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GENERALIZED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR
LOCATION-SCALE MODELS WHEN THE NUMBER OF
CLASSES TENDS TO INFINITY

By F. C. DrRosT
University of Tilburg

In this paper we consider generalized chi-square goodness-of-fit tests
based on increasingly finer partitions (as the sample size increases) for models
with location-scale nuisance parameters. The asymptotic distributions are
derived both under the null hypothesis and under local alternatives, obtained
by taking contamination families of densities between the null hypothesis
and fixed alternative hypotheses. If the number of random cells increases to
infinity, the Rao—Robson—Nikulin test statistic is shown to be superior to the
Watson-Roy and Dzhaparidze-Nikulin statistics. Conditions are derived
under which it is optimal to let the number of classes tend to infinity.

1. Introduction and summary. Let Y),...,Y, be iid. real valued random
variables with an absolutely continuous distribution FY. