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For the nonparametric estimation of a survival function when censoring
is present, the Kaplan-Meier estimator is often used. The admissibility of
this estimator and other related maximum likelihood estimators is demon-
strated. This is done by reducing the problem to one involving just the
multinomial distribution and then using the stepwise Bayes technique to
prove admissibility.

1. Introduction. The admissibility of various well-known nonparametric
estimators was recently demonstrated in Meeden, Ghosh and Vardeman (1985).
The argument proving admissibility involved two essential steps. The first was
to note that to prove admissibility for the nonparametric problem it was enough
to prove admissibility when the family of possible distributions was just assumed
to be some multinomial family of distributions, rather than the large nonpara-
metric family. The second step then used the stepwise Bayes technique to prove
admissibility for the multinomial problem. Here we will use the same argument
to prove the admissibility of the Kaplan-Meier estimator for the nonparametric
estimation of the survival function when censoring is present. In fact, the
admissibility of a whole class of maximum likelihood estimators, which includes
the Kaplan—Meier estimator, is demonstrated. The only additional complication
is that the censoring mechanism must be modeled and then taken into account.
This description and modeling of the censoring is carried out in Section 3. In
Section 4, the stepwise Bayes technique is used to demonstrate the admissibility
of the maximum likelihood estimator for the multinomial problem. In Section 5,
the admissibility results for the nonparametric problem are given.

If we were just proving the admissibility of the Kaplan—Meier estimator this
paper would be considerably shorter. Although the proofs for the Kaplan—Meier
estimator and the more general case are essentially the same, the general case
requires considerably more notation. For someone who is just interested in the
Kaplan—Meier estimator the argument ‘can be simplified using the notation of
Section 3.4. We believe, however, that the more general result is important.
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Multinomial problems involving the more general type of censoring described
here are not uncommon in statistical practice. For example, consider a two-
dimensional contingency table where for some of the data points the value of the
first variable is missing. For a recent discussion of such problems and other
examples from a Bayesian point of view, see Dickey, Jeong and Kadane (1987).

2. Modeling the censoring mechanism.

2.1. Introduction. In this and the next section we will always assume that
we are collecting observations from some multinomial population. As was noted
above, once the multinomial situation is understood the nonparametric problem
will follow easily.

For definiteness suppose we are to observe a random sample of size n from a
population with five possible values, say a, < a, < a; < a, < a;. However, be-
cause of censoring on any given trial we may not learn the actual value of the
observation but only that it belonged to a certain subset of the a,’s. Many such
censoring schemes are possible. For example, suppose the following is what
actually happens. On any given trial which results in a, we always get to observe
;. On any trial which results in an a, sometimes we get to observe a, and at
other times we only learn that the observation was at least as large as a,.
Similarly, on any trial which results in an a; for i = 3, 4 or 5 we either learn that
the actual observation was a; or only that it was at least as large as a,. On a trial
which resulted in an «; with i > 1, what we actually observe is the result of the
random censoring mechanism which we have no control over. Hence, in actuality
for this experiment, because of the censoring there are really eight possible
outcomes. They are the five outcomes corresponding to each of the a,’s and the
three censored outcomes at least as large as a,, a; and «,. Schematically this
censoring mechanism is represented in Figure 1.

In the figure the point labeled (2) represents the outcome at least as large as
a,, the point labeled (2, 2) represents the outcome at least as large as a, and the

(2,2,2,2)

Fia. 1.
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point labeled (2,2,1) represents the outcome a,. This method of labeling will
soon be explained in greater detail.

We note in passing that the censoring in this example is of the type that is
present when the Kaplan—Meier estimator is applicable, i.e., for a given observa-
tion you either learn the actual value or just that it is larger than some number.

Before studying the general situation we consider one other special case.
Suppose a random sample of size n is to be taken from a population with eight
possible values, say a; < ay < -+ < ag. Because of censoring on any given trial,
in addition to the eight basic outcomes, we sometimes only learn that the
outcome belongs to one of the following sets: {a,, a5}, {ay a5}, {ag, a;),
{ag, az, ag} or {ay,, as, ag, a;, ag}. Hence, on each trial there are in fact 13
possible outcomes for the experiment. For example, when a, is the result of a
particular trial, what we actually observe can be either a;, {ag, a;}, {ag, a;, ag)
or {ay, as, ag, az, ag}. Each of the 13 possible outcomes will be called a node and
they are represented in Figure 2.

Note that (3,2, 1) is the node corresponding to the outcome {ag, a;}. The logic
behind the labeling of the nodes will be given when the general situation is
discussed.

We now consider the general problem. We assume that a random sample of

size n is to be taken from a population with & possible values a;, a,,..., a,.
Because of censoring on any particular trial, rather than observing the actual
value, we may only learn that it belongs to a certain subset of {a;, a,,..., a;)}.

Let % denote the class of possible subsets that can be observed for a given, fixed
censoring mechanism. We assume the censoring mechanism is such that #
satisfies the following three properties:

@i Fori=1,...,k {a} €.
(2.1) (ii)) For any two distinct sets belonging to % they are either disjoint or
one is contained in the other.
(iii) The set {a;, ay,..., @} does not belong to %.

Note that both censoring mechanisms in the two earlier examples satisfy these
three conditions. Although there are many censoring mechanisms which satisfy
the three conditions of (2.1) there are many others that do not. For example, any
censoring mechanism which permits overlapping subsets of possible values fails
to satisfy these conditions. The last condition eliminates the possibility that on a
particular trial one learns only that an observation was taken, but absolutely
nothing about the actual value. Although in many cases such an assumption is
reasonable, it is not needed in what follows. However, for ease of exposition we
will assume for now that it holds and show how it can be eliminated later.

From now on we will assume that a fixed censoring mechanism is given by
some collection of subsets # which satisfies the conditions of (2.1). Then on any
particular trial the statistician can observe any member of %. We will now show
how these outcomes can be labeled in a convenient fashion.

First, for each «; find the largest member of % which contains it. Call this set
u,. Note that it is possible that some of the sets u,,..., u, are identical.
However, the collection of distinct sets among u,,..., u, forms a partition of
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{ay,...,a,). If there are m such distinct sets we denote (in some order) these
distinct sets by (1), (2),...,(m).

