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Suppose that real numbers y; are associated with the units i = 1,2,..., N
of a population U and that the vector 'y = (¥, %,..., ¥n) is known to be an
element of the parameter space ®. The statistician has to select a sample
s € U of n units and to employ y,, i € s, to estimate ¥ = L y,/N. We propose
to base this decision on an asymptotic version of the minimax principle. The
asymptotically minimax principle is applied to three parameter spaces, in-
cluding the parameter space considered by Scott and Smith and a space
discussed by Cheng and Li. It turns out that stratified sampling is asymptoti-
cally minimax if the allocation is adapted to the parameter space. In addition
we show that the commonly used ratio strategy [i.e., simple random sampling
(srs) together with ratio estimation] and the RHC-strategy (see Rao, Hartley
and Cochran) are asymptotically minimax with respect to parameter spaces
chosen appropriately.

1. Introduction. We consider a population U = {1,2,..., N} and a parame-
ter vector ¥ = (3, Y, ..., ¥,). We define 5y = Ly,/N, o,, = £(y, — 5)*/N, where
Y includes all i € U.

A sample s is a nonempty subset of the population U. A sampling design p is
defined to be a probability distribution on the set S of all samples. If p is a
sampling design and if p, > 0, p,. > 0 implies |s| = |s’| (i.e., the sizes |s|, |s'| of s
and s’ are equal), then p is said to be of fixed size. p is a simple random
sampling design (srs) of size n, n € N, if p, = (N — n)! n! /N! for |s| = n and if
p, = 0 for |s| # n.

Following Godambe (1955) we consider (linear) estimators

t=1t(s,y) = Ztsiyi

with ¢, = 0 for i & s. The sample mean y,=X,.,%,/|s| is an estimator of
special importance. The mean square error (MSE) of a strategy (p,?), p a
design and ¢ an estimator, is

MSE(y; p, t) = Esps(t(s, y) - ¥)>

It may be meaningful to associate with s € S and i € s a random variable T};
and to use the randomized (linear) estimator ¢ = ¥, . T}, y; for which

2
MSE(y; p,t) = EZPS( Y T.yi— 5') .

s i€s
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Let a subset ® c R, called parameter space, be determined and consider a
class A of strategies for which the minimax value

r(®,A) = inf sup MSE(y; p,t)
(P, €A ye@

is finite. Then (p, t) € A is defined to be minimax if
sup MSE(y; p, t) = r(®, A).

ye0®

In a number of papers properties of symmetry of ® have been the basis for
finding minimax strategies [see Blackwell and Girshick (1954), Joshi (1979),
Royall (1970b) and Stenger (1979)]. Especially, the parameter space

(L1) [rer¥ LTi-9rs e,

¢ # 0, has been discussed by Aggarwal (1959) and by Bickel and Lehmann (1981).
For
(1.2) {yeRM:0<y < cforalli € U},

¢ > 0, see Hodges and Lehmann (1982). Our question is, what can be done if © is
asymmetrical? Let us consider, for x; > 0, i € U, known, the spaces

(1.3) ®1={yGRN:OSyisxiforalliEU},
1 y \2

(1.4) @2 = {ye RN: EZ(}Q— Exi) < 02},
1 % y \2

(1.5) ®3={yGIRN:NZ-;(yi—%x,~) 302}.

(1.3) contains (1.2) as a special case, while (1.4) and (1.5) are generalizations of
(1.1). For (1.3) Scott and Smith (1975) have determined a minimax strategy in
the class A = {(p, t): p of fixed size 1, ¢;; = X/x; for s = {i}}. Unfortunately, no
conclusive results seem to be within reach for sample sizes greater than 1. The
difficulties arising from the spaces (1.4) and (1.5) seem to be unsurmountable.

So Cheng and Li (1983), interested especially in the space (1.5), propose to
search for approximately minimax strategies. In fact they prove the approximate
minimaxity of the RHC-strategy [see Rao, Hartley and Cochran (1962)] with
respect to (1.5). [See 1.1 and 1.2 with g(x;) = \/Z and L = L, in Cheng and Li
(1983).] They also derive approximately minimax solutions for representative
strategies with sample sizes n > 1, given the parameter space (1.3).

