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LOCALLY COHERENT RATES OF EXCHANGE

By THoMAS E. ARMSTRONG! AND WILLIAM D. SUDDERTH 2

University of Maryland-Baltimore County and University of Minnesota

A theory of coherence is formulated for rates of exchange between
events. The theory can be viewed as a generalization of de Finetti’s theory of
coherence as well as the theory of conditional coherence. Coherent rates of
exchange on a fixed Boolean algebra are in one-to-one correspondence with
finitely additive conditional probability measures on the algebra. Results of
Rényi and Krauss on conditional probability spaces are used to show that
coherent rates of exchange are generated by ordered families of finitely
additive measures, possibly infinite measures. This provides an interpretation
of improper prior distributions in terms of coherence. An extension theorem is
proved and gives a generalization of extension theorems for finitely additive
probability measures.

1. Heuristics. Suppose the sample space @ for some chance experiment is
the set of points on the real line. A statistician believes that sets having the same
finite, positive Lebesgue measure are equally likely; so Lebesgue measure p,
might be used as an improper prior. However, the statistician also feels that
finite sets of the same cardinality are equally likely. Now Lebesgue measure gives
all such sets measure zero and so counting measure u, seems more appropriate
for finite sets. Finally the statistician feels that sets having the same positive
density are equally likely, where the density of a set A is the limit

1 (=
pa(4) = lim o [ 1,(e)ni(dt)

when the limit exists. Now if u,(A) > 0, both p,(A) and g,(A) are infinite. In
the past statisticians wishing to express vague prior information have often
chosen an improper distribution such as p,, which assesses all “large” sets as
having infinite mass. Some have used finitely additive proper priors like p, which
give all “small” sets mass zero.

Is there a way of expressing these opinions simultaneously and of assessing
their coherence? To answer these questions, we propose a theory of exchange
rates. The idea is that, if two sets are believed to be equally likely, the
statistician should be willing to trade a prospective payoff on the one for an
equal payoff on the other. The usual theory of coherence involves comparing a
payoff on each event to a payoff on the whole sample space (a sure thing). This
theory is inadequate for comparing two events both of which are infinitesimally
small in relation to the whole space. The theory of exchange rates makes such
comparisons quite natural.
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The appropriate notion of coherence for exchanges involving a finite number
of “small” sets cannot be the usual one of avoiding a sure loss. The union of all
the sets involved in any such exchange can again be “small.” We will call a rate
locally coherent if no exchange involving a finite number of sets results in a loss
on all of their union. (Formal definitions are in the next section.)

Every measure y determines a natural exchange rate between sets of finite
positive measure; u(A) one-dollar payoffs on A are worth u(B) one-dollar
payoffs on B. Thus the theory of coherence for rates of exchange will also apply
to measures including improper ones like Lebesgue measure. (This idea that
p(A)/u(B) is the relative value of a ticket on A to one on B is mentioned by
Hartigan [9], page 15.)

2. Definitions and summary of results. Let Q be the sample space for a
chance experiment and let D be a collection of pairs (A, B) of subsets of Q such
that the second element B is not empty. A rate of exchange r on D is a mapping
from D to [0, co]. Associated to each pair (A, B) € D is the simple exchange

S, p(w) =r(A, B)B(w) — A(w), if we B,
- —A(w), if we B.

(In this expression and in the sequel, events and their indicator functions are
identified.) We imagine that a bookie offers such simple exchanges to a gambler.
If B occurs, the bookie pays $r(A, B) to the gambler, and if A occurs,
the gambler pays the bookie $1. If neither A nor B occurs, no money changes
hands. [Some readers may wish to interpret r(A, B) as the bookie’s odds on A
against B.]