If the set (1) is a singleton, i.e., contains exactly one of the «;’s, we do nothing
more with it. If (1) is not a singleton we then find for each a; belonging to (1) the
largest member of % which contains «; and is a proper subset of (1). As in the
above, the distinct members of this collection of sets forms a partition of the set
(1). If this partition of (1) consists of m, distinct sets we denote these sets (in
some order) by (1,1), (1,2), ...,(1, m,). Now, in turn, we consider each of the sets
(1, ). If for a particular j, (1, j) is a singleton we do nothing more with it. If
(1, 7) is not a singleton, then for each a; belonging to (1, j) we find the largest
member of % which contains «; and is a proper subset (1, ). As before this gives
us a partition of (1, j) for each (1, j) which is not a singleton. Now, in turn, we
consider every set which is a member of the partition of (1, ) for some j. If such
a set is a singleton then we do nothing more with it. If it is not a singleton, then
just as before we partition it. We continue in this way until we are just left with
singletons and there are no further sets to partition.

We next repeat this process on the set (2) and so on through the set (m). This
process allows us to denote the subsets in the collection % in a convenient way.
A typical member of % is denoted by (i, j,..., r, s) and is called a node. These
nodes, or members of %, are exactly the set of all possible outcomes on any
particular trial of the experiment. Note that if the collection % is just all the
singletons {a;} for i =,..., k (i.e., there is no censoring), then node (i) is just
a,. It was this method that led to the labels attached to the nodes in Figures 1
and 2. For example, in Figure 2 the node (3,2,1) corresponds to the outcome
{ag, @;) while the node (3,2,1,1) corresponds to the outcome {a}.

2.2. Probability structure for Figure 2. For the censoring experiments we are
considering, one needs to specify two different probability structures. The first
models how the a;’s are generated on a given trial while the second models the
censoring mechanism that determines which subset of %, i.., which node, is
actually observed by the statistician. To see how this will be done we return to
the special case given in Figure 2.

Recall that in Figure 2 there are eight possible values for the underlying
process. The most natural probability model is to let g(i) denote the probability
that «; occurs for i = 1,...,8 where Y8_,q(i) = 1. Then the probability of any
set of a,’s can be expressed using the g(i)’s. For example, the probability that
the underlying outcome is in the set {ag, a;} is g(6) + g(7). However, because
one needs to model the censoring mechanism as well, there is a more convenient
way to model the underlying probability structure. We will now describe this
model.

Let A(1), A(2) and A(3) be a probability distribution over the three nodes (1),
(2) and (3), i.e, A(i) = 0 and X% |A(i) = 1. Next let A(1|2) and A(2|2) be the
conditional probability distribution over the nodes (2,1) and (2, 2) given node (2).
Similarly we have the following conditional probability distributions: A(1|3) and
A(2|3) over the nodes (3,1) and (3,2) given node (3), A(1]3,1) and A(23,1) over
the nodes (3,1,1) and (3,1,2) given node (3,1), A(1|3,2) and A(2|3,2) over the
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nodes (3, 2,1) and (3, 2, 2) given node (3,2) and A(1/3,2,1) and A(2]3,2,1) over the
nodes (3,2,1,1) and (3,2,1,2) given node (3,2,1). Under this parameterization
the probability that underlying process generates a,, which is the node (2,1), is
A(2)A(1]2) and the probability of generating a4 the node (3,2,1,1), is
AB)A2I3)A(1]3,2)A(1]3,2,1). Note that among the distributions defined by the
A’s there are only seven independent parameters and this probability structure is
just a reparameterization of g(1),..., g(8).

Next we describe how the censoring mechanism will be modeled. We see from
Figure 2 that if the underlying probability structures generate «;, then the
statistician always observes «;. On the other hand, if «, is generated the
statistician may observe one of three sets {a,}, {a,, a;} or {ay, as, ag, a;, ag}.
What the statistician actually observes is determined by a probabilistic censoring
device. The probability structure of this censoring device will now be specified.

If the singleton node (2,1), i.e., a,, is generated by the probability structure
given by the A’s, then we observe node (2) with probability p(2) and node (2,1)
with probability p(2,1). Note that p(2) + p(2,1) = 1. Similarly if node (2,2) is
generated we observe nodes (2) and (2,2) with probabilities p(2) and p(2,2). If
node (3,1,2) is generated we observe the nodes (3), (3,1) and (3,1,2) with
respective probabilities p(3), p(3,1) and p(3,1,2) where these three probabilities
sum to 1. Or, if node (3,2,1,1) is generated we observe the nodes (3), (3,2),
(3,2,1) and (3,2,1,1) with respective probabilities p(3), p(3,2), p(3,2,1) and
p(@3,2,1,1) where these probabilities also sum to 1. Note that the censoring
probabilities are defined in similar fashion for the other singleton nodes.

We can now calculate the probability of observing the various nodes on a
particular trial. For example, the probability we observe node (2,1) is
P2, DA(2)A(1|2). The probability we observe node (2) is

P@ARA(1I2) + p@AR)IA2I2) = p(2)A(2)
and the probability we observe node (3,2) is
A(3)A(213)A(1]3,2)[A(1)3,2,1)p(3,2) + A(2]3,2,1)p(3,2)]
+ M3)M(213)A(213,2)p(3,2) = p(3,2)A(3)A(213),

and so on.

These calculations make it clear why the parameterization of the underlying
probability distribution involving the A’s is more convenient for this problem
than the more natural one given by the g¢’s. Now in what follows both the
probability model for generating the data, given by the A’s, and the probability
model for the censoring, given by the p’s, will be considered to be unknown. It
will be for this combined parameter space that the admissibility results will be
proved for the “multinomial” problem with censoring.

2.3. Probability structure for the general model. We now return to the
general situation where the possible values for the underlying probability distri-
bution are ay, ..., a, and the censoring mechanism is given by a collection of sets
% satisfying (2.1). As before a member of # is denoted by (i, Jj,..., r, s) and is
called a node. The length of a node is just the number of indices in the vector
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which names the node. If A is a node of length [/, and B is a node of length [, we
say that node A precedes node B if I, < [, and if the first /; coordinates which
name B are exactly the coordinates which name A. For example, in Figure 2 the
node (3, 2) precedes the node (3,2,1,2). As was demonstrated in the special case,
this labeling of the nodes can be used in specifying the underlying probability
structure.

First we let A(-) be a probability function defined on all the nodes of length 1.
The rest of the distribution is defined conditionally. Given the node (i, j,..., r),
we let A(s|i, J,..., r) be the conditional probability of the node (i, J,..., r, s). If
@i, J,...,r) is of length [, then A(:|i, j,..., r) concentrates all its mass on the
nodes of length I + 1 which are immediately preceded by (i, j,..., r). Hence, the
unconditional probability assigned to the node (i, j,..., r,s) is

(2’2) )\((l? Jreees Ty S)) = >\(l)>\(.]|l) e A(Sll’ Jreens )").

