The Annals of Statistics
1989, Vol. 17, No. 4, 1906-1915

A-OPTIMAL WEIGHING DESIGNS WHEN N = 3(MOD 4)

By Y. S. SATHE AND R. G. SHENOY

University of Bombay

In this paper we consider the problem of A-optimal weighing designs for
n objects in N weighings on a chemical balance when N = 3(mod 4). Let
D(N, n) denote the class of N X n design matrices X; whose elements are
+1 and —1. It is shown that if X, is such that XX, is a block matrix
having a specified block structure, then X, is A-optimal in D(N, n). It is
found that in some cases the A-optimal design in D(N, n) is not unique. A
larger class of chemical balance weighing designs is D°(N, n), where X, may
have some elements equal to zero. It is observed that the designs which are
A-optimal in D(N, n) are not necessarily A-optimal in DY(N, n).

1. Introduction. Let n and N be positive integers, with n < N. For conve-
nience, we will denote the set of all N X n matrices X, = (x,,;) whose elements
are +1 or —1[+1, —1 or 0] by D(N, n) [D%N, n)]. In the chemical balance
weighing design in which each of the n objects appears in each of the N
weighings, the use of the design matrix X, means that the jth object appears on
the left or the right pan of the balance according as x,,; = +1 or —1. If the jth
object is not present in the ith weighing, then x,,; = 0. If the observations are
uncorrelated and have the same variance 6% and the jth object weighs w;, then
the measured weight of the left pan minus that of the right pan in the ith
weighing has expectation equal to X7_,x,; ;w;. We shall restrict our study to the
weighing problem having nonsingular X/;X, and in which case the best linear
unbiased estimate of the weight of every object can be obtained and their
covariance matrix is (X} X,) o2

In this paper we consider the A-optimality criterion. If X} minimizes
tr(X,X,)"! over D(N, n) [D°(N, n)], then X} is said to be A-optimal in
D(N, n) [D%N, n)]. It is well known that when N =0 (mod4), any X} €
DN, n) such that X}'X* = NI, is A-optimal in DN, n), where I, is the
identity matrix. When N = 1 (mod 4), Cheng (1980) has shown that any X} €
D°(N, n) such that X}'X} = (N — I, + J, , is optimal in D°(N, n) for a
general class of criteria which includes, in particular, the A-, D- and E-optimal-
ity criteria, where ¢, , is a square matrix of order n with all elements equal to
unity. Later Jacroux, Wong and Masaro (1983) showed that when N = 2 (mod 4),
any X} € D(N, n), such that X }'X ¥ consists of two diagonal block matrices of
the form (N — 2)I, + 24, ,, i =1,2, where n, = n, = n/2 if n is even and
n,=n,+1=(n+1)/2if n is odd, and off-diagonal block matrices are null, is
optimal in D(N, n) for a general class of criteria which includes, in particular,
the A- and D-optimality criteria. When N = 3 (mod 4), a complete characteriza-
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tion of the A-optimal designs even in D(N, n) class is not known so far. Some
results have been obtained in Cheng, Masaro and Wong (1985), Wong and
Masaro (1984a, b) and Masaro (1988). In this paper, we give a characterization of
some A-optimal designs in D(N, n). However, it was not possible to obtain X}
for all values of n and N.

Let F(N, n) denote the class of n X n symmetric positive definite (p.d.)
matrices M, = (m;;), m;;=3 (mod4) (i #j), m;;=N and N =3 (mod 4).
Further, let M * € F(N, n) be such that

trM* '= min trM; L
M,€F(N, n)
Since every X, in D(N, n) can be transformed, by multiplying certain of its
columns by — 1 (if necessary), into X, such that all elements of X, 41X, are of the

form 4k + 3, where k is an integer, therefore, we may assume {X;X,: X, €
D(N, n)} € F(N, n) and hence

: ’ -1 *—1
Xdenlm)l(r;]’ n)tr(XdXd) > trMx 1.

Therefore, if one determines M,* and finds X, such that X/X, = M*, then
that X, will be A-optimal in D(N, n). It is shown here that M* has all
off-diagonal elements —1 or 3 and M,* has a block structure which is defined
below.