In the present paper we propose an asymptotically minimax approach. We
show how to expand asymptotically the minimax value and introduce the
concept of an asymptotically minimax strategy. In this approach the RHC-
strategy is not asymptotically minimax (with respect to @,), in general. It is,
however, asymptotically minimax if the sampling fraction n/N is small, i.e.,
converges to 0. This may be surprising in view of the inadmissibility of the
strategy (which is a consequence of its randomization nature).
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2. Results. We consider sequences (i) of populations U®, U®, ..., with
sizes NO < N® < ... (ii) of parameter spaces @, 0@, ..., with @™ equal to

0 = {y» e RN: 0 < 3 < x{" foralli € U™}
or

o, 1 7 o)
- ) N7 _ 2
0 = { y" e RN N Z(yim fmxy)) < c*},

or 0" defined analogously, and (iii) of sample sizes n'V, n®,..., with existing
limit
n®
(2.1) f = llm-]v—(y)‘
and define for v = 1,2,...,

r® = p(@®, A”) = inf sup MSE( y*; p®, t™),
A g

where A® is the class of strategies with sample size n(*.
Associated with the vector x*) defining @ is a distribution function

G"’)(ﬁ) — l{l e U™: xf") < g}I/N(v)’

i.e.,, G")(&) is the fraction of units of U with x-values not greater than ¢£. We
assume that the limit

(2.2) I'(¢) = imG®(§)
exists for all ¢ € R.

It will be shown that, under appropriate conditions, the limit lim, n®r®
exists and is a function of T" and f. If this function is denoted by p(T, f ) it seems

natural to use
1 n(V)
»
nmp(G ’ N(”))

as an approximation for r(@®), A").
Let (p®, t®), » =1,2,..., be a sequence of strategies. (p, t") is defined
to be asymptotically minimax if

limn® sup MSE( y*; p®, t®) = p(T, f).
v eom
It would be cumbersome to indicate permanently the sequence of populations,
parameter spaces, etc. under consideration. In most circumstances it is not
misleading to suppress the superscript ». Subsequently we state our main results
in this simplified notation.
We derive under weak assumptions

(2.3) o(T, f) = %([/sdrr—ffﬁdr)
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for ® = 0, (and f small; see Theorems 4.1 and 5.1). Consequently, r(0,, A) may
be approximated by

%([fgdar - %f?dG) - %(fz - %%Zx?).

Further results are derived for stratified populations (see Section 4). We prove
that r(0©,, A) and r(0,, A) may be approximated by

c"’1 n q c?z 021 n
—_— -— c— __.<_ -— —
n( N) an X ( N)’

respectively, where z is defined in (3.10); x-proportionate and proportionate
allocations define strategies which are asymptotically minimax for ®, and 0,,
respectively. A more involved allocation is shown to lead to a strategy with the
asymptotic minimax property for ©,.

In addition we prove that the ratio strategy is asymptotically minimax with
respect to O, (see Theorem 4.2).

REMARK 2.1. In an earlier paper [see Stenger (1983)] (p®, t®)) € A has
been defined to be asymptotically minimax if

sup lim nMSE( y®; p®, t®) < suplimn®MSE(y®; p®, ¢®)

for all (p®), t®) e A", »=1,2,.... An important drawback of such an ap-
proach is that the usual minimaxity of a strategy (p, ¢*’) does not imply its
asymptotic minimaxity.

It should be noted that the use of the operator lim, sup (instead of suplim,
used in the earlier approach) is closely related to the asymptotic expansion of the
minimax value r®,

REMARK 2.2. It is known that the ratio estimator can be justified by other
methods too, by Bayesian methods [see Ericson (1969)] and by superpopulation
methods [see Royall (1970a)]. But in both cases it is impossible to justify srs at
the same time.