Next we will give the probability distribution which describes the censoring
mechanism. Before this can be done, however, we need some additional notation.
If (i, j,..., r, s) is a node which is not a singleton, then we let A(i, j,...,r,s)
denote the set of all singleton nodes which are preceded by the node
(i, j,...,r,s). If on a given trial of the experiment, because of censoring, we
observe the node (i, j,..., r, s), then we know that the singleton node generated
by the underlying probability structure defined by A’s belongs to the set
A(, j,..., r,s). Whenever any of the singleton nodes belonging to this set are
generated, we assume that the censoring mechanism yields the node (i, j,..., r, s)
with probability p(i, j,..., r, s). Hence, whenever the node (i, j,...,r,s) is
observed our model assumes that for all the singleton nodes, which could have
given rise to the observation, the censoring probability is the same. This type of
censoring is called noninformative [see, for example, Berger and Wolpert (1984),
page 96].

Hence, with noninformative censoring it is easy to check that on a particular
trial we observe the node (i, J,..., r, s) with probability

(2.3) p(i, j,...,rIN, J,...,1,8)).
For a given generic node (i, j,..., r,s) which is not a singleton, let A =
A(i, J,..., r,s) and let a denote a generic singleton belonging to A. Then on a

particular trial, for a given p and \,

p(i, j,...,r,s)N(a)
Z,BeAp(iv jr- e Ty S))‘(B)
A(a)

EB € A)‘( B )
Conversely, it can be seen that if the previous equation is true then the censoring
mechanism is of the form previously described. This explains why this censoring
mechanism is called noninformative.

Suppose on a particular trial the outcome «; is generated by the underlying
probability distribution. For each «; let V(«;) be the set which contains the node

P, ,(a was generated|(Z, j,..., r, s) observed) =

= P,(a]A).
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a; and all the other nodes which precede it. So given the value «; the node that is
actually observed must belong to the set V(«;). So as we saw in the discussion of
the example given in Figure 2, each a; introduces a constraint over the censoring
probabilities. That is, for each a; the sum of the censoring probabilities for all
the nodes belonging to V(«;) must be 1.

We have now described the parameter space for this problem. Because of the
censoring the parameter space has two components. The first is 6, which
consists of all possible choices for the various N’s, which defines the underlying
probability structure. The second is 8, which consists of all possible choices for
the various p’s which yield noninformative censoring. Hence, other than the
assumption of noninformative censoring we are following standard frequentist
practice and assuming the possible distributions are completely unknown. As was
noted in (2.3) we are also assuming that the underlying probability structure and
the censoring mechanism are independent of one another. Under these assump-
tions the appropriate parameter space is § = 6, X 0,

N denotes a typical member of 8,. The labeling of the nodes gives a convenient
way to order the members of \. That is, we will take

A= (A1), M2),...,
A1(1), A2(1), .., A(112), A(212), ooy ey e,
A(11,1), A(211,1), ..., A(1]1,2), A(2]1,2),..., ...,

i.e., we have taken the A’s in lexicographic order. When it is convenient to think
of the A’s in this order we will write \ = App-ees Ary)) when v is the total
number of A’s that we have.

Suppose we now observe n independent trials of the experiment. Let
¥(i, J,..., r, s) be the number of times the node (i, j,..., r, s) is observed in the
sample. Then, given the data, the likelihood function defined over @ is given by

L(N\’s, p’s|data)
(2.4) =1—I(i,j,...,r,s){p(i7 j,...,r’s)
X)\(l))\(”z) cen 7\(8|l, j’.“’ r)}y(i,j,...,r,s)

where [1; ; ) denotes the product over all possible nodes. Let I1;, denote
the product over all nodes of length (1), IT; ;) denote the product over all nodes
of length (2) and so on until finally I1% ; ) denotes the product of the set of
nodes of maximum length. Let (i, j,..., r, s) be the total number of times
(@, j,...,r,8) or a node which it precedes is observed. Then the likelihood
function can be rewritten as

L(A,S’ p’s|data) = 1_[(i,j,...,r,s)[l)(iy j’ ceey r, S)] y(i,j’“.’r’S)
(25) X Ty [ANGE)] T, [A1E)] 752 - -

Xn*(i,j,...,r,s)[)\(sli’ j’ ey r)] e j,...,r,s)'

I
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In most problems the censoring probabilities will be considered nuisance
parameters. What one is really interested in estimating is the A’s or various
functions of the A’s. If the sample is such that every node was observed at least
once, then the maximum likelihood estimates (MLEs) for the A’s are easily
found. In this case it follows immediately that

o) _ 3(in)
E(i)y(i) n’

MLE of A(i,) =

5’(" JO) 5’(1’ ]0)

MLE of A(jyli) = 235G, 1) 3G) - ()

and

_ y(iyj’“"r’SO)
Esjl(i,j,...,r,s)'

MLE of A(s,|i, j,...,T)

From this we see that the MLE of (2.2), the probability that the A’s assign to
node (i, Jos- - 7o So), 1S given by
5’(10) 5’(1’ ]()) y(i07 j0,~~-,r0, SO)

2.6 — = X — .
( ) n ij(l, .]) Zsy(lO7JO"'-,r0’s)

On the other hand, it is possible because of censoring that the sample is such
that not every node was observed. In this case, it is possible that the MLE for
some of the A’s is undefined. In the next section it will be pointed out how this
difficulty is easily overcome and the admissibility of various MLEs will be
demonstrated.

3. Admissibility in the multinomial case.

3.1. Introduction. We will now use the stepwise Bayes technique to prove
the admissibility of the MLE for estimating N\ with the loss function being the
total sum of all the squared error losses. A typical stepwise Bayes argument
proceeds as follows. A prior distribution is defined over a subset of the parameter
space. The Bayes estimate for all points in the sample space where it is uniquely
determined is computed. If this is the entire space the estimator is determined
and the process is over.

If this is not the case let S, denote the set of points where the first estimator
is not uniquely determined. Then a new problem is considered having as its
sample space S, and the family of possible distributions as the original distribu-
tions conditioned on S;. Then another prior is defined over the part of the
parameter space for which these conditional distributions are well-defined and
whose support is disjoint from the support of the first prior. The points in the
sample space which did not have a unique Bayes estimator under the first prior
but do under the second prior are found and the estimates are computed. If any
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points in the sample space still do not have a uniquely defined estimate the
above process is repeated and a third prior is chosen, disjoint from the first two.
We continue in this way until we have a stepwise Bayes estimator defined for
each point in the sample space. It is possible using this argument to prove the
admissibility of the MLE in the usual multinomial problem with no censoring
[see, for example, Brown (1981)]. The argument which we give below is essen-
tially this earlier one with some additional complexities because of the problems
caused by censoring.

