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OPTIMAL-PARTITIONING INEQUALITIES IN
CLASSIFICATION AND MULTI-HYPOTHESES TESTING

By THEODORE P. HILL! aAND Y. L. ToNG?
Georgia Institute of Technology

Optimal-partitioning and minimax risk inequalities are obtained for the
classification and multi-hypotheses testing problems. Best possible bounds
are derived for the minimax risk for location parameter families, based on the
tail concentrations and Lévy concentrations of the distributions. Special
attention is given to continuous distributions with the maximum likelihood
ratio property and to symmetric unimodal continuous distributions. Bounds
for general (including discontinuous) distributions are also obtained.

N

1. Preliminaries. The statistical classification problem, in its standard
form, deals with optimal decision rules for classifying an observation into one of
several specified populations. The problem is closely related to the following
multi-hypotheses testing problem: For n > 2, let F,,..., F, be given (univariate)
distributions. Let X be a random variable with distribution F. In testing the
hypotheses
(1.1) H:F=F, i=1,...,n,

~

a decision rule corresponds to a measurable partition {A;}7_, of the real line such

that H; is accepted iff X € A,. The main purpose of this paper is to use
optimal-partitioning results for densities with the monotone likelihood ratio
(MLR) property together with convexity to derive some best-possible inequali-
ties for the minimax risk, in terms of two probability-concentration parameters
(the tail-d concentration, Definition 2.1 below and the Lévy concentration,
Definition 2.4) of continuous distributions, for general location parameter fami-
lies and for symmetric unimodal densities (Section 2). Analogous results for
discontinuous distributions are then given (Section 3).

For the objective of minimizing the largest probability of misclassification, the
standard classification problem is equivalent to many “fair-division” problems in
which there are n probability measures p,,..., , defined on the same space,
and the objective is to partition the space so as to maximize the minimum share,
i.e, to find an ordered measurable partition (Aj,..., A¥) which attains or
nearly attains

C*(p) = sup{ 1Tiign“i(Ai): (A,,..., A,) is a measurable partition of SZ},
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where p,(A) represents the value of portion A to the ith individual [the reader
is referred to Dubins and Spanier (1961) for details]. Consequently, the
minimax-risk results derived below may also be interpreted as results for the
fair-division problem and, in fact, it is in the fair-division or C*-terminology that
most of the proofs will be given.

Throughout this paper, F,,..., F, are distinct distribution functions with
corresponding densities f,,..., f, and probability measures p,,..., y,, respec-
tively; B are the Borels on R and II, is the collection of ordered B-measurable
n-partitions of R, that is,

n
II, = {(Ai)'i'slz A,eBVYi, |JA, =Rand A,-nAj=¢ifi¢j}.
i=1

For brevity, write A =(A4,,...,4,) for (A)relIl,, F=(F,...,F) =
(Foeeor F)y b= (Ryenesp,) and p(A) = (py(A)), ..., po(A,) € [0,1]" The
partition range of p, PR(p) is the subset of [0,1]" defined by PR(p) =
{n(A): A €1I,}.

One of the main tools in this paper is the following generalization
of Lyapounov’s convexity theorem.

PROPOSITION 1.1 [Dvoretzky, Wald and Wolfowitz (1951)]. (i) PR(p) is
compact.
(i) If py,..., p, are nonatomic, then PR(p) is convex.

DEFINITION 1.2. A partition A € II, is optimal for p if
(1.2) n(A%) = C*(p).

COROLLARY 1.3 [cf. Dubins and Spanier (1961)]. Optimal partitions exist for
all p (and F).

DEFINITION 1.4. A partition A = (A,,..., A,) has equal risks for p if
(1'3) ""l(Al) = = :U'n(An)‘

The next two results follow from a standard “mass-shifting” argument.

THEOREM 1.5. If F,..., F, are continuous, then there exists an optimal
partition A* € 11, with equal risks for p. If, in addition, the {F;} have common
support, then every optimal partition for F has equal risks.

It should be observed that for some discrete distributions, no optimal parti-
tion has equal risks. Also, for continuous distributions that do not have common
support, not all optimal partitions may have equal risks as can be easily seen by
considering partially overlapped uniform distributions.