3. Stratification of the population U. This section deals with one popula-
tion U, one parameter space ® and one sample size n (not with sequences). The
smallest value occurring in x,, x,,..., xy > 0 is denoted by c(1), the next greater
value by c¢(2),... and the greatest by c¢(H). Then

0<e(l) <e(2) < -+ <e(H).
It will be convenient to form the strata

Uh)={ieU:x;=c(h)}, h=12,...,H,
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and to define N(h) = |U(h)| and

y(h)=ﬁ(17) T oyy<h)=ﬁ S (5-3(h)°

ieU(h) ieU(h)
for h=1,2,...,Hand y € ®. Then N = LN(h), ¥ = LN(h)c(h)/N and

Zﬂ(—h)‘y(h) Oyy = Zﬁ%(“yy(h) + [3(h) _5']2)°

Furthermore [see (1.3), (1.4) and (1.5)],
(31) 8, ={yeRM:0<y <c(h)forie Uh); h=1,2,..., H},

3.2) ©,= {y € R"N: Z-Iygv—h)[oyy(h) + [Si(h) - %c(h)] ] < 02},

(3.3) 0, = {y eRV:x), le) -(?(%[oyy(h) + [Sf(h) - %c(h)] ] < cz}.

We observe a random H-vector n, called allocation, with integer valued compo-
nents n(l), n(2),..., n(H), summing up to n, and draw samples of sizes
n(1), n(2),..., n(H) from the strata U(1), U(2),..., U(H) by srs. We use as an
estimator

t(s, y) = L1(n, h)y,(h),

h

where 7(n, k) = 0 if n(h) = 0 and where y,(h) is the sample mean for U(h),
provided n(h) > 0, h=1,2,..., H. For the stratified strategy (p, t) so defined
we have

o,)(h) N(h) — n(h)

n(h) N(h)-1

MSE(y; p, ¢) = EX r%(n, h) 2
(3.4)

+E[Z(T(n h) - —(l)y(h)]
N
where ¥’ includes all A with N(k) > 1 and n(h) > 0. With

(3.5) s, 3) = £ 5

and nonstochastic n(1), n(2),..., n(H) > 0 (which implies n > H), (3.4) simpli-
fies to

N(h)] o,,(h) N(h) — n(h)

(36) MSE(y; p, ) = Z[ n(h) N(h)-1

Three nonrandomized allocations are of special importance for our discussion.
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Define for h = 1,2,..., H,

(37) a(W) = sro .
@9) a(m) = ),

(39) o) =
where z is the unique solution of

(3.10) Y %?{—i—(}% =

By the convexity of (a + bx)~! and by the concavity of x(a + bx)~!, where
a, b > 0, we obtain

n SIN(R)/NIeH(h)
N 2

K| N

(3.11) 1-

Define for j = 1,2,3,
nj(h) = (na;(h)),
where (k) is the greatest integer not greater than k. We choose 7i (k) such that
ni(h) < fi,(h) < nj(h) +1,

Y.A;(h) =n.
A

It is not difficult to see that the conditions

c(H) 1 n c¢(1) N(h)-1
(8.12) @) M) SN S oH)  N#)

1 n N(h)-1

(3.13) N(R) <N S —Z_VUz_)-—’
(3.14) c(H) 1 n (1) N(h) -1

c(l) N(h) - N = 22(H) N&h)
for j = 1,2,3, respectively, imply 1 < na (k) < N(h) — 1 and, consequently,
(3.15) 1<7,(h)<N(h), h=12,..., H.