One minor difficulty is that the MLE of the A’s need not be defined for all
possible outcomes. For example, consider the model in Figure 2 and suppose that
a sample of size n = 3 was taken and all three observations were the node (3, 1),
i.e., y(3,1) = 3. From our earlier remarks it is clear that the MLE of A(3) =1
and of A(1|3) = 1. In addition, with the exception of A(1]3,1) and A(2|3,1) the
MLEsS of all the other A’s are 0 or defined to be 0. For example, the MLE of A(2)
is 0 and if we adopt the convention that 0/0 = 0, then the MLEs of A(1]2) and
A(2|2) are both 0 as well. Since A(1]3,1) and A(2|3,2) do not appear in the
likelihood function [see (2.5)], the MLE for each of them is undefined. From a
frequentist point of view these parameters cannot be estimated. This would
cause no problem for a Bayesian, however, if he had a prior distribution over
A(1]3,1) and A(2|3,1). He then could treat this as a no data problem, which it
really is, and estimate A(1|3,1) with his prior mean. In what follows we will use
this Bayesian solution when the MLE is undefined.

Returning to the general model we will define a prior distribution over
0,. Let A be a prior distribution over all nodes of length 1. Proceeding
inductively, if (7, j,...,r) is a node of length /> 2 and is not a singleton
let w(i, j,...,r) = w denote the number of nodes of length [+ 1 which it
immediately precedes. Let A ; , be a prior density over the simplex
(AL, Jyeees )y s MwlLy Jyeo oy r)): Nmli, jy...,7) 20 for m=1,...,w
and X%_,A(mli, j,...,r) = 1}. We will assume that all the densities are inde-
pendent and hence the product, denoted by H, is a probability density over 6,.
If, in addition, one defined a prior over 6, and assumed it was independent of H,
then a straightforward Bayesian analysis could, in principle, be carried out. We
will not do that however. The prior H, or more properly factors of H, will be
appealed to only for those outcomes where all the nodes were not observed and
some of the A’s do not appear in the likelihood.

A second and more important difficulty in using the stepwise Bayes technique
is choosing the priors in the proper order so that the resulting estimator is
indeed the MLE; or equivalently the sets of sample points for which the Bayes
estimators are computed at each step must come in the correct order. We will
now introduce some additional notation that will help in the ordering.

Given a sample of size n let ' be the set of nodes which were observed at least
once, i.e., the set of (i, j,..., r, s)’s for which y(i, j,...,r,s) > 0.So I is just a
subcollection of %.

We say that a set of distinct nodes A,,..., A,, forms a chain of length m if
A, precedes A,,_; which precedes A,,_,,..., which precedes A,.
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Let T'* be the subset of T which contains all the nodes in I' which do not
precede any other node belonging to I'. Let A; be a node belonging to T'*.
Consider the subset of I' which consists of all the nodes which precede A,. If this
subset is empty we are done and A, is a chain. If this subset is not empty let A,
be the member of this set which precedes no other member of the set. Now
repeat this process using A, and the remaining members of the set. This yields a
maximal chain Aj, A,,..., A, of nodes of I' dominating A,.

Now let B, € T* with B, # A, and find the corresponding maximal chain
generated by B,, say B,,..., B,. Note A, # B, but after that the A;’s and B,’s
can have nodes in common. Hence, given a set I', we can construct a unique
chain using each member of T'*. Note that every member of I' will belong to at
least one chain. Given a I' which yields m chains let I(1) < I(2) < -+ < I(m)
be the lengths of the m chains in nondecreasing order. So a set I' yields a unique
vector of numbers (I(1),..., [(m)), the lengths of its chains.

The stepwise Bayes argument will proceed by choosing priors which first take
care of all I'’s which yield just one chain. Then priors are chosen which take care
of I'’s yielding two chains and so on. In addition, within each group we will have
to proceed in the proper order. Because our loss is the sum of the individual
squared error losses, any Bayes estimate of a parameter is just its posterior
expectation.

3.2. The stepwise argument for Figure 2. In the first step of the argument
we consider all those samples I' which yield just one chain. Within this class we
first consider all the chains of length 1, then all chains of length 2 and so on.
Within each group the order in which we consider the chains does not matter.

When we observe one chain of length 1 that means all n of our observations
were identical. For example, suppose y(1) = n, i.e., a;, the node labeled (1), was
observed all n times. Consider a prior on #, which puts mass 1 on the point
A(1) = 1 and under this prior the Bayes estimate of A(1) is 1 and for all the other
N\’s is 0 which is the MLE.

Next suppose the sample is such that ¥(3,2,1,1) = n, i.e., the node a4, the
node labeled (3,2,1,1), was observed each time. On 6, consider the prior which
puts mass 1 on the point {A(3) = 1, A(2|3) = 1, A(1|3,2) = 1 and A(1]3,2,1) = 1}.
On 6, consider the prior which puts mass 1 on the point { p(3,2,1,1) = 1}. Under
this prior the Bayes estimate of A(3), A(2|3), A(1]3,2) and A(1|3,2,1) are all 1
and the Bayes estimates of the rest of the A’s are all 0. Again this is just the
MLE. Note that under this prior no nodes, other than (3,2,1,1) have positive
probability. It was for this reason that it was necessary to introduce a prior over
6, even though we are only interested in estimating the A’s. Without this prior
over 6, the stepwise Bayes argument would not yield the admissibility of the
MLE. As the argument proceeds, at each step we will specify a prior over 6,
and 4,.

Note that all the other singleton nodes can be taken care of in a similar way.
Next we consider a node which is not a singleton. Suppose, for example,
¥(3,2,1) = n. In this case we need an estimate of A(1|3,2,1) and A(2|3,2,1) even
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though they do not appear in the likelihood. For this reason our prior over 6, is
the product of two priors. The first puts mass 1 on the point {A(3) =1,
A(2|3) =1 and A(1(3,2) = 1} and the second is A, ,, the factor of H, which
concentrates its mass on the simplex A(1(3,2,1) + A(2]3,2,1) = 1. Over 4, we
take the prior which puts mass 1 on the set {p(3,2,1) = 1}. For this prior the
Bayes estimates of A(3), A(2|3) and A(1|3,2) are each 1, which are the MLEs, and
the Bayes estimates of A(1]3,2,1) and A(2|3,2,1) are their respective prior
expectations. As before no other nodes have positive probability under this prior.

It is easy to check that all other I'’s which yield just one chain of length 1 can
be handled in a similar fashion. Next we will consider I'’s which yield just one
chain of length 2. For example, consider a I' for which

¥(2) >0 and y(2,1) >0,
(3.1) and y(2) + y(2,1) = n.