An exchange e is any well-defined linear combination of simple exchanges.
[The usual conventions are made about arithmetic operations with co and — oo.
In particular, o0 — c0 and 0 - oo are not defined. However, we also adopt the
usual convention that oo - B= o on B and o - B = 0 on B¢ By the way, we
could avoid the use of infinite numbers by interpreting a rate r(A, B) = o as
meaning that the bookie will accept any exchange rB — A where r > 0.] Let A
be a real-valued function defined on D which is zero except for a finite number of
pairs (A, B) and let

(2.1) e(A\) = X XA, B)S, 3,
(A, B)

assuming the sum is well-defined. Every exchange e is of this form for some A.
For each A, let the support of A be the set supp(A) = U{A U B: A\(A, B) # 0}.
Notice that, for an exchange e(A), no money changes hands if supp(A) does not
occur. This suggests the following notion of coherence for the bookie.

DEFINITION. The rate of exchange r is locally coherent if there is no
exchange e(\) which is strictly positive on supp(A).
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Notice that if e(A) > 0 on supp(A), then e(A) has a positive infimum on
supp(A). This is because exchanges have only finitely many possible values.

We use the term “local coherence” rather than “coherence” because the
bookie is required to avoid losses on certain proper subsets of the outcome space.
The usual theory of de Finetti [5, 6] only requires the bookie to avoid sure losses
on the whole space. In an interesting paper Smith [20] develops a notion of
consistency which is related to local coherence.

There is a simple relationship between the de Finetti theory and that
presented here. Let C be the collection of sets A such that (A, Q) € D and set
p(A) = r(A, Q). Then

SA,SZ = P(A) —-A

and we can regard $p(A) as the bookie’s price for a ticket worth $1 if A occurs.
The support of any exchange involving @ will, of course, be . Thus if r is a
coherent rate of exchange, then p will be coherent in the sense of de Finetti (i.e.,
no linear combination of exchanges S, o is everywhere positive). However, the
converse is easy to disprove. For example, r could be incoherent when C is empty
or r could be incoherent because of bad behavior on p-null sets.

A number of authors, including de Finetti, Holzer [11] and Regazzini [16],
have studied notions of conditional coherence which generalize de Finetti’s
theory of coherence. We believe the theory of local coherence extends the notion
of conditional coherence. The precise relationship between the two theories will
be examined in Section 7.

A stronger requirement than local coherence is that a bookie avoid exchanges
which are positive somewhere and nonnegative everywhere.

DEFINITION. The rate of exchange r is strictly coherent if there is no
exchange e with e > 0 on all of Q with strict inequality holding somewhere.

The notion of strict coherence was studied by Kemeny [12] in the context of
betting odds rather than rates of exchange.

The next section establishes some of the basic properties of locally coherent
exchange rates. It is shown in Section 4 that a locally coherent rate defined on an
arbitrary domain can always be extended to the algebra of all subsets. In Section
5 it is shown that locally coherent rates of exchange on an algebra of sets are in
one-to-one correspondence with conditional probability measures. This corre-
spondence together with Rényi’s characterization of conditional probabilities in
terms of linearly ordered families of measures leads to an analogous characteriza-
tion of locally coherent rates in Section 6. This characterization is useful for the
interpretation of improper priors and also results in a simple characterization of
strictly coherent rates of exchange.'

.No attempt is made here to develop a theory of local coherence for statistical
models comparable to the coherence theories of Heath, Lane and Sudderth [10,
14, 15]. The interesting papers of Brunk [2] and Regazzini [17] are related to this
problem.
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3. Elementary properties of locally coherent rates.

THEOREM 3.1. Let r be a locally coherent rate of exchange. Then the
following are true whenever the quantities are well-defined:

(i) r(4A, A) =1.
(ii) r(A, UA,,By=r(A,B)+ r(A,,B)if A, N A, = @.
(iii) r(A,, B) < r(A,,B)if A, C A,.
(iv) r(A, B)r(B,C) = r(A, C).
(v) r(A,B)=r(B, A)~.
(vi) r(A, B) = r(A,C)r(B,C)™ L.
(vii) r(A, B,) > r(A, B,) if B, C B,.

[The assertions above are vacuous if any of the quantities occurring in them
are undefined. For instance, if (A;, B) and (A,, B) are in the domain of r and
(A, U A,, B) is not in the domain of r, then (ii) is vacuous. Also, if r(A,C) =
r(B,C) = 0, then r(B,C)! = oo and the right-hand side of (vi) is undefined so
that (vi) is vacuous.]