A block matrix of size r; is an r; X r;, matrix with diagonal elements N and
off-diagonal elements 3 and can be written as

r, = (N - 3)Iri + 3°Il‘,,r,-’

A block matrix in F(N, n), with block sizes ry, 1y, ..., r, satisfying X2_,r, = n,

is an n X n matrix denoted by C,, with diagonal blocks of those sizes and all
other elements equal to —1. Any such matrix C, in F(N, n) can be written as

C, = diag{(B, +J, ,),....(B, +d,.,,)} — J,

Ty Ty n,n

and

(11) trCyt = Zb:L[1+(n—b)(N—3)_l+ iriLﬂ/(l— Zb:riLi‘l),

i=1 i=1 i=1

where L, =N -3 +4r,i=1,2,...,b.

The idea of finding A-optimum weighing designs in the present paper is
analogous to that of finding D-optimum designs originated by Ehlich (1964) and
further developed by Galil and Kiefer (1980a, b; 1982a, b).

2. Main results. Hereafter we assume N > 3.
THEOREM 2.1. trM* '<trM* '+ (N —-3) "L
This enables us to prove

THEOREM 2.2. M,* is a block matrix.
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Further, using Theorem 2.1(b) in Masaro (1988), we obtain

THEOREM 2.3. M,* is a block matrix having blocks of only one size or of two
contiguous sizes.

THEOREM 24. M} = (N + DI, —dJ,, if and only if N = Ny(n) =
[7n — 16 + |(n — 4)(17n — 36) 1/4 and n > 4.

Further, when N < Ny(n) the procedure to determine M,* is described in
Section 4. The proofs of the main results are given in the following section.

3. Proofs of the theorems. Let

N ¢ u! N
u/
M,=|c¢ N u and M, _,(s) = [ * ] fors=1i,j
us Mn—2
u; u; M,_,

be p.d. matrices.
Further, let a,, = u/M,; 12u,, o= (N—ag), b,=u.M;?u, and z,(c) =
- a, for s =i, jand t=1,j.

LEMMA 3.1.

(a) trM;(s) =tr M}y + AN + by,) fors =1, J.
b) trM V= trM; %, + f;(c), where

(A +A;) +Aub, + Aub, — 2b,2,,(c)

vy T

(3-1) fij(c) = AA

ity zij C)

(C) An JJ zi2j(c) > 0 and fij(c) > 0.
(d) tr Mt > tr M1 \()) + (A — 22(0)A;M) 7N

Proor. For any p.d. matrix

M= [Mll M12],
M21 M22

where M|, and M,, are square matrices,
tr M~' = tr My' + tr Vi, (1 + M,M52My,),
where V,, = (M,, — M;,M3'M,,) ™.
(a) is proved by choosing M = M, _,(s) and M;; = N.
(b) is proved by choosing M = M, and M, = [N zf/]

() A4 — (c) is the determinant of the p.d. matrix V;;' and f; ;/(¢) is the
trace of the p.d. matnx V(I + M,,M»?M,,), where M is chosen as in (b). Hence
the result.



A-OPTIMAL WEIGHING DESIGNS 1909

(d) Choosing M =M,, M;; = N, My, = M,_(j) and M, = v} = (c, u}), we
get tr M ' > tr M2 () + (N — o/M,; 2 ,(j)v,) " Now /M, },(j) = [Aj;‘lzij(c)y
uM; ', — Az'z, (c)u;M,',]. On simplification we get the result. O

ProoF oF THEOREM 2.1. For n=2 M}*= L ;Vl and trM>* ' =
(N+1) '+ (N-1)"'<N !+ (N-3)"L Thus, t etheoremlstrueforn—
2. Suppose it is true for n — 1 and let

M lN uj ]
n=1 " up M, ,f
Lemma 3.1(a) gives
AZM1+ b)) = te MX 1 — tr MYy < te M — tr M)

(3.2)
<(N-3)7.
Hence, we get z;,(3) > 0.
Let
. Ni 3 uj
MG = | 3T :
u : Mn*—l
|

J

=@, uj) and y' = (y, y,_1), where y; ;= (¥,..., %) is an (n - 1) X1
vector. Now y’M,(j)y can be written as