On 6, we take the prior which puts mass 1 on the point {A(2) =1 and
A(1|2) = 1}. On 6, we take any prior which is concentrated on the set { p(2) > 0,
p(2,1) > 0 and p(2) + p(2,1) = 1} independent of the prior over ,. The Bayes
estimates of A(2) and A(1]|2) are each 1. The only samples which have positive
probability under this prior, other than those which satisfy (3.1), are the two I'’s
with ¥(2) = n and y(2,1) = n, respectively. These two samples have already
been taken care of when we considered chains of length 1.

Another possibility for a sample with one chain of length 2 is when y(3) > 0
and ¥(3,2,1) > 0 with y(3) + ¥(3,2,1) = n. The prior over §, is the product of
two priors. The first puts mass 1 on the point {A(3) = A(2|3) = A(1]3,2) = 1} and
the second is A3 ), the factor of H, which concentrates its mass on the simplex
A(13,2,1) + A(2|3,2,1) = 1. On 6, we take any prior which is concentrated on
the set {p(3) > 0, p(3,2,1) > 0 and p(3) + p(3,2,1) = 1} and independent of
the prior over 6,.

The only I'’s, other than the type being considered, which have positive
probability under this prior, are the two with y(3) = n and ¥(3,2,1) = n which
we have already taken care of. Again the Bayes estimates are clear and are the
MLEs.

It is easy to check that all single chains of length 2 can be handled in the same
way. Then all single chains of length 3 can be taken care of, and then all single
chains of length 4 and so on until all single chains of any length have been
considered.

The next major step is to consider all' T'’s which yield two chains. The order in
which we proceed is determined as follows. Suppose I, yields ({;(1), /;(2)) and T,
yields (I5(1), 14(2)). If 1,(1) < I,(1) or if I,(1) = Iy(1) and [,(2) < I4(2), then T} is
considered first. If 1;(1) = I,(1) and [,(2) = I4(2), then the order in which they are
considered does not matter.

We first consider I'’s which yield two chains, each of length 1. For example,
suppose that y(1) > 0, y(2,1) > 0 and y(1) + ¥(2,1) = n. The prior over 8, is
the product of two priors. The first puts mass 1 on the point {A(1|2) = 1}. The
second prior is concentrated on the set {A(1) > 0, A(2) > 0 and A(1) + A(2) = 1}
and is proportional to (1 — (A1))" — (A(2))")/(MD)A(2)). Over 6, we take the
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prior which puts mass 1 on the point { p(1) = p(1,2) = 1 and p(2) = 0}. For the
restricted problem [i.e., ignoring the samples y(1) = n and y(2,1) = n which we
have already taken care of] the resulting Bayes estimates of A(1) and A(2) are
just the MLEs.

In the previous example the second prior over 6, is the product of two factors

(3.2) [1-(A@)" - (A@)"]

and
(3.3) ' 1L/A(D)A(2).

It is the second factor (3.3) which is the important one. The first factor (3.2) just
ensures that the prior is proper, i.e., ensures that it integrates to 1, for the
restricted problem. It has no influence on the value of the stepwise Bayes
estimator which depends only on factor (3.3). Under the prior defined in the
previous paragraph the only samples that are possible are those n samples with
y(1) =0, ¥2,1) = 0and y(1) + ¥(2,1) = n. Recall that the earlier stages of the
stepwise argument have already taken care of the two samples with y(1) = n
and y(2,1) = n. Hence at this stage for the restricted problem with the remain-
ing (n — 2) possible samples with y(1) > 0, ¥(2,1) > 0 and y(1) + ¥(2,1) = n,
the new likelihood function is the original likelihood divided by (3.2). Hence
when we compute the stepwise Bayes estimator for the restricted problem at this
stage the factor (3.2) cancels and the value of the estimator depends only on
(3.3). So we see that we did not need to find explicitly the factor (3.2). In what
follows we will usually omit giving explicitly the factor in the prior which comes
from normalizing the likelihood function.

Next we consider samples I' where y(1) > 0, (2) > 0 and y(1) + ¥(2) = n.
The prior is the product of four factors. On the set {A(1) >0, A(2) > 0 and
A1) + A(2) = 1} we have the factor 1/(A(1)A(2)). The second factor is h ), the
factor of H, which concentrates its mass on the simplex A(1]2) + A(2|2) = 1.
Over 6, we have the factor which puts mass 1 on the point { p(2) = 1}. The final
factor is the normalizing factor for the likelihood function for this restricted
problem. Under this prior the stepwise Bayes estimate of A(1) is y(1)/n and of
A(2) is ¥(2)/n and of A(1]2) and A(2|2) are their respective prior expectations
under A ). It is easy to check that all samples I' yielding just two chains each of
length 1 can be taken care of in the same way.

Next we consider samples of the type where y(1) > 0, »(2) > 0, »2,1) >0
and y(1) + ¥(2) + y(2,1) = n. The prior over §, X 8, will be the product of four
factors. The first factor is 1/A(1)A(2) and is concentrated on the set {A(1) > 0,
A(2) > 0 and A(1) + A(2) = 1}. The second factor is 1 on the set {A(1|2) = 1}.
The third factor is some probability density function on the set {0 < p(2) < 1}.
The actual choice is not important. The final factor is

(34) ~ (M) @A) p(2, DAR)A1R)] Y,

which is the normalizing factor for the likelihood function, for the restricted
problem at this stage, where the summation is over all samples with y(1) > 0,
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y(2) > 0, ¥(2,1) > 0and y(1) + »2) + ¥(2,1) = n. Under this prior the stepwise
Bayes estimate of A(1) is ¥(1)/n and of A(2) is [¥(2) + ¥(2,1)]/n.

It is easy to check that all samples I' yielding just two chains can be taken
care of in the same way when the ordering given above is used.

Please note that since the prior used in the previous example contains the
factor (3.4) the prior over 8, X 8, cannot be factored into two independent parts,
one on #, and one on 6,. However, the factor (3.4) does not enter in the
computation of the stepwise Bayes estimate and the remaining factors are in fact
“independent.” This is why the stepwise Bayes estimates depend only on the
factors involving the A’s alone.

The next step is to consider all samples I' which have three chains. After
those are completed the next step is to consider all samples I' which yield four
chains and so on until all possible samples have been taken care of. Within each
step the order in which the samples are considered is determined as follows. Let
I, and T, be two samples each yielding m chains. Let ({;(1),..., [;(m)) be the
vector lengths of the sample T, for i = 1 and 2. We will consider I, before I}, if
for some integer 2 <j < m,

1(i) =1yi) fori=1,...,j—1

(3.5) and () < I(j).