For distributions whose density functions possess the MLR property, the
following result is a direct consequence of Karlin and Rubin (1956).
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THEOREM 1.6. If F,,..., F, are continuous with densities { f;}} having the
MLR property, then there exist real numbers d* < --- < d}* | so that

(1.4) A* = ((—o,di], (df, ds],..., (d)} 1, 0))

is optimal for F,,..., F, and has equal risks, that is,
d* d )
1.5 = = . = = C*(p).
(1.5) [on=[lt= =, h=C)
2. Location parameter families for continuous distributions. In this

section, F' is a continuous distribution function, F(x) = f(x — 6,), i = 1,..., n,
and 0, <6, < --- <@, are the location parameters. The functional form of F

and the values of the 6,’s are assumed to be known, so, without loss of generality
0, is assumed to be 0. The main purpose is to derive some best possible universal
lower bounds for the smallest probability of correct decision (or equivalently,
upper bounds for the largest probability of misclassification). The bounds will be
given in terms of two concentration parameters of the densities {f,(x) =
f(x — 6,)} and most of the results will be stated for the equally spaced configu-
ration with 6§, = (i — 1)d for fixed d > 0. A more general result is then obtained
under the additional assumption that { f(x — 6,)} possesses the MLR property.

DEFINITION 2.1. The tail-d concentration of F, p(F, d), is defined by
(2.1) p(F,d) = max{p((—oco,essinf F + d]), p([esssup F — d, 0))}.

Note that if F, F, are two continuous distributions such that Fy(x) =
Fy(x — d) and a = essinf F}, b = esssup F}, then

m((b, b+ d]) = py([a, a + d)) = 0.

So under an optimal classification rule A* = (A}, A}) one has (b, b + d] C A}
a.s. and [a, a + d) C A} as. Furthermore, note that p(F, d) = 0 if and only if
essinf F = — o0 and esssup F' = co.

THEOREM 22. If F is continuous and F(x)= F(x — (i — 1)d) for i=
1,...,n, then

n—1 -1
(2.2) C*(p) 2 (1 + ) q’) ,

j=1
where q = 1 — p(F, d). Moreover, this bound is best possible and is attained for
alln, all d and all g < 1.

ProoF. If p(F,d) = 0, then the bound in (2.2) is n~! and the inequality
(2.2) holds for any continuous distributions u,,..., u,, as follows easily from
Proposition 1.1(ii). (Even more is true: Neyman’s (1946) solution of Fisher’s
“Problem of the Nile” [Fisher (1936)] even shows that A may be chosen so that
pi(A;) = n~! for all { and j.) On the other hand, if p(F, d) = 1, then the boun’
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in (2.2) is 1, which follows trivially since in this case the distributions F,..., F,
have essentially disjoint support. Suppose that p = p(F, d) € (0,1). Since p > 0
implies essinf F > — oo or esssup F' < oo, it may be assumed (by translation)
that one of these, say essinf F, is zero and also that p,((— o0, d]) = p.

For each k =1,...,n,let A, € II, be defined by

A =((-,0),¢,...,9)

and

A,=((-o,d],(d,2d],...,((k—1)d,0),6,...,¢) fork>1.
Then
(2.3) {a},...,a,} € PR(p),

where a, = p(A,) = (p,...,p,1,0,...,0) is the vector in R” with 1 in the kth
coordinate and preceded by & — 1 entries of p. Let 8, = ¢" */(1 + X2l q’) for
k=1,..., n. By (2.3) and Proposition 1.1(ii),

n
a= ) B.a,<PR(p)
k=1
and an easy calculation shows that each entry of a is (1 + X2} q’)"!, which
establishes (2.2).

To see that (2.2) is best possible for ¢ = 1, let F, = F, ,, be uniformly
distributed on [—M, M]. Then as M — oo, p(F,d) — 0 and C*(p) » n~'. For
g = 0, any distribution with support in [0, d/2] attains the bound in (2.2). That
(2.2) is attained for all n, all d and all g € (0, 1) is shown by the next example. O

ExXaMPLE 2.3. Let F(x) =1 — e * for x > 0 and for fixed n > 1 and d > 0
let F(x)=F(x — (i —1)d) for i =1,...,n. Then the corresponding density
functions are negative exponential with location parameters 6, = (i — 1)d, i.e.,

f(x) =exp(—(x — (i - 1)d)) forx > (i—1)d

and zero otherwise for i = 1,..., n. Clearly {f;} has the MLR property, so by
Theorem 1.6 there exist positive constants d* < d)f < --- <d}* | < oo satisfy-
ing (1.5).