Proor. (i) If r(A, A) > 1, then r(A,A)A—A>0o0n A.If r(A,A) <1,
then —[r(A, A)A — A]>0on A.

(ii) Suppose the left-hand side is larger than the right so that r(A,, B) and
r(A,, B) are less than oo. Then there are £ > 0 and 8 > 0 such that

r(A;UA,,B) — (1 +¢)[r(A, B) + r(A,,B)] >8>0.
Consider the exchange
e=[r(A, UA,;, B)B - (4, UA4,)] - (1+¢)[r(4, B)B-A,]
—(1 +¢)[r(4,, B)B - A,]
> 8B+ ¢e(A,UA,).

Then e > 0 on BU A, U A,, a contradiction.

A contradiction is reached by a similar argument if the right-hand side is
assumed larger than the left.

(iii) If (iii) does not hold, then r(A,, B) < r(A,, B) so that r(A,, B) < .
Also, for some ¢ > 0,

r(A,, B) < (1 + ¢)r(A,, B) <r(A,, B).
Consequently,
e=[r(A,B)B—A] - (1+¢)[r(A,,B) B—A,] >0

on supp(e) = B U A,, a contradiction.
(iv) Suppose the left-hand side is larger than the right. So r(A,C) < .
Choose ¢ in (0,1) so that

8=(01-¢)r(A,B)r(B,C) - (1+¢)r(A,C)>0.
Because r(A, B)r(B,C) can be assumed to be well-defined, the following
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exchange is too:
e=[r(A,B)B- A] + (1 -¢)r(A, B)[r(B,C)C — B]
-1 +e¢)[r,(A,C)C - A]
=8C + er(A, B)B + €A.

Then e > 0 on A U B U C, a contradiction. [Notice r(A, B) > 0 if the left side
of (iv) is larger than the right.] '

Next suppose the right-hand side of (iv) is larger than the left. So r(A, B) <
00, r(B,C) < o0 and r(A,C) > 0. There is an ¢ in (0,1) and § > 0 so that

(1 - &)r(A,C) — (1 + ¢)r(A, B)r(B,C) > § > 0.

[If r(A, B) = 0, replace it by a positive number so that the inequality still
holds.] Consider the exchange

e= —[r(A, B)B—A] — (1 +¢)r(A, B)[r(B,C)C - B]
+(1+¢€)[r(A,C)C - A]
>8C + er(A, B)B + €A.

Then e > 0 on A U B U C, a contradiction. [In the case where r(A, B) = 0,
replace its second occurrence in the definition of e by the positive number used
to replace it in the definition of 6.]

) If 0 < r(A, B) < oo, the desired equality follows from (i) and (iv).

If r(A, B) = 0 and r(B, A) < oo, then

1=r(A,A)=r(A,B)r(B,A) =0,

a contradiction.

Similarly, if r(A, B) = c, we must have r(B, A) = 0 to avoid a contradic-
tion.

(vi) By (v), r(B,C)~!' = r(C, B). Now use (iv).

(vii) Use (iii) and (v). O

4. An extension theorem. Let r be a rate of exchange defined on a domain
D consisting of pairs (A, B) in B X B? where B is an algebra of subsets of £ and

B’ = B\ {¢}.

THEOREM 4.1. If r is locally coherent, then r has a locally coherent exten-
sion to all of B X B°.

The proof, which was suggested to us by an anonymous referee, is in two
steps. The first step is to extend r to one additional pair (A,, B,). The second
step uses Zorn’s lemma to complete the proof.

- This technique has been used previously by de Finetti [6] to extend coherent
probabilities. It was also used by several authors including Dubins [7], Regazzini
[16] and Holzer [11] to obtain extensions of conditional probabilities and previ-
sions.
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The first step of the argument will be given in a lemma which is similar to and
generalizes de Finetti’s techniques which are explained, for example, in [6], pages
77-78. Some additional notation is needed for the statement of the lemma.