3.3. The stepwise argument for the general case. Rather than continue the
proof in the special case we will return to the general problem. As we have noted
for a given sample I' not all members of the vector (Ap;, Afg,..., A,q) need
appear in the likelihood function given in (3.5). We need a convenient notation to
denote which A’s appear and which do not appear in the likelihood function
for T.

For a given T let S(I') denote all the nodes of length 1 which belong to I" and
S’(T) all the nodes of length 1 which do not belong to I'. Proceeding inductively
given a node of the form (i, J,..., r), let

’ (i:j,--ur,s)l(i,j,...,r,s)eETandit
S (D), jowry = ,
does not precede any member of T’
(3.6)
S(r)(i,j ,,,,, ,,={(i,j,...,r,s):(i,j,...,r,s)GE S,(F) }'

(@ Jreens )

Note that(z Jrewes 1, 8) €S (D) ;.. - if and only if ¥(i, j,..., r, s) = 0. Hence
the union of the S’(I‘ )’s 1dent1ﬁes all of the A’s which do not appear in the
likelihood function when the sample is T’

We are now ready to prove the admissibility of the MLE discussed earlier.

THEOREM 1. Assume a random sample of size n is taken from a population
with k possible values, a,, a,,...,a,. Assume that what is actually observed on
each trial is the result of a noninformative censoring mechanism which is
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described by a collection of sets U satisfying conditions (i) and (ii) of (2.1). Let
the collection % be used to parameterize the underlying probability structure and
censoring mechanism, resulting in the parameter space 6 = 6, X 6,

Consider the problem of estimating the vector \ with the sum of the individual
squared error losses as the loss function.

Let H be a probability density over 8, which is a product of individual
densities over the factor spaces making up the product space 0,.

Given a sample T we define the estimator 8y(T') = (8p;3,...,8;,7) of N =
(Apgs -+ -5 Apy) as follows:

For the node (i) of length 1 the estimate of A(i) is ¥(i)/n.
Given the node (i, J,..., r) the estimate of A(Sgl|i, J,...,T)
when s, € S(T); ;.. .

¥(is Jyos 7, Sp)
Zsy(i’ja“"r,s)

and when s, € S'(T'); ;.. , is the expectation of A(slt,
Bj,..., r) under the prior density h; ; . .. 8y is called the

H-augmented MLE of N\ and is admissible.

ProOF. We first prove the result in the special case where condition (iii) of
(2.1) holds as well. Once this is done the more general case will follow easily. The
argument uses the stepwise Bayes technique and proceeds just as we described in
the special case. We first consider, in the proper order, all samples I'* which yield
just one chain and then those that yield two chains and so on. Suppose that we
are at the stage in the argument where we are considering a sample I' which
yields m chains with lengths (I(1),..., {((m)).

The prior over § = 6, X 8, will consist of three types of factors: ones involv-
ing just the A’s, others involving just the p’s and a final factor involving both A’s
and p’s which is the normalizing factor for the likelihood function for the
restricted problem. This last factor need not be found explicitly since it plays no
role in the calculation of the stepwise Bayes estimate.

The factors over 6, which must be used at this stage are found as follows. For
any node (i) of length 1 which belongs to S'(T') the point {A(i) = 0} is assigned
probability 1. If S(T') contains just one element, say (i,) we assign mass 1 to the
point {A(i,) = 1}. If S(T') contains v members, say nodes (), ..., (i,), the prior
is concentrated on the set {(A(Z,),...,A(i,)): A(i,) >0 for a=1,...,v and

® _1A(i,) = 1}; over this set the factor is

1/a[i]lx(ia).

Proceeding inductively we assume that we have taken care of all the A’s which
assign probability to all nodes of the form (i, j,..., r). For a given (i, j,..., r)
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we now define a factor over the probability distribution A(:|Z, j,..., r). There
are three different possibilities. The first is that S(T'); ; ., is empty. In this
case none of the A(:|i, J,..., r)’s appear in the likelihood function for I' and we
take as the factor for the A(-[i, j,..., r)’s the prior A ;  , belonging to H.
The second possibility is that S(T'), ; ., contains just one point, say
@, J,...,r,8,). Here we take the factor which puts mass 1 on the point
{A(soli, J, ..., r) = 1}. The final possibility is that S(I'); ;... , contains v >1
members, say (i, j,..., 7, 81),...,(i, J,..., I, S,). In this case the factor is con-
centrated on the set {(A(8,li, Jy -, F)y oy N8ulis Jy-ees ) A(Salis Jy- vy 1) > 0
for a =1,...,v and X! _ A(s,li, J,..., r) = 1}; over this set the factor is

1/ TTA(s.liy 7yevvy 7).
a=1

It remains now to specify a factor over 6,, the parameter space for the
censoring probabilities. We begin by setting to 0 any censoring probability
associated with any node that was not observed in T. For the nodes that were
observed, i.e., those belonging to T, all the associated censoring probabilities are
unrestricted beyond the obvious restrictions that certain sets of the censoring
probabilities must sum to 1. Over this set we choose any continuous distribution
which assigns positive mass to every open subset. The actual choice of this factor
is not important since it will not affect the estimates of the various A’s. However,
the first step of setting some of the censoring probabilities at 0 is important,
because without this, the stepwise Bayes argument would not work.

It is now easy to check that for this I' and for the prior over 6, X 6, the
resulting Bayes estimate is 8, and that the admissibility of 8 follows from the
stepwise Bayes technique. This completes the proof in the special case when
condition (iii) of (2.1) holds as well. O

We will now show how the case when {a, ..., a,} belongs to % follows from
the special case just considered.

First of all, if we remove the set {a,,..., @} from %, then we can define 6,
and 6, as described in the preceding argument. Next we define the singleton node
a, which denotes the outcome where we only learn that X was observed but
nothing about its actual value. This node will neither precede nor be preceded by
any other node. We will label it (1). Next we will introduce a node, labeled (0),
which will precede all the other nodes except a, or (1). Furthermore, we will let
A(0) be the probability we observe node (0) and A(¢) = 1 — A(0) be the probabil-
ity we observe a, or (1). For example, in the model given in Figure 2 if we allow
for the possibility that {a,,..., ag} is an outcome, then A(0)A(2|0)A(1]2, 0) is the
probability that the model will generate the value a,. We let 8% denote the
parameter space for this new scheme with the two added nodes, i.e., it is just 6,
augmented by A(0). In addition, under this new scheme the assumptions of the
earlier special case are satisfied since {a,, a,,..., a,} is not a possible observa-
tion.
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One possible objection to the above scheme is that the nodes (0) and (1) are
really the same. This can be overcome if we take 6, to be the parameter space for
the censoring distributions. That is, we never allow the node (0) to be observed.
Therefore, the proof of the theorem for the case when {a,..., a,} € % follows
from the special case if we introduce the above two special nodes and take as our
parameter space 6 X 6,. Operationally, this means when computing the maxi-
mum likelihood estimator of a parameter of interest, other than A(0), we can just
ignore the observations that are completely missing.