It is also easy to see that C* > p, so d* > d and inductively d;* > kd for all
k > 1. This implies that

(2.4) fr=dfy=q*;= -+ =q’7'f; on(dr, d})
for j=2,...,n (d} =0, d} = ). Together (2.4) and (1.5) imply
(2.5) g [Th=Crp) forj=1,...,n.

dr,

Since £7_, f,‘}I{l f, = 1, it follows from (2.5) that C*(p) = (1 + "2 q/)" "

If n = 2, the location parameter classification problem is precisely the prob-
lem of testing a simple null hypothesis H;: § = 6, against a simple alternative
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H,: 0 = 0,, where 0, = 6, + d for some d > 0. In this case a sharp bound for the
minimax risk in terms of the Lévy-concentration function is given by the next
theorem.

DEFINITION 2.4. The Lévy concentration for F, d is
A(F,d) =sup {F(x+d) — F(x)} € (0,1].
X

THEOREM 2.5. Let X have a continuous distribution F(x — 8) with Lévy
concentration A = A(F,d) and let 0,0, be location parameters such that
0, — 6, = d > 0. Then there exists a test for testing

(2.6) H:0=0, versus H,: 0 =4,
which satisfies
(2.7) max{a,B} < (1-A)/(2-1),

where a, B are the type 1 and type 11 errors, respectively. Moreover, this bound
is attained for all d and all \.

REMARK. We note that, by definition, A = A(F, d) = p(F, d) for all F and
all d > 0 and equality holds for monotone density functions. If n = 2, then
1-1+q9)'=0Q-p)/2-p)=(@1A—-A)/(2—-N) always holds. Thus the
bound in (2.7) is sharper than that in (2.2).

Proor oF THEOREM 2.5. For notational convenience assume 6, = 0. We
show that there is a test with

(2.8) C*(p) =min{l —a,1 - B} = (2-A)"".

For fixed d > 0 and A = A(F, d) € (0,1], A(F, d) is always attained [see, e.g.,
Theorem 1.1.8 of Hengartner and Theodorescu (1973)]. That is, there is a real
number y satisfying

F(y+d) - F(y) =pp(yv,y +d) =A.

Let r, = pp(—o0,v) and r, = pp(y + d, o) and assume without loss of general-
ity (by symmetry) that r, > r,. Considering the partitions A and B € II, given

by
A=((_°°7Y+d)’[7+d’°°))’ B=((—O0,00),¢)

implies that
(2.9) {(M+r,A+1,),(1,0)} € PR(p).
Let
B=(r,—r)/@r,+A)=1-(2r,+A)""e[0,1).
Then by (2.9) and Proposition 1.1(ii),
B(1,0) + (1 = B)Y(A +r, A+ 1) = (A + 1) /(21 + X), (A + 1)/ (21, + X))
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is in PR(p). But A+ r, + r,=1 and r, > r;, which implies 1 —A)/2<r, <
1 — A. Consequently, for r, in this range, one has (A + r,)/(2r, + A) > (2 - \)!
and (2.8) follows. That the lower bound (2 — A)~! is attained is shown by
Example 2.3 with n = 2. O

Recall that a continuous distribution function F is said to be symmetric
about b and unimodal if its density f satisfies

f(b+y)=f(b—y) forall yand f(b+y)l0 as y— oo.

The family of symmetric and unimodal distributions plays an important role in
statistical applications. The next theorem gives a best possible bound, in terms of
the Lévy concentration, for the minimax risk for the location-parameter problem
with continuous, symmetric, unimodal distributions.

THEOREM 2.6. If F is continuous, symmetric about b for some b and
unimodal, and if F(x) = F(x — (i — 1)d) for fixedd > 0 andi = 1,..., n, then

m—1 -1

(2.10) C*(p) = |1+2 Z ™+ (k+1)r™|

Jj=1

where m is the largest integer less than or equal to n/2, k=n—-2m, 7=
1 -=AN)/1 + M) and A = A(F, d). Moreover, this bound is attained for all n, d
and A.

ProoF. CASE 1. n =2m for some m > 1. Using the symmetry of F and
Definition 2.4, it is easy to see that

(2.11) {Viy.-.s V) € PR(p),

where
vi=(1+A)/2,A,...,A, (1 +17)/2),
v, =(0,(1+X)/2,A,...,\, (1 +1)/2,0),...,
v, =(0,...,0,(1 + A)/2,(1 + A)/2,0,...,0).

[FOI' example, Vo = (p‘l((p)’ "'2((_00, b + 3d/2]), “3((b + 3d/2’ b+ 5d/2])’
coos (@) For = (1 = A)/(1 + X) define

m—1
,Bj=frj‘1/( Yy 'ri) forj=1,...,m.
i=0

Then B;> 0 and X7, B; = 1. It follows from (2.11) and Proposition 2.1(ii) that

™ Bv,=(c,¢c,...,c) € PR(p), where ¢ = (1 + 2X7 ' v/ + 7)1,

. CasE 2. n=2m+ 1 for some m > 1. Proceed as in Case 1 using the
additional vector v, ., = (0,0,...,0,1,0,...,0).

To see that these bounds are attained for all n, d and A, consider the
continuous symmetric (about d/2) unimodal distribution F with right-half
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density given by
f(x) =Mt/ forx € [jd,(j+1)d) forj=0,1,2,.

Letting f,(x) =f(x — (i — 1)d) for i=1,...,n, note that {f,..., f,} have
common support and the MLR property. Then proceed as in Example 2.3, using
Theorem 1.6 to show that the bound in (2.10) is attained. O

REMARK. The authors believe that, for.all n > 2, the conclusion of Theorem
2.2 is true even if ¢ =1 — p(F, d) is replaced by ¢ = 1 — A(F, d), which is a
stronger result since A(F, d) > p(F, d). The Lévy concentration A(F, d) is, as is
the variance, some gauge of how spread out the distribution F is, and analogous
bounds for the minimax risk in terms of the variance of the distribution are also
possible. Although the best possible bounds are not known to the authors, the
bounds in Theorems 2.5 and 2.6 may be used to obtain corresponding minimax-
risk inequalities in terms of the variance by applying inequalities of Lévy [e.g.,
Hengartner and Theodorescu (1973), pages 26-30] which give bounds on A in
terms of the variance and vice versa.

Thus far we have considered distributions with equally spaced location pa-
rameters, i.e, 8, = (i — 1)d, i = 1,..., n. In the following we extend the results
given in Theorems 2.2 and 2.6 to yield lower bounds for the more general case.
Toward this end we first observe a lemma concerning a monotonicity property of
the optimal partitioning problem.

LEMMA 2.7. Let 0;,0; for i= 1 ,n — 1 be positive real numbers and
define 0—(01, ), 0’ =(6y,..., ), where0 =0/=0, 6,=X'_\¢, 0/ =
):‘ L6/ for i = 2 , h. Let F be a continuous dzstrzbutzon functzon and deﬁne F
and F’ by

F = (F(x), F(x — 8,),..., F(x — 8,)),
F = (F(x),F(x — 63),..., F(x — 62)).

Let C*(pg) and C*(pg) correspond to the minimax risks when the true distribu-
tion vector is F or ¥, respectively. If the density functions of F and ¥’ have the
MLR property and if §; < 8/ fori=1,...,n — 1, then C*(pg) < C*(py).

Proor. By induction it suffices to show that the statement holds for §; < 8;
for an arbitrary but fixed I and §; = 8/ for i # I. Let
At = ((—o0,d*], (d, df],..., (d ¥ 1, ))

denote an optimal solution when the true distribution vectoris F. Let A = §; — §;
and define a partition A’ = (A],..., A}) such that

Al=(d¥,,d*¥] fori<I-1,
A= (dfty, dff + 4],
Aj=(d¥ +A,d*+A] fori>1
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/A;dF(x —0) > fMdF(x -8),

f dF(x — 87) =f dF(x —6,) fori<I—1
Al A*
and, by the translation invariance proberty,
f dF(x - 0}) = f dF(x — 6;) fori>1I.
. A

Since A’ is not necessarily an optimal partition wheh the true distribution vector
is F, the proof is complete. O

Combining Lemma 2.7 with Theorems 2.2 and 2.6, one immediately obtains
the following theorems which apply to all location parameter families of distri-
butions when the densities possess the MLR property.

THEOREM 2.2'. Let F be a continuous distribution, F(x) = F(x — 0,) for
0, <b0,< --- <8, and let d=min,_;_,_,(0;,, —6,). Let g=1— p(F,d)
where p(F, d) denotes the tail-d concentration and let C*(pn) be the mini-
max risk when the true distribution is given by F = (F(x — 0,), F(x — 6,),...,
F(x —6,)). If {f(x — 0): 8 € A} has the MLR property, then the inequality in
(2.2) holds. Moreover, this lower bound is best possible and is attained for all n,
dandq <1when 8, ,=0,+d,i=1,...,n— 1

THEOREM 2.6’. Assume that the conditions in Theorem 2.2’ are satisfied and
that F(x) is symmetric about b for some b and is unimodal. Let = (1 — X)/
1+ A) where A=A(F,d) is the Lévy concentration for F(x) and d=
min, _; _,_,(0;,, — ;). Then the inequality in (2.10) holds. Moreover, the lower
bound is best possible and is attained for all n, d and A\ when 0,,, =6, + d,
i=1,...,n—-1.

3. Discontinuous distributions. Without continuity of F, the above mini-
max-risk inequalities may fail, but analogous inequalities may be derived as a
function of the maximum discontinuity (atom size) of the distribution via the
following generalizations of Lyapounov’s convexity theorem and Proposition
1.1(ii).

ProposiTION 3.1 [Elton and Hill (1987)]. If all the atoms of each p; have
mass less than or equal to a, then the Hausdorff distance from the range of p to
its convex hull is at most an/2.

THEOREM 3.2. If no F, has discontinuity greater than a, then the Hausdorff
distance from PR(p) to its convex hull is at most V2 an.
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Proor. Fix (A;)} and (B;)? in II,, and ¢ € (0,1). Define the 2n-dimensional
vector-valued Borel measure m by

m(E) = (IJ‘I(E NAY,..., 1 (ENA,), p(EN B, (EN B,)).

Since each p; has only atoms of mass less than or equal to a, so does m. It then
follows from Proposition 3.1 that there is an E € B with |[m(E) — tm(R)|| < an,
that is,

n n 1/2
(38.1) E’l(pi(E NA4;) - tp‘i(Ai))2 + g (0:(EN B;) - tIJ‘i(Bi))Z < an.

Since |u,(E N B;) — tpy(By)| = |p(B;\ E) — (1 — t)p(B,)|, it follows from (3.1)
that

(l‘i(Ai NE) - tﬂi(Ai))2

M=

i=1

(3.2)

3

*. ((B\E) - (1- t)Mi(Bi))2 < a?n?.

1

Letting E; = (A, N E) U (B;\ E) it follows from (3.2) that
Z (l-"i(Ei) - tlJ‘i(Ai) - (1 - t)#i(Bi))Z
(3.3) =1
=lla+c—(b+d)*<2(]la—b|?+|c—d|?) < 2a®n?

where a, b, ¢,d are defined in the obvious manner. Taking square roots of both
sides of (3.3) completes the proof, since A, B and # were arbitrary. O

REMARK. The idea of stringing together vector measures is attributed by
Dubins and Spanier (1961) to Blackwell.

Typical of an application of Theorem 3.2 to the classification problem is the
following analog of Theorem 2.2.

THEOREM 33. If d> 0, F(x)=F(x — (i — 1)d) fori=1,2,...,n and if
F, has maximum discontinuity a, then

c*(w) > (1 + "iqu) - fZan,

Jj=1
where ¢ = 1 — p(F, d).
Proor. Immediate from Theorems 2.2 and 3.2. O
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