[Note that (3.11) is used to derive the sufficiency of (3.14). (3.14) is more
restrictive than (3.12), (3.12) more restrictive than (3.13).] Therefore,
fij(1), i 2),...,i,(H) is a (nonrandomized) allocation, for j =2 the usual
proportionate allocation and for j = 1 the so-called x-proportionate allocation
[see Raj (1968), page 67].
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LEMMA 3.1. For the designs p,, p, and p; associated with the allocations
defined by (3.7), (3.8) and (3.9) and for the estimator t defined by (3.5) we have

supMSE(y; b f)

J

1[N N(r) x 1
N Rt | s~ ¥w)
(forj=1)
. N(h) N(h) 1 1 .
(8.17) = CMXTN N -1 [nN(h)/N— 1 N(h)] (forj=2)

2 N(h) N(h)
TXTN N -1

[}

c(h)

<

=i |

(3.18)

1 -
><[n[N(h)C(h)]/[Nz+nc(h)] -1 N(h)] (forj=3)
[z defined in (3.10)]. |

Proor. We derive from (3.6) for j = 1,2,3,

N(h)] N(h) [ 1 1 ]

MSE( y; p;, ) z[

s1o New) =1 M) 7i(h)  N(h)

1

(8.19) N(h)] N(h) 1 1
SZ[ N(w) — 1o )[ na,(h) — 1 N(h)]

[see the left-hand part of (3 15)]. (3.19) achieves its maximum at o, (k) = c*(h)/4
if j = 1. For j = 2 and j = 3 we have the restrictions

N(h)

zTayy(h) <c? [see(3.2)],
il °((hh)) <e [see (33)],

respectively, and the maximum of (3.19) is achieved in a corner. The lemma
follows. O

4. Sequences of stratified populations. In this section we consider se-
quences of populations, parameter spaces and sample sizes as stated in Section 2.
In addition we assume that the auxiliary variable only has finitely many possible

-values as the population size goes to infinity. These values are denoted by
c(1), ¢(2),...,c(H)and 0 < ¢(1) < ¢(2) < --- < ¢(H) is assumed as earlier. We
define for h =1,2,..., Hand » = 1,2,...,

U (h) = {i € UM; 2 = c(h)}
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and use N®X(h), y*)(h) and o})(h) in a straightforward sense. Hence we have
to replace O, by

0" = {y:0 <y < c(h) fori e U(h); h=1,2,..., H}

and analogously ©, by ©§” and 0, by 0§".

Under the conditions of this section the distribution functions G®, » = 1,2,...
(defined by x, » =1,2,..., in Section 2), are step functions with steps at
c(1), ¢(2),..., c(H). We assume

NO(R)
(4.1) B(h) = hm No > 0
for h =1,2,..., H [see (2.2)].
Subsequently (in Section 4) the superscript » will be suppressed

LEMMA 4.1. Consider a sequence of stratified strategies (p, t) with existing
limits
( )
(4.2) a(h) = hmE h=1,2,...,H.

Then a(1), a(2),..., a(H) > 0 implies

llmlnfnsupMSE(y, D, t) > —Z,B(h) 2(h)[ﬁéh; ] (forj=1)
B(h) .
>cmax[ D) f] (forj=2)
& B(h) a
_Wmaxc(h)[m—f] (forj = 3).

If h exists with a(h) = 0, then forj =1,2,3,
liminfnsupMSE(y; p, t) =
v )i
Proor. Define for i =1,2,...,N; h=1,2,...,H; ¢>0(and » = 1,2,...),

yi(h, ¢) = {e, for i e.U(h),
0, otherwise.

For the vector y(h,¢) € RV with these components we compute 0,(1) =
0,(2)= -+ =9,(H)=0and

_ e, ifk=h,
(k) = {0, otherwise.



ASYMPTOTICALLY MINIMAX STRATEGIES 1309

Hence for ¢ sufficiently small, y(h,¢) € ©, for j =1,2,3, h=1,2,..., H, v=
1,2,..., and
(h)

(4.3) supMSE(y, p,t) > MSE(y(h e); p,t) =’E [T(n h) — _N—]

We assume liminf nsup MSE(y; p, t) < co. By (4.3) we derive for A =
1,2,..., H and K sufficiently large,

K > nE['r(n, h) — g—(l\/{l_)] =nvart(n, h) + n|Er(n, h) — &;2]
and consequently
(4.4) lim Et(n, k) = B(h),
(4.5) lim E72(n, h) = B%(h).