As far as we know the stepwise Bayes argument was first used in Johnson
(1971) and named in Hsuan (1979). The argument given above is similar to one
given in Alam (1979) and Brown (1981) for estimating multinomial probabilities
without any censoring.

Rather than just estimating the vector N\ we might wish to estimate some
function of N. One case of particular interest is to estimate for a given node
(i, j,..., r,s) the probability assigned to this node under \. This is given in (2.2)
and we will denote it by P\((i, j,..., 7, 8)).

If in the theorem we let

8(T) i) denote the estimate of A(7)

and

84(T)¢sti, j,..., r) denote the estimate of A(sli, j,...,7),
then a natural estimate of Py((Z, j,..., 1, s)) is
(3.7) 8u(T)ai, jvvosro9) = 8u(T) @8 (D) iy =+ 8u(TD)esti ..oy

Assuming squared error loss, it is easy to check, using the same argument that
proved Theorem 1, that 8,(T); ; . ., is an admissible estimator. This follows
from the independence in the prior distributions and the convenient form of the
likelihood function in (2.5). Hence we have proved the following corollary.

CoroLLARY. (i) Let (i, Jj,...,r,s) be a given node. For estimating
Py((i, j,...,1,8)), as defined in (2.2), with squared error loss the estimator
8u(T)i, ... r s defined in (3.7) is admissible.

(il) More generally, suppose we wish to estimate simultaneously
P, j,..., 1, 8)) for v different nodes when the loss function is the sum of the
individual squared error losses. Then the estimator that is the vector of the
corresponding estimators from (i) is admissible.

On any particular trial what the statistician observes depends on two things.
The first is the underlying probability distribution described by A and the
second is the noninformative censoring mechanism described by p. Until now we
have assumed that the censoring mechanism is the same for each trial. However,
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this is not necessary. One may let the censoring mechanism vary from trial to
trial as long as for each trial it is assumed to be noninformative. The same
argument proves the admissibility of the stepwise Bayes estimator considered
above for this more general censoring scheme.

3.4. A Kaplan—-Meier type example. The previous argument proves the
admissibility of the MLE for various censoring mechanisms. It also follows, using
the standard technique, that a unique Bayes estimator for this problem is
admissible. We now wish to consider other estimators which incorporate prior
information but are not actually Bayes estimators. A slight modification of the
previous stepwise Bayes argument proves their admissibility as well.

What follows is generally true for any censoring mechanism satisfying (2.1).
However, we will consider only one special case which is a generalization of
Figure 1. As we will see in the next section this special case is closely related to
the Kaplan—Meier estimator.

Let @y < ay,< -++ <a, be given and consider the censoring mechanism
described in Figure 3. ‘

Rather than use the general notation developed earlier, we have named the
nodes in an obvious way. For example, the node a; corresponds to a censored
observation which is greater than or equal to a,,,. (Note a;_; = a,.) Let A,
denote the probability of a, and 1 — A, the probability of a;'. For2 <i <k —1
let A; and 1 — A; be the conditional probabilities of «; and «;" given the node
a; .

Let 1 < u < k — 1 be fixed and consider the problem of estimating Py(a,),
the probability that an observation from the underlying distribution is strictly
greater than a,. Given a T of size n it follows that the value of the estimator
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given in the corollary for estimating Py(a,) is

(3.8) TT(5(a)/(5(a) + 5(a))]

We will now modify this estimator by incorporating some prior information,
by choosing for each i a weight m; > 0. Let m = (m,..., m,) denote this vector
of weights, at least one of which is assumed to be nonzero. We can think of m; as
representing our prior beliefs about how likely an observation at «; is. The larger
we choose m; the more probable we believe a; to be. Another way to interpret
the m;’s is to assume that the following imaginary experiment has been carried
out. We assume that Y% m, independent observations were taken from the
distribution parameterized by the A’s and that m; of these turn out to be «;.
(Note that the m,’s need not be integers.) The results of this imaginary
experiment should then be combined with the outcomes we observed when the n
trials of the real experiment were observed. This combined “sample” suggests
that

(39 TT[5(a)/ () + 3,(e))

is an admissible estimator of Py(a; ), where

Iml ;) = y(a;) + m;

and

k
Iole) =3(af) + X m,

J=i+1

The proof of the admissibility of the estimator in (3.9) is very similar to that
of the estimator in (3.8) with one exception. That is, as the stepwise Bayes
argument works through the possible samples one always uses the combined
“sample,” i.e., the actual outcomes combined with the imaginary ones. This is a
straightforward modification which causes no difficulties.

For example, consider the censoring mechanism described in Figure 1 where
the nodes, however, are labeled as in Figure 3. Suppose that m, > 0 is the only
m, for i = 1,...,5 which is greater than 0. In addition, suppose we have a sample
of size 4 which resulted in y(a;) = y(a,) = ¥(a;") = y(a;) = 1. Now combining
this with the imaginary sample of m, observations at a; we can proceed just as
before.

4. Admissibility of the Kaplan—-Meier estimator. We consider the follow-
ing model. Let X, X,,..., X,, be the true survival times of n individuals. We
assume that X, X,,..., X,, are iid with some common distribution function F
on the interval (0, o). These observations can be censored on the right however
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by n follow-up times W,, ..., W,. The W,’s are assumed to be mutually indepen-
dent and independent of the X;’s but they need not be identically distributed. In
addition, we assume a value T* > 0 such that the experiment must stop when
time T* is reached. Hence, each W, has a distribution concentrated on 0, T*].
When X; < W, we observe the death time for the ith individual. When X, > W,
this individual is censored or lost to us and we only learn that the individual
survived past time W,.

F is assumed to be unknown and belong to the family of all cumulative
distribution functions on (0, «0). For a given F we wish to estimate the survival
function

(4.1) Sp(u) =1— F(u) = Po(X > u)

with loss function

(4.2) L(S,Sp) = [0°°[sA(u) — Sp(w)]” dw(w),

where w is some weight function on (0, o).