Let (A,, B,) € B X B\ D. For each exchange e(\) as in (2.1) and every
p € [0, o], define a new exchange

e(X,p) = pBy — A+ e(A).

The exchange e(A, p) will be well-defined if e(p) is well-defined and either
p<o or p=oo and e(A) > —oc on B, All exchanges written below are
assumed to be well-defined.

Define the upper exchange rate for (A,, B,) as

r* = r*(A,, B,) = inf{p: e(X, p) > 0on Ay U B, U supp(A) for some e())}
and define the lower exchange rate as
r« = r«(A,, By) = sup{p: e(A,p) <0on A, U B, U supp(A) for some e(])}.

Notice that the set of p’s occurring in the definition of r* is an interval
containing + oo because e(A, p) > 0 on the set D= A,U B, U supp(A) and
o > p implies e(A,6) > 0 on D. Similarly, the set of p’s occurring in the
definition of r, is an interval containing 0.

LEMMA 4.1. An extension of r to D U {A,, B,} is locally coherent if and
only if
(4.1) re <r(A,, B,) <r*.

Furthermore, r, < r* so that a locally coherent extension is possible.

ProOOF. It is clear from the definition of local coherence that any locally
coherent extension of r to (A,, B,) must satisfy (4.1), and it is trivial to verify
that any value of r(A,, B,) satisfying (4.1) gives a locally coherent extension.

It only remains to be shown that r, < r*. Suppose to the contrary that
ry > r*. Let p be a number in the open interval (r*, r,). By definition of r* and
r, there exist exchanges e(A;) and e(A,) such that

e(Ay,p) >0 onsupp (A,),
e(Ay,p) <0 onsupp (A,).
Hence,
e(A) —e(Xy) N e(Ai, p) —e(Ay,p)

- is an exchange of the form e(A) which is positive on supp(A;) U supp(A,), a set
which contains supp(A). This contradicts the local coherence of r on D. O

The second step in the proof of the theorem uses some form of the axiom of
choice. To apply Zorn’s lemma by analogy with Holzer’s argument for Theorem
3.4 in [11], consider the collection of pairs (s, E) where D ¢ E ¢ B X B® and s is
a locally coherent rate on E whose restriction to D is r. Partially order the
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collection by defining
(s, Ey) < (52,E,)
if E, C E, and s, restricted to E; is s,. It is easy to see that every chain has an
upper bound. Hence, Zorn’s lemma applies to give a maximal element (s, E). By
the lemma, E must be all of B X B°,
A proof could also be based on the finite intersection property as in Lemma 8
of Dubins [7]. :

CoroLLARY 4.1. If A, B, belong to B, then for each p in the interval
[7 x, r*], there is a fully defined locally coherent extension of r with r(A,, B,) = p.

5. Conditional probability and rates of exchange. Let B be an algebra of
subsets of © and let B be the collection of nonempty sets in B.

DEFINITION 5.1. A conditional probability P orn B is a mapping P = P(-| -)
from B X B to the real numbers satisfying:

(a) P(-|B) is a finitely additive probablhty measure on B for every B € B°,
with P(B|B) = 1.
(b) P(A N B|C)=P(A|C)P(BIANC)for A,BinB, C, An C in B°

This definition is from Krauss [13] and is essentially that of Rényi [18] except
that countable additivity of the conditional measures is not required here.

A rate of exchange r with domain B X B? is said to be a rate of exchange
on B.

The result of this section is that locally coherent rates of exchange and
conditional probabilities on an algebra can be viewed as different aspects of the
same objects. Together with the equivalence property of Holzer and Regazzini
([11], Theorem 5.3; see also [186]), it also shows the equivalence of these notions
with coherent conditional probabilities on an algebra.