From (3.4) we get

N n
n MSE(y; p, t) = EY0,(h)7%(n, h)(_(T - N—N_)

(4.6) " n N
= Zoyy(h)[ETz(na ) (k) N]—V—(T)ETz(n, h)],

where 7%(n, h)/n(h) is defined to be 0 for n(h) = 0. With the last definition,

W‘/ﬁm, h);(—"h—) — (n, )

n(h)

and therefore,

(4.7) E Er%(n, h) (h) > [Er(n, h)]%.

By (4.1) and (4.4), lim En(h)/n > 0 and

n [E'r(n h)]2
B, b)) 2 Ela(m)]/n

for h = 1,2,..., H and for » sufficiently large. Consequently, (4.6) and (4.7) give

[ET(n, h)]2 n
E[n(h)]/n N N(h)

nMSE(y; p,t) > Y 0,(h) Er%(n, h)|.

With
[Er(n,R)]> n N
AR) = Ea()l/n ~ N Nh)

Er%(n, h)
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we have, therefore,

c*(h)
4

supn MSE(y; p, t) > ). A(h) (for j = 1)
Q.

J
2

(4.8) > max WA(h) (for j = 2)
c%(h) )
= m’?x WA(h) (fOI'] = 3)

By (4.4) and (4.5),

limA(h) = B(h)[% - f] forh=1,2,..., H

and the lemma follows from (4.8). O

LEMMA 4.2. For an arbitrary strategy sequence ( p, t) we have
.. 1 12 .
lim inf nsup MSE(3; p, £) 2 ¢ [[ZA(R)e(R)]" = TZA(R)(R)]  (forj=1)

>cX(1-f) (forj=2)
c%
= SA(h)e(h)
where { is the unique solution of [see (3.10)]

(forj = 3),

Proor. The set
A= {(a(l),a(2),..., a(H)):a(l),...,a(H) 2 0; Ya(h) = 1}

is compact. So there exists a subsequence of strategies with existing limits (4.2)
and it is sufficient to prove the lemma for this subsequence.

It is not difficult to see that, starting with an arbitrary strategy ( p, t), we find
a stratified strategy (p,f) with the same sample size as (p, t) and with the
property

sup MSE( y; p, ) < supMSE(y; p,t) forj=1,2,3.
; 9;

[This is a consequence of the symmetry properties of the sets ©,, j = 1,2, 3. See
Blackwell and Girshick (1954), page 226.] So it is sufficient to prove the lemma
for a sequence of stratified strategies (p, ¢) with (4.2), as considered in Lemma
4.1.
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It is easily seen that the minima of the functions
B(h) B(R) ,3( )
B(h)c%(h [ , max|—— —f |, axc c(h
defined on the set A are
2
[Z8(R)e(B)]” - fEB(R)H(R),  1-f, g,

respectively. The assertion follows with Lemma 4.1. O

We evaluate the limits of (3.16), (3.17) and (3.18) and obtain by Lemma 4.2:

THEOREM 4.1. Let ¢(1), ¢(2),..., c(H) be the possible values of the auxiliary
variable and assume that H is fixed as the population size goes to infinity.
Assume, furthermore, (2.1), (2.2) and (4.1). Then

limnr(©;, A)

= lim iIAlf supn MSE(y; p, t)
v 9;

- %[[Zﬁ(h)c(h)]z - fZB(h)C2(h)] (forj = 1 provided f < c((ilz)))
=c*(1-1) (forj = 2 provided f < 1)
R (forj=3providedfgcz(—1))
YB(h)c(h) 2
[see (4.9)].

From Lemma 3.1 and Theorem 4.1 it is evident that stratified sampling with
x-proportionate allocation is asymptotically minimax with respect to ©,. Strati-
fied sampling with proportionate allocation is asymptotically minimax with
respect to ©,, and the allocation defined in (3.9) leads to a strategy which is
asymptotically minimax with respect to ©;. We are interested in finding other
strategies with the asymptotic minimax property.

THEOREM 4.2. Assume the conditions stated in Theorem 4.1. Then the ratio
strategy (p, t), where p denotes srs of size n and t = xy,/X,, is asymptotically
minimax with respect to ©,.

ProoF. Define z(h) = ¥(h) — ye(h)/x and t(n, h) = xn(h)/L n(k)c(k).
Then, by (3.4), with u(k) and v(h, k) appropriately defined,

MSE(y; p, t) = Zh:u(h)oyy(h) + hz,kv(h, k)z(h)z(k).
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As is well known, n MSE( y; p, t) converges to
(1 =) XB(h)[0,,(R) + 2*(h)].

Since MSE(y; p, t) is a polynomial in 2(1),...,0,/1),..., the convergence is
uniform on every compact set, especially on

C(e) = {(2Q1),..., 2(H), 0,(1),..., 0,,(H)):
YB(R)[o,(h) + 2%(B)] < c®+¢f, e>o0.

Now, for » sufficiently large,

€% = { {200y 2(H), 0,1, 0 (H)): T M) () + 22()] < )

is a subset of C(¢) and, taking into account the uniformity of the convergence,
we derive

lim supn MSE(y; p, t) < lim supn MSE(y; p, t)
voew Yo C(e)

= sup limzn MSE(y; p, t) = (¢* + e)(1 - ).
C(e) ¥

The minimaxity of (p, t) is, therefore, a consequence of Theorem 4.1. O
THEOREM 4.3. Assume the conditions stated in Theorem 4.1. Then the
RHC-strategy is asymptotically minimax with respect to O, if (and only if ) the

sampling fraction n/N converges to 0.

ProoF. For the RHC-strategy ( p, t) we have

MSE(y;p,t)=i(l—ﬁ)—N—l z(y~—zx~)2
n N/N-1N“x\"" x°
and, therefore,
c? ny N
sgapMSE(y;p,t) = ;(1 - N)N— I

Consequently

v

limnsup MSE(y; p, t) = ¢*(1 - f).
6,

Now, it may be shown that for { defined in (4.9),
c%
LB(h)c(h)

with equality if (and only if) f = 0. Hence the RHC-strategy is (only) asymptoti-
cally minimax for ® = @, if the sampling function n/N is small, i.e., converges
tof=0.0

A1-1) <
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5. Sequences of nonstratified populations. It is desirable to drop the
assumption that the populations U™, » =1,2,..., are divided into a fixed
number of strata (and that the parameter spaces are symmetric with respect to
permutations within the strata). This may be done without difficulty for the
Scott—Smith parameter space 0,.

THEOREM 5.1. Assume (2.1), (2.2) and the existence of x,, x,, with 0 < x, <

¥ <x, forallice U™ and v = 1,2,.... Assume, furthermore,
(5'1) 0< f < xO/xoo,
(5.2) T is strictly increasing on (x,, x,].

Then, for ©,, (2.3) is true.

PROOF. (Superscripts suppressed.) The interval (x, x.,] is divided into H
parts of equal length (x,, — x,)/H. We define

xco_xO
c(h)=x,+h T h=1,2,...,H.

Forie U wefind h=1,2,..., H with
Xy —

(k) - 2 <x; < c(h)

and define x;"= c(h). x* is used to define the approximations

0= {y:0<y <x forallie U},

x x
ey = {y;ogyigx;f— °°H % forall i U}

of ©,. Evidently ©;c ©, c 6.
Denote the minimax values for the spaces ©,0,,0; by r~, r, r*, respec-
tively. Then

(5.3) r-<sr<rt.

Now (5.1) implies (3.12) for » sufficiently large and according to Theorem 4.1 we
have

4limnr*= [LA(h)e(h)]" ~ fLB(R)cX(h),

where [see (5.2)]
X — X

B(R) = T(c(h)) - I‘(c(h) - ) > 0.

Hence

) 2
4lim limnr* = [/gdr] - ffg2dr
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and by analogy
2
- _ _ 2
4lim limnr == [fgdr] f[¢2dT
so that the theorem follows by (5.3). O
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