(N = o Mx30) 3 + (Jy + MET) ME (5,0 + 1 MET).
Since z,,(3) > 0,
N - oM v,=A,; - 22(3)A;' = A;\(N - 3)(N - 3 +22;(3)) >0

therefore, y’M,(j)y > 0 and M,(j) € F(N, n).
Replacing i by j and ¢ by 3 in (3.1), and using Lemma 3.1(a) and (b), we get
1+b;  2[z,(3) + (N -3)(1+by)]
A (N-3)(N- 3+2z,j(3))

JJ

trM;Y(j) =te M —

z;;(3)A; + (N - 3)%(1 + b;)
J.j(N 3)(N 3+ 22,(3))

=trM* '+

<trM*'+ (N-3)"" by(3.2).

Thus tr M*~! < tr M, }(j) < tr M,;*' + (N — 3)~ L. Hence, the result is true
for n. Since it is true for n = 2, it is true forall n > 2.0
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LEMMA 3.2. Let

N ¢ u;
M=|c N uj and |c| > 3.
u; u;, M,_,
Then:
(a) 2,43) >0 fors =1, .
(b) fi{e) <2N-3)7!
©
N E 3 ul
M(s)=|g77 " € F(N,n) fors=1i,j
u : Mn—l( )

(d) 12;/€)] = 243) 2 243), where z,3) = (2;(3) + 2;,(3))/2 and 2,3) =
J2ii(8)2,;(3) and where equality holds if and only if ¢ = 3 and u; = u;.

(e) yA;A;; = [N -3+ 2,3)]

Proor. (a) Without loss of generality we may assume that zu(3) < z;(3).
Using Theorem 2.1 and Lemma 3.1(d), we get (N — 3) < A;; — U(c)A <A,
and the result follows.

(b) From Lemma 3.1(b) and Theorem 2.1, we have

fiie) =teM} ' —tr MYy < tr Mx~'— tr M}, <2(N - 3)".

(¢) 2,,3) > 0 implies M,(s) € F(N, n) as proved in Theorem 2.1.
(d) |z;(e) = |e| — la;;| =3 — ‘/a @23 —(a;+a;)/2=12,3) 2 2,3).

The second inequality is strict if |c| > 3 or u; # u;.
(€) AyA;; — (N -3+ 2,3)>=2(N - 3)(z (3) 243)) = 0. Hence the re-
sult. O

i _]_]

PrOOF OF THEOREM 2.2. Let

N ¢ u}
’
My=|c N u and |c| > 3.
u, u, M,,

By Lemma 3.2(c), M,/(s)€ F(N,n) for s=1i,j and, by Lemma 3.1(b),
tr M, '(s) = tr M}, + £,,(3), where

2[‘433 + (N - 3)bss]
(N - 3)[Ass + 233(3)]

fors =1, Jj.

(3.3) fss(3) =
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By Lemma 3.2(d), we have |z;;(c)| > 2,3). Suppose |2;;(¢c)| > z,3). Using (3.3)
in (3.1), we get

(4a4,; - 22(0)) fii(e)
=2"Y(N - 3)[(Aii +2;(3))14(3) + (Ajj + zjj(3))fjj(3)]
+2;(3)b;; + 2,i(3)b; — 2b;;2;;(c).

Since z;(3)b;; + 2;/(3)b; > MZg(3) > 2|b;;2,3) and, from Lemma 3.,
f;;(¢) < min{ f,-i(3), f;/(3)}, we get
(4ud; = 28(e) fii(e)

>2"YN - 3)[Ai,~ +2;(3) +A;+ zjj(3)] fi(e) + 2|b,~j|(zg(3) - lz,-j(c)|)

= (AiiAjj - 23(3))fij(c) + 2|bij|(zg(3) - lzij(c)l)'
On simplification we get
(34) 21b,,1 = fij(€)[lzi; ()] + 24(3)]-
Further, A;b,; + A;:b; > 2|/A;A;;1b;;|. Hence from (3.1) we get

Wy =

(AuA, — 22(c)) ()

> 2(N — 3 +2,(3)) + 2|b,.j|[m - |z,.j(c)|]

> 2(N — 3+ 2,(3)) + fi,(c)(|2i,(c)l + 2,(3))(N — 3 + 2,(3) — |z;,(c)l)
> 2(N - 3+ 2,(3)) + f;,(c) [(N = 8)2,(3) + 22(3) — 22(¢)].