THEOREM 5.1. (i) If r is a locally coherent rate of exchange on B and P is
defined by
P(AB)=r(ANnB,B), ifANB+ @,
=0, ifANB=g,

for A € B, B € B, then P is a conditional probability on B.
(ii) If P is a conditional probability on B and r is defined by

_P(AAUB)
r(A, B) = PBAUB)’ if P(B|A U B) > 0,
= o0, if P(BJA U B) =0,

for A € B, B € B, then ris a locally coherent rate of exchange on B.
(iii) The mappings r - P and P — r defined in (i) and (ii) are inverses of
each other and therefore define a one-to-one correspondence.
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Proor. (i) Use (i), (ii) and (iv) of Theorem 3.1.
(ii) Let e = e(A) be an exchange with C = supp(A). Write

e= Z AS;,
i=1

where A;=A(A;,B)+#0, S;=r(A,B)B,—A;,, A,€B, B,€B° for i=
1,...,n,and C = U™ (A, U B)).
In order to reach a contradiction, assume

infe > 0.
c
An immediate consequence is that, if r(A;, B;) = oo, then A; > 0.
Let E(-|C) be the operator corresponding to integration with respect to the
measure P(-|C), where the finitely additive integral is defined, for example, as in

Dunford and Schwartz [8], Section 3.2.2. To reach a contradiction, it suffices to
show

(5.1) E(AS|C) <0
fori =1,..., n, for then E(e|C) < 0. To prove (5.1), we will consider three cases
and, to simplify notation, we will omit the subscript i.

Case l. 0 < r(A, B) < . In this case,

E(AS|C) = X[r(A, B)P(B|C) — P(A|C)] =0

because

P(AJAUB) P(A|C)
~ P(BAUB) P(BIC)

[The case where P(A U B|C) = 0 is trivial.] To verify the last equality, use
Definition 5.1(b) (conditional probability) to calculate

P(A|C) = P((A U B) N A|C)
(5.2) = P(A U B|C)P(A|(AUB)NC)
= P(A U B|C)P(AJA U B)

r(A, B) if P(A U B|C) > 0.

and similarly
P(B|C) = P(A U B|C)P(B|A U B).

CasE 2. r(A, B) = 0. By the definition of r in (ii), P(A]A U B) = 0, and
then by the calculation in (5.2), P(A|C) = 0. Hence, E(AS|C) = 0.

CasE 3. r(A, B) = oo. As was remarked above, A > 0 in this case. Also,
P(B|A U B) = 0 and hence P(B|C) = 0. It follows from the definition of the
integral in [8] that integrals over sets of measure zero are also zero and hence
that

E(AS|C) = —AP(A|C) < 0. o
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It follows from Theorems 4.1 and 5.1 that a locally coherent rate of exchange
on an arbitrary domain D is consistent with some conditional probability on the
algebra of all subsets. However, the correspondence will not in general be
one-to-one, as is explained in Section 7.

6. Linearly ordered families of measures, Carlson’s construction and
strict coherence. For a conditional probability P on an algebra B, there is a
natural ordering of nonempty events: A < B if and only if P(B|A U B) > 0 and
A < B if and only if P(A]A U B) = 0. This is a linear ordering with associated
equivalence relation A ~ B if and only if both P(A|A U B) and P(B|A U B)
are positive. This ordering was introduced by de Finetti [4], used by Rényi [19]
in his study of countably additive conditional probabilities and by Krauss [13] in
the general finitely additive setting.

Suppose r is a locally coherent rate of exchange on B.

LEMMA 6.1. If A and B are nonempty members of B, then:
(i) A~ B ifandonlyif 0 <r(A, B) < w,
if and only if 0 < r(B, A) < oo.
(ii) A < B ifandonlyif 0 =r(A, B),
if and only if r(B, A) = oo.
(iii) A < B if and only if r(A, B) < 0,
if and only if 0 < r(B, A).
Proor. Use Theorem 5.1 and Theorem 3.1(v). O

Let [B] be the equivalence clasé of B under ~ and set I' equal to the
collection of all equivalence classes. For a, 8 € T, write « < 8 when A < B for
some A € a, B 8.

THEOREM 6.1 (Rényi, Krauss). The set I' of equivalence classes is linearly
ordered under < . For each a € T, there is a finitely additive measure m, on B
which is unique up to proportionality and such that:

(i) 0 < myB) < o for B € a.

(ii) m(B) =0 for [B] < a.

(iii) m(B) = o for a < [B].

