y(B*) — Sy(dN~V2)| > s} =0

N- oo dN~2 <B* <(d+8&)N~V/2

for any |d| < C.

Proor. We have already noted that the maximum change of the statistic
after each change is bounded by (4/¢y)N~! with arbitrarily large probability for
sufficiently large N. Also, the number of such interchanges that can occur as 8*
varies from dN~/2 to (d + 8§)N~/2 is equal to M. This implies it suffices to
show that

(3.17) lim P(N"%2M > ¢} = 0

N— oo
for an appropriately chosen § > 0.
Vi= L {E(W,|X,) - E(W,)},
J*i
Vij= W, — E(W,|X,) - E(W,|X;) + E(W,;).
Then

M-E(M) - TV + LYV,

i<j

is Hoeffding’s expansion for (M — E(M)) as a sum of pairwise uncorrelated
random variables [cf. van Zwet (1984)]. Denote by f,*(u) the density of the
random variable X;. That is f;*(u) = f(u)H(u) + h;(u)S(u). We note that

X, +(d+8)N~V¥Z.—Z)

P(A IX)=[|"" 7 *(u) du,
(iX) = [ oy 1)

which, by conditions A, B, and D, can be shown to be less than 2(K, +
K,)8N~1/2, Similarly, we can show that P(A;|X;) < 2(K, + K,)8N~'/2, hence

|E(W,,1X,)| < 4(K, + K,)8N~'2,
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Therefore,

E(M) < 2(K, + K,)8N¥2,

N
o¥(M) = Y o*(V)) + ¥ Xo*(V;;) = O(N?).

i=1 1<y

Application of Chebyshev’s inequality proves (3.17) with 8 = ¢/{3(K, + K,)}
and establishes Theorem 3.2 O

Theorems 3.1 and 3.2 suffice to establish uniform convergence of N~1/25,(8) to
the linear function N~Y25,(B) in an O(N~'/2) neighborhood of the
true value B,. This implies that there exists a sequence of solutions ,BN, ie.,
sgn(Sy(B +)) = —sgn(Sy(B - )) such that N/%(8, — B,) converges to a nor-
mal distribution with mean 0 and variance 0%(0)/g2(0). Since Sy(8) is not
necessarily monotone in B, this means that there could be multiple solutions.
However, since we have proven (3.5), or that Sy () is asymptotically linear, then
any sequence of solutions in an N~!/2 neighborhood of 8, would also have the
property that

NV2(By — By) =p N(0,6%(0)/g2(0)).

The results above only apply in the neighborhood of the true value 8, We
have not yet been able to prove whether other solutions exist outside this
neighborhood, although this never occurred in any of the numerical examples we
considered.

In the next section, we will generalize the results to linear rank tests with
arbitrary weight functions and discuss some of the efficiency properties of the
resulting estimates. Since the method of proof is very similar to that used for the
log rank test, the details will be omitted.

4. Arbitrary weight functions. Consider the linear rank test for 8, = 0 as

N(WN>—Z 7 W) dN(w) {2, - Z(w)},

=1" "™

where Wy (u) is an Fy(u) measurable, left continuous nonnegative function of
the observations (X;,A;,Z;), i =1,..., N. We shall also assume that W, (u)
converges uniformly in probability to the deterministic function W*(u). Exam-
ples of such tests include: the generalized Wilcoxon test proposed by Gehan
(1965), where Wy(u) = XY, (u)/N; the generalized Wilcoxon test of Prentice
(1978) and Peto and Peto (1972), where Wy (u) = KM(u™); the left continuous
version of the Kaplan-Meier estimate; and the class of tests proposed by
Harrington and Fleming (1982), where Wy (u) = {KM(u")}*.

If we denote by WN(u B) the same function applied to the residuals (X —
BZ,A,Z), i=1,...,N, then we shall consider estimate ,B(WN) which is a



CENSORED LINEAR REGRESSION 367

solution to the estimating equation

N _
Sv(Wy, B) = ¥ [ Wy(u, B) dN(u + BZ,){Z,— Z(u, B)} = 0.

i=1" -
Using methodology similar to that in Section 3, we can show that
NV B(Wy) = By} =5 N(0, s%(W*) /g%(W*)),

where

oX(W*) = [ (W (u B) ) Alw, B)A(w) di,

T*
g(W") = [ W*(u, B,)}A(u, B)N'(u) du
and A(u, B,) is defined by regularity condition (F) in Section 3.

REMARK. A simple application of the Cauchy-Schwartz inequality can be
used to show that the asymptotic variance of the estimate ﬁ(WN) will be
minimized by choosing W*(u) [the limit of Wy(u)] to be proportional to
d{log M(u)}/du or A'(u)/A(u). This result is similar to that of finding the
optimal weight function for the hypothesis testing problem as shown by
Schoenfeld (1981) and Gill (1980). It is shown by Ritov (1989) that the estimate
B( Wy), assuming we can take T™ equal to infinity, is also the most efficient
estimate of B among all semiparametric estimates when the error distribution
indeed has hazard function A(u). Therefore, it seems likely that a fully efficient
semiparametric estimate of 8 can be obtained by using a weight function which
adaptively estimates A’'(z)/A(u). This, however, has not been considered in this
paper.

We wish to note that the most efficient linear rank estimate ,1§’(WN) is
generally not fully efficient. That is, if we assume the linear model 7. = a +
BZ; + e;, where the e; are iid with known distribution function F(x) and
corresponding hazard function A(x), then we can use standard likelihood meth-
ods to show that the maximum likelihood estimate ,éM is fully efficient with
asymptotic variance equal to the inverse of the expected information. In general,
the asymptotic variance of ﬁM is smaller than the asymptotic variance of the
most efficient linear rank estimate, although usually by not very much. In the
special case, however, when the censoring is such that the distribution of
C; — ByZ; is independent of Z;, then the most efficient linear rank estimate is
fully efficient. This in practice would not be expected to occur except possibly in
the case when B, = 0. The details of these calculations are straightforward but
rather tedious and, therefore, have been omitted.

5. Extensions to multiple covariates. In this section we shall generalize
the results of the previous sections to the multiple regression problem. Since the
concepts are similar to the single covariate problem, the proofs will be omitted
and only the main results will be presented. The assumptions will be the same as
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in Section 2, except that the underlying survival times T, are linearly related to
K covariates. That is,

T,=PB'Z;+ e, wherep=(B),...,B¢) and Z; = ( e Zig )

We define a vector of estimating equations as the K linear rank tests for each
of the K covariates in the regression model. That is, Sy (Wy, B) = {Sy{(Wy, B),
=1,..., K}, where

S (W B) = & " Wig(u) dN(u + 8'2){Z,; - Z(u, B)},
i=1 —®
where Z(u B) = Z,JY,(u + B’Z,)/Z Y,(u + B’Z;), and the weight func-
tion WN(u) satlsﬁes the assumptions given in Section 4. Since Sy(Wy, B) is a
discontinuous function, the corresponding linear rank estimates B(W,) are
defined as the values B for which slight perturbatlons of its component would
change the sign of Sy. The main result is that the limiting distribution of
NY2(B(Wy) — BO) is a multivariate normal with mean 0 and covariance matrix
equal to G™'V*G ™!, where V* denotes the K X K matrix with elements

Vi = [ (W B) Ay (w BN s, G f= 1, K,

A, (u, By) is the limit of

N
Y {z,-Z(u,B)}{2Z;; - Z;(u,B)} Yi(u + B;Z;)/N

i=1

and G denotes the K X K matrix with elements

Gy= [ W, Bo)) Ay (s BN ()

6. Estimate of the covariance matrlx. In the previous sections, it was
shown that the linear rank estimate B(WN) is asymptotically normal. In order,
however, to be able to use this estimate for purposes of statistical inference, we
must construct a consistent estimate of the asymptotic variance. We showed in
Section 5 that the asymptotic variance was given by G 'V*G~!, where the
(f, J)th element of V and G are given by

(6.1) Vit = [{W*() ) A,(u,0A(x) du,
and

(6.2) G,

J

= [ W) A, (u, 0N (u) du.

These computations were made under the assumption that the true value 8,
was without loss of generality taken to be equal to 0. If indeed B, were equal to
zero, then well-established results for linear rank tests [Andersen and Gill (1982)
and Gill (1980)] can be used to show that a consistent estimate of V;* can be
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obtained by substituting the empirical estimates in the integrand of (6.1).
Namely, the estimate V;* is equal to

f_T;{WN(”)}ZAff(u) dA(u),

where

(6-3) Afj(u) = Z {(Zi/ - Z/(u))(zij - Zj(u))Yi(u)}/N

=1

and A(u) is taken to be the Nelson (1969) estimate of the cumulative hazard

function, namely,
M- [ £ i) / | 2 7).