For this problem the nonparametric product limit estimator was introduced in
Kaplan and Meier (1958). We will show that this estimator is admissible. This,
incidentally, disproves a suggestion made by Cornfield and Detre (1977) that the
Kaplan—-Meier estimator may indeed be inadmissible under squared error loss.
However, since the Kaplan-Meier estimator of S(«) is undefined for large values
of u and when all the observations are censored we will have to first define it for
all possible situations.

First, we choose r numbers a, < a, < --- < a, where a, > T*. For a distri-
bution function F which concentrates its mass on (0, 7*] and the set
{a,, ay,..., a,} we define the parameters v,(F) =y, fori=1,...,r — 1. If X is
distributed according to F, then we let

Y, =Y(F) =Pp(X =a)X = a,).

Since F is not known, for each i let G; be a prior distribution for y, and
¥, = [37dG(v). Hence, the statistician should choose the a,’s and G,’s to reflect
his or her prior beliefs about the unknown F(u) for u > T*.

Now let I' denote a typical set of outcomes for the experiment. For each
individual i, T' will contain either a death time or a censoring time. Assume
that T' contains at least one death time and at least one censoring time. Let
a; < ay < --+ < a, be the k distinct death times that appear in T. Let y(«;) be
the number of deaths at time a;. Let 7, <7, < --- <1, denote the distinct
censoring times that appear in T. Let y(a;") be the number of censored observa-
tions with censoring times in the interval [a;, @;,,) for i=1,...,k — 1 and
¥(a;) be the number of censored observations falling in the interval [a,, T*].
Note that £*_, y(a;) + £*_,5(a;") = n if @; < 7,. Finally, as before, let (a;") =

i=1 i=1
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Yk _ii1x(a)) + Z5_ ¥(af). For such a T the estimate of S(u) is given by
8,(I')=1 for0<u<a,

Lo ) o -
_i=1_[1y(a,~)+5'(ai+) ora;<u<a;,; andforj=1,...,k—-1,
k NP
()
= ————~ f < T*
(4.3) i=1 y(ai) + j'/(a;“) ora,=u<I1v,
¥(a;) J

k
=11
i=1

—_— 1-9) f .<u<a-:
)+ 3(ar) LI =T fora;<u<a,,

andfor j=1,...,r—1,

=0 foruzxa,.

There remain two special cases for which §,(:) must be defined. The first is
when I contains no censored observations. For this I, §, is defined as in (4.3) for
0 < u < a,, and is defined to be 0 for u > a,. The second is when I contains no
death times, i.e., all the observations were censored. For this T, §, is defined to
be 1 for 0 < u < a, and is defined as in (4.3) for u > a,. The estimator is
subscripted by a to indicate that it depends on the prior information incorpo-
rated in the a;’s and will be called the (a)-augmented Kaplan—Meier estimator.

THEOREM 2. For estimating the survival function, given in (4.1), with the
loss function given in (4.2) when F € %, the family of all distributions on (0,0),
the (a)-augmented Kaplan—Meier estimator given in (3.3), is admissible.

The proof will be omitted since it follows easily from the results of the
previous section and the argument given in Meeden, Ghosh and Vardeman
(1985).

For some, an unappealing property of the Kaplan—Meier estimator is that it
estimates a constant survival probability between successive death times. But it
is exactly this property that allows the previous stepwise Bayes argument to
prove its admissibility. In Susarla and Van Ryzin (1976) a family of nonparamet-
ric Bayesian estimators of the survival function was introduced. They were
derived from a Dirichlet process prior and the estimate of the survival function
was not constant between death times. In addition, the Kaplan—-Meier estimator
is a limit of such estimators.

We believe that these estimators of Susarla and Van Ryzin are admissible, but
cannot prove that this is so. However, the estimator given in (3.9) is essentially a
“discrete” version of the type considered by Susarla and Van Ryzin. In addition,
the admissibility of the resulting estimator follows using the same argument that
proved Theorem 2.

We will end by briefly indicating how the estimator in (3.9) is adapted to the
problem of estimating a survival function. To do this, the statistician’s prior
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beliefs about the distribution function F both above and below the value T*
must be utilized. As with the Kaplan—Meier estimator, values @, < a, < -+ <
a,, with a, > T*, must be chosen along with the prior distributions G; for the
parameters y; which result in the values ¥,,...,7,_,. To represent his prior
beliefs below T* the statistician must choose values 0 < b, < b, < .-+ < b, <
T* along with weights m; > 0 for i = 1,..., s. As in Section 3.4, the m,’s can be
interpreted as the outcomes of an imaginary sample.

Consider now a sample I, for which at least one death time and at least one
censoring time was observed for the n individuals. Let of < @} < -+ < a}, be
the &’ distinct death times which appear in I'. Let y(a/) be the number of
deaths at time a/. Let £ = £’ 4+ s and assume for notational convenience that
the set of a!’s and b,’s are distinct. Let a; < ay < -+ < a,;, denote the collec-
tion of values of the a/’s and b;’s arranged in increasing order. We define y,(«;)
for i =1,..., k as follows. If a; is &}, then y,(«;) = y(a}) and if «; is b;, then
IYn(@;) =m, Let 1 <7 < --- <7, denote the distinct censoring times that
appear in I'. Let y,(a;") be the number of censored observations with censoring
times in the interval [a;, a;, ;) for i = 1,..., 2 — 1 and y,(«;) be the number of
censored observations falling in the interval [a,, T*]. Just as before we let
Fu(al) =Tk, () + Z5_ 3,(a). Now if in (4.3) we replace y(a;) and
¥(a;") with y,(a;) and y,(a;") we have defined another estimator which we will
denote by §,, ,. We will call this the (m, a)-augmented Kaplan—Meier estimator
to indicate its dependence on the prior information incorporated through the use
of the m;’s and the a;’s. It is easy to check that this is a discretized version of
the estimator considered by Susarla and Van Ryzin and its admissibility follows
from the previous section just as the admissibility of the (a)-augmented
Kaplan-Meier estimator did.

When all the observations are uncensored the Kaplan-Meier estimator re-
duces to the sample distribution function. For this situation Cohen and Kuo
(1985) have demonstrated admissibility under a more general loss function.
Brown (1988) gives some additional admissibility and inadmissibility results
when estimating a distribution function.

One advantage of giving the more general proof, rather than just concentrat-
ing on the Kaplan-Meier estimator, is that it highlights the special structure of
the Kaplan—-Meier estimator which allows admissibility to be proved. In particu-
lar, we have assumed that the censoring mechanism is independent of the
underlying probability structure. It was noted by a referee that the Kaplan-Meier
estimator can sometimes be used even when the censoring mechanism and the
underlying probability structure are dependent. See, for example, Jacobsen
(1986). It would be of interest to settle the admissibility question for these
situations as well.
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