The second inequality follows from (3.4) and Lemma 3.2(e). The third inequality
follows from Lemma 3.2(a) and Lemma 3.2(d). On simplifying (3.5) we get
fij(c) > 2(N — 3)~', which contradicts Lemma 3.2(b). Hence |z;;(c)| = 2,(3).
Therefore, we get ¢ = 3, u; = u;, f;;(c) = min{ f;(3), f;(3)} and M* = M, (i) or
M,(J).

If M * is not a block matrix, then applying the above results for any two rows
and the corresponding columns of M,* we get a block matrix, after permuting
the rows and the corresponding columns if necessary. O

(3.5)

A matrix C, in F(N, n) with u blocks of size r and v blocks of size r + 1
satisfying u + v =s and sr+ v = n is denoted by C*. For given s < n, the
parameters r, u and v of C* are uniquely determined by the conditions
r=[n/s]l, u=s(r+1)—n,v=s—u, u>1and v >1 except when s|n. In
this case the matrix C;* with r = r, u = u, and v = 0 is identical to that with
r=r,— 1, u=0and v = u,, and either one yields the same value for tr C*~'.
Hence we may assume v > 1.
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ProOOF OF THEOREM 2.4. The parameters u, v, r, s hereafter refer to C*
satisfying s < n.

Let C** be obtained from C* by replacing one block of length r + 1 (since
v > 1) by a block of length r and a block of length 1. This may result in blocks
of three lengths in C**. Let L= N —3+ 4r and g(v) = (L + 4(L — n) +
4(r + 1)v. Using (1.1), we get

n—s u—1+v—,1 2L+4—n
+ +
N-3 L L+4 g(v)

trC* 1 =

and
n—s-—1 u v—2 1
N-3 "TtIvatwNT
(QL+4-n)+16r(r—1)(N+1)"?
g(v) —4r(N+1+L)YN+1)"

It can be seen easily that for fixed r, trC* ' — trC**~! is an increasing
function of g(v). Since g(v) > g(1) = (L + 4)(L — n) + 4(r + 1), therefore, we
get

trC* ! — trC** !
4r 2N -2 —n+ 8r
ZILIN-3) "TTFHIZ-n) +4r+ D
2N -2 —n+ 4r
T (N+1)(L-n)-4(r-1)
4r[12(r — 1) — (n — 4)(N + 1)]
~ L(N-3){(N+1)(L-n)-4(r-1)}
4ar[n(N+1)+4(n+2)(r—1) = (n + 4)(n - 2)]
* {((L+4)(L-n)+4(r+1)}{(N+1)(L-n)-4(r-1)}
16r(r — 1)G,(r) + 8r((N + 1) + 12(r — 1))G,
L(N-3)[(L+4)(L-n)+4(r+1)][(N+1)(L-n)-4(r-1)]

ifr>1

trC**~ 1=

(3.6)

8G,
T (N-3)(N+1)(N+1-n){((N+5)(N+1-n) +8)

where G,(r) = 48(r — 1)2 + 4(12N — Tn + 19)(r — 1) + (N + 1)2 + 4(n —
2)(5N — 5n + 6), Gy = 2N? — (7n — 16)N + (n — 2)(4n — 7) and equality holds
in (3.6) if v = 1. Now for r > 1, G(r) > 0 and G, > 0, if N > Ny(n) and n > 4.
Therefore, if N > Ny(n) and n > 4, then trC*! — trC**~! > 0 and equality
holds if and only if v =r=1 and Ny(n) = N. Moreover, when N < Ny(n),
G, < 0 and therefore, from (3.6),if v=r =1, weget trC* ! — trC** 1 < 0.In
this case C** = (N + I, - J, ,and C* = C* . O

ifr=1,
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REMARK. For n < 100, equality holds in (3.6), if n = 8, N = 15 and n = 54,
N = 143.