Hence the estimate V,}" is equal to

- .
N~! glf_w{WN(u)}

N N
X LZ {(Zkf - Z,(u))(ij - Zj(u))Yk(u)} kZ Yk(u)] dN;(u).
=1 =1

This estimate is a consistent estimate of V;* when B, = 0. If B, were not equal
to 0, the problem could be transformed to that above by considering the
residuals X; — BJZ; and applying the estimate to the residuals. However, since
the value B, is not known, we propose computing the estimate of V;* based on
the estimated residuals (X; — ﬁ(WN)’Zi), t=1,..., N. The proof that the esti-
mate 17,]*, using these residuals, is a consistent estimate of V;* has not been
verified at this point; however, some preliminary numerical results based on
simulations seem to indicate that this estimate indeed works well.

We must also find an estimate for G;;. Integrating (6.2) by parts we obtain
that

(6.4) G, = —/_T;}\(u)d{W"(u)A,j(u)}.

We propose estimating G;; by substituting consistent estimates for each of the
terms in the integrand of (6.4). Namely, we propose estimating G, by

G, = -/_T;X(u) d{ W, ()4, ().

Since A 1/(%) given in (6.3) is a step function changing at each value of X;, as is
the weight function Wy () in most cases, then the estimate G;; can be written as

N
(65) G,= L AMXO) Wy(XD)A (XD) — Wy(XHD)A (X)),
=1

where X denotes the ith order statistic of X;, i = 1,..., N. In order that this
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estimate be consistent, we must find a consistent estimate for the hazard
function A(u). We propose using the kernel estimate

R = [ [ (@¥G)/ ¥l e = /) |,

where w denotes the kernel function, &, denotes the window width, N(x) =
¥ N,(x) and Y(x) = ZY,(x). Properties of this estimate, including consistency,
have been studied by Ramlau-Hansen (1983) and Tanner (1983). The estlmate
G must be applied to the estimated residuals (X; — B(WN) Z) i=1,...,N.
Th1s creates extra difficulty as B(WN) is itself an estimate and therefore a
rigorous proof of the consistency of G,j has not been established, but again
numerical results based on simulations seems to indicate this estimate performs
well. We also noticed in the numerical calculations that changes in the window
width within reasonable limits did not affect the estimate by much. However,
more investigation in the choice of A(x) has to be made before making any
definitive recommendations.

7. Concluding remarks. In this paper we have proposed a class of linear
rank estimates ﬁ(WN) for estimating regression parameter B in a linear model
with right censored data. We have shown that there exist estimators which are
solutions to estimating equations derived from linear rank tests for censored data
that are asymptotically normal with covariance matrix for which an estimate is
proposed. We have also shown that with the appropriate weight function Wy (u),
these estimates are close to being fully efficient.

The results presented here are primarily theoretical. Before proposing such
estimates for general use, a more thorough applied investigation must be con-
ducted. We already noted that the proposed estimate of the covariance matrix
uses kernel methods for estimating the hazard function. Recommendations for
reasonable kernel functions and, more importantly, the window width still need
to be considered.

Efficient numerical methods for computing these estimates have to also be
examined. For some preliminary numerical work, we considered using a
Newton-Raphson type algorithm for finding solutions to the equations
Sy(Wy, B) = 0. This was motivated by the fact that the estimating equation is
approximately linear. That is,

SN(WNr B) = SN(WNr Bo) + GKXK(BO)(B - Bo)-
This suggests that we update our estimates by

BE+D = g — G BD)S (WN, B(i)),
where B(© is the ith iteration and G is the estimate given by (6.5), and continue
until the values converge. We found that such a procedure converged quickly to
a range near the solution, but did not necessarily give unique answers..

The estimator proposed here is a competitor to the Buckley—James estimate
[Buckley and James (1979)] for linear regression with right censored data. A
numerical comparison of the relative performance of these two estimates will be
very useful.
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There also remain other theoretical questions to be considered. No doubt
many of the stringent regularity conditions made in this paper can be substan- -
tially weakened.
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