(iv) r(A, B) = m(A)/m(B) if B€ a, A € B.

(V) If a« < B, then m (B) < o0 = myg(B) = 0.

Conversely, suppose T is a linearly ordered set and {m,, o € I'} is a family of
measures on B satisfying (v). Suppose also that, for every nonempty B € B,
there is an a € T such that 0 < m(B) < . For that a, which is unique by (v),
define
(6.1) r(A, B) = m,(A)/m(B)
for all A € B. Then r is a locally coherent rate of exchange on B.
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The proof of this result can be found in Rényi [19] and Krauss [13] although
these authors work with conditional probabilities rather than the equivalent
rates. The proof is not difficult and the measure m, on the equivalence class [ B]
is just r(-, B) up to a proportionality constant.

REMARK. If any of the measures occurring in the converse half of Theorem
6.1 takes on only the values 0 and oo, then it may be deleted from the family
since it does not contribute to the construction of r in (6.1). After these measures
are deleted, each remaining measure takes on a positive finite value and it
follows from condition (v) that the mapping a — m, is one-to-one.

ExAMPLE 6.1. Let m be a finitely additive measure on an algebra B and
define :

r(A, B) =m(A)/m(B)

whenever the right-hand side is well-defined. (B could be the algebra of Borel
sets in R™ and m could be Lebesgue measure on B.)

ExAMPLE 6.2. Let B be the Borel subsets of the real line, let u, be counting
measure, let u, be Lebesgue measure and let p, be any finitely additive extension
of the density to B. (See Section 1.) It is easily verified that p,(B) < o0 =
p;(B) = 0 for i <jand B € B. Define

ri(A’ B) =p‘l(A)/p'l(B)’ l= 1’2:3’

whenever the right-hand side is well-defined. The r; agree on any points which lie
in the domains of more than one and so we can let r(A, B) = r,(A, B) on the
domain of r;.

ExaMPLE 6.3. Let B be the Borel subsets of R" and, for 0 < a < n, let m,
be a-dimensional Hausdorff measure on B. Define a rate r by (6.1) whenever the
denominator is finite and positive.

The rates defined in all three examples are locally coherent. This follows from
the second half of Theorem 6.1 together with the following lemma.

Let {m,, a € I} be a family of distinct finitely additive measures on B with I
a linearly ordered set. Say the family is linearly ordered if it satisfies condition
(v) of Theorem 6.1 and call the family complete if, for each B € BY, there is an
a € I such that 0 < m(B) < co.

LEMMA 6.2. Every linearly ordered family of measures is contained in a
complete, linearly ordered family of measures.

ProoF. By Zorn’s lemma, there is a maximal linearly ordered family
{m,, a € T} containing the given family. Suppose it is not complete. Then there
is a set B € B such that m (B) is 0 or oo for every a € I'. Let I',, = {a € T
my(B) = o} and [, = {a €T: m(B) = 0}. Then ¢ = (I, I})) is a Dedekind
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cut of T, i.e., a partition of I' such that « € T, , B € I, implies a < 8. We can
adjoin c¢ to I setting I'" = I' U {¢} with the ordering on I" to satisfy a < ¢ < 8
for a € T, B € I. Let F be the ideal of all sets A € B such that m(A) < o
for some a € I, and let N be the ideal of A € B such that my(A) = 0 for all
B € I,. Then

FuU {B} cN.

Define A = B N B to be the algebra of sets in B which are subsets of B. Then
ANF=FnNB is a proper ideal in A and, consequently, there is a finitely
additive probability measure m on A which annihilates F N B Define m, on B
by setting

m(A)=m(ANB), ifA€N,

= 00, if A*¢ N,
for A € B. Then {m, a €I} is a linearly ordered family contradicting the
maximality of {m,a € T}.O

REMARK. An alternative proof of Lemma 6.2 would use Theorem 6.1 after
showing that any linearly ordered famlly of measures induces a locally coherent
rate by the formula (6.1).

The converse half of Theorem 6.1 shows how to construct a locally coherent
rate r from a complete, linearly ordered family of measures. There is a more
recent technique of Carlson [3] which makes it possible to obtain a locally
coherent rate from any complete family of finite measures after the index set is
well-ordered.

THEOREM 6.2. Let I be a well-ordered set and let {m,, a € I} be a complete
family of finitely additive, finite measures on B. For A € B, B € B?, let a(B)
be the least a € I such that 0 < m (B) and define

P(AlB) = ma(B)(A N B)/ma(B)(B)9
r(A, B) = ma(AUB)(A)/ma(AUB)(B)’ if ma(AuB)(B) >0,
= 00, if not.

Then (i) P is a conditional probability on B and (ii) r is the locally coherent rate
of exchange associated with P.

Proor. (i) Part (a) of Definition 5.1 is obvious. To check (b), notice that, if
m,c(A N C) > 0, then (A N C) = «(C) and
myc(ANC) myc(ANBNC)

M4 (C) ' ma(C)(A nC)
= P(A N B|C).

If myc(A N C)=0,then P(A|C) =0 = P(A N B|C) and (b) holds.
(ii) This is easily verified using the formula in Theorem 5.1(ii). O

P(A|C)P(BJANC) =
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The construction of Theorem 6.2 makes it easy to define countably additive
conditional probabilities, a problem found difficult by Krauss [13], page 236.

Apply Lemma 6.2 and Theorem 6.1 to a singleton {m} as in Example 6.1 to
see that every improper (or proper) prior m is consistent with a locally coherent
rate of exchange.

Not every m determines a strictly coherent rate, but it is now easy to
characterize those which do.

THEOREM 6.3. A rate of exchange r on B is strictly coherent if and only if
there is a finitely additive measure m on B such that, for every A € B and every
B € B 0 < m(B) < o and r(A, B) = m(A)/m(B).

PROOF. Suppose r is strictly coherent. Then r is certainly locally coherent.
Let {m,, a € T} be the family given by Theorem 6.1. We need to show that I'
contains only a single element. Suppose to the contrary that o, 8 € I' with
a < B. Choose sets A € a, B € B. Then r(A, B) = my(A)/mygB) =
0/mg(B) = 0. Thus the exchange

e=—(r(A,B)B - 4)
—A

is everywhere nonnegative and positive on A, contradicting strict coherence.
For the converse, suppose m is a measure on B which is everywhere finite and
positive on B? and that r(A, B) = m(A)/m(B) for A € B, B € B°. Then every
simple exchange and, hence, every exchange has integral zero with respect to m.
Thus no exchange e can be everywhere nonnegative and somewhere positive.
(The set where e > 0 would belong to B® and have positive measure under m.) O

Kemeny [12] argues that strict coherence is a reasonable requirement in his
framework. It seems a bit stringent to us, because, in view of Theorem 6.2, it
would rule out even proper, countably additive priors on an algebra such as the
Borel subsets of the unit interval.

7. Conditional coherence, local coherence and group invariant rates of
exchange. As was shown in Theorem 5.1, there is a natural one-to-one corre-
spondence between locally coherent exchange rates defined on B X B° and
conditional probabilities on the same domain. This section treats the relation-
ship between the two concepts when domains may be proper subsets of B X B°,
In particular, the relationship between local coherence and conditional coherence
as defined by Holzer [11] and Regazzini [16] is discussed.

Suppose first that r is an exchange rate with domain E c B X B°, Define a
function P(-| - ) with domain D = {(A, B): (A N B, B) € E} by setting

(7.1) P(A|B) = r(A N B, B)

as in Theorem 5.1(i). If r is locally coherent, then it is almost immediate that P
is conditionally coherent in the sense of Holzer [11] or Regazzini [16] in that it is
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impossible for any finite linear combination

S A [P(4)B) - AB,

i=1

with A; # 0 to be positive everywhere on U™, B,.

On the other hand, suppose P(-|-) is a function defined on a domain
D c B X B% One may attempt to define an exchange rate r by (7.1) for
(A, B) € D. The rate r will be well-defined if, whenever {(4,, B), (A,, B)} ¢ D
with A; N B = A, N B, then P(A,|B) = P(A,|B). This is easily established if P
is conditionally coherent as is the local coherence of r.