4. Construction of X} € D(N,n). When N > Ny(n) and n > 4, by Theo-
rem 2.4, M.* = (N + 1)I, — J, , and the method of constructing X} € D(N, n)
such that X }'X} = M* is the same as that given in Case 3 in Galil and Kiefer
(1980a). For N < Ny(n) by Theorem 2.3, M, = C*, where s, is chosen such that
tr C;* ! is minimized. To determine s, we first fix r and minimize T(N, n, s) =
trC*~! with respect to s such that b.<s < a,, where a,=[n/r], b =
[n/(r+ 1)] + 1 and [-] denotes the integer part. Let the corresponding s be
denoted by s*. Now,

T(N,n,s+1) > T(N,n,s) ifmax{b,[s{]} <s<a,
and

T(N,n,s —1) > T(N,n,s) ifb, <s<min{[s}],aqa,},
where

st = {2(L +4)(L-n)+4@n + r)(r+ 1)

_‘/L(L +4)(N —-38)(2L + 4 —n) + 16r%(r + 1)2}
+{8r(r+1)}.

Depending on the values of [s]], we have to consider three cases.
CaskE (i) If b, > [sf], then s* = b,.
Cask (ii)) If b, <[s{] < a,, then s* = [s{].
Cask (iii) If [s{] = a,, then s* = q,.

Minimizing T(N, n, s*) over values of r which satisfy b, < a,, we get
T (N, n, sy) = tr C* 1. If 5§ is an integer for some r which satisfies b, < a, and
8o = g, then we get two matrices C* and C;*_, having the same minimum. This
happens for n = 20, N = 27. In Table 1, the values of s, and tr M,* ! are given
for 6 < n <10 and N < Ny(n). (A table for larger values of n and N is also
available.) The construction of X * corresponding to designs in Table 1 is given
below.

(i) Consider the 8 X 8 block matrix

X, X, X, X,

_X2 Xl _Xz X2
X= _X2 X2 Xl _X2 ’

_X2 _X2 X2 Xl

where X, = oJ, , — 21, and X, = o, ,. We get X'X = 4(I, + J, ;) ® I, where ®
denotes the Kronecker product. Delete the first and the third (the first) columns
and then delete the first row of X. The resulting matrix gives design number 1

.
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TABLE 1
Design
number n N So trMx !
1 6 7 4 1.058333
2 7 7 4 1.277778
3 7 11 6 0.696970
4 8 11 5 0.810606
5 8 15 7 0.562500
6 9 11 5 0.925000
7 9 15 6 0.639634
8 10 11 5 1.041667
9 10 15 5 0.716667
10 10 19 8 0.549479

(ii) For design numbers 5,7 and 9 (3, 4, 6 and 8) choose appropriate number of
columns having 1’s in the first row and then delete the first row of the matrix H
(R) of Example 2.1 (2.2) in Kounias and Chadjipantelis (1983).

(iii) Design number 10 is constructed by using the method given in (2.8) of
Galil and Kiefer (1982b).

CoMMENTS. (i) Design numbers 3 and 5 can also be obtained by the method
given in Galil and Kiefer (1980b).

(ii) Design number 9 was also constructed by Mitchell (1974) via a computer
routine.

We now give an example illustrating the fact that a design which is A-optimal
in D(N, n) is not A-optimal in DN, n).

ExaMPLE 4.1. Consider the following X, € D%(7,6),

[-1 -1 -1 -1 1 0]
1 1 -1 -1 1 1
1 -1 1 -1 -1 -1
X,=1|-1 1 -1 1 -1 -1
-1 1 1, -1 1 -1
-1 -1 1 1 1 1

1 -1 -1 1 1 -1

Then we get

X,X, = [815 -y 5 2i5],

2i; 6

where i; is the fifth column of the identity matrix I . Tr(X;X,)"! = 1.046875,
hence design number 1 is not A-optimal in D7, 6).
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