Consider composing the operations of the two previous paragraphs. If one
starts with a conditionally coherent P, defines. the associated rate r and
continues to define @ from r, it is easy to see that @ is an extension of P. Thus
nothing is lost when a conditionaly coherent P is replaced by its associated rate
r. However, if one starts with a locally coherent rate r, defines the associated P
and defines a rate s from P, it can easily happen that r is a proper extension of
s. This is because s is only defined for pairs (A, B) in the domain of r such that
A c B. Thus local coherence can be viewed as a genuine generalization of
conditional coherence.

Furthermore there are examples of events A and B for which a rate of
exchange is quite naturally defined and for which P(A|B) is not naturally
defined. Here is one such example.

ExXaMPLE 7.1. Let @ = N={1,2,...}. For n = 1,2,..., let m, be the uni-
form distribution on N, = {1,2,...,n} and let r, be the corresponding rate
defined as in Example 6.1 by

(7.2) (A, B) = m,(A)/m,(B) = |A N N,|/|IBNN,],

where A and B are subsets of N and |A| denotes the cardinality of a set A. Then
define the rate r by

(7.3) r(A, B) = limr,(4, B),

whenever the limit exists. It is easy to verify that the limit of a sequence of
locally coherent rates is again locally coherent on its domain. So r is locally

coherent.
Notice that r extends the number theoretic density d in the sense that

d(A) = lim|A N N,|/n=r(A, N)
when the limit is well-defined. It is well-known that there exist subsets A and B

of N such that d(A) and d(B) are well-defined and d(A N B) is not well-
defined.
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Our object is to refine this result by constructing A and B so that d(A) =
d(B) =0, r(A, B) =1and r(A N B, A) is undefined in the sense that
d*(BJA) = limsupr,(A N B, A) =1,

(7.4) "
d4(BJA) = liminfr,(ANB,A) =0

We will take B to be the translate A + 1 = {k + 1: k£ € A}. So it will be clear
from (7.2) and (7.3) that r(A, B) =1.

The construction of A is an elaboration of the construction of a set in N with
upper density 1 and lower density 0. Define the sequence {a,} inductively by
(7.5) a,=1, a,,,=(n+1)(a+ - +a,).

Define further sequences {b,} and {s,} by
b, = na
S,=by+ - +b

n

(7.6)

and define sets
B,={s,+kk=1,2,...,a,},
={s,+2k: k - 1,2,...,a,}
for each n. Finally let
A=B, UCUByUC,U

Notice that, for each n, the set of integers from s, to s,,, — 1 has b, elements
and the intersection of A with this set has only a, + 1 elements. It follows from
(7.5) and (7.6) that A has density 0.
Also, for n = 1,2,..., A N (A + 1) = B contains every member of B, except
the first. Hence, for n odd,
r,

S"H(A N(A+1),A)>aqa,/(a,;+ - +a,),

which converges to 1 by (7.5). On the other hand, A N (A + 1) contains no
members of C,, so that for n even

rs,,“(A N (A + 1)’ A) < (al t - +an-1)/an’

which converges to 0 by (7.5). The desired (7.4) now follows.

It can also be checked that, in the terminology of Section 4, the upper
exchange rate r*(A N (A + 1), A) is 1 and the lower exchange rate
r«(A N (A +1),A)is 0. So, by Lemma 4.1, r will remain locally coherent if it is
extended to (A N (A + 1), A) so as to assign to this pair any value in the
interval [0, 1].

.The rate r introduced in Example 7.1 is invariant under translation as was
pointed out above. More generally, let T be a group (or semigroup) of symme-
tries which acts on a sample space 2. A common assumption is that a probability
P is invariant in the sense that P(A) = P(#(A)) for events A and ¢ € T. The
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intuition is that A and #(A) are equally likely. For exchange rates the same
intuition leads to the condition r(#(A), A) = 1. These invariant exchange rates
are studied in a recent paper of Armstrong [1].

Acknowledgment. We would like to thank two referees who made many
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em 4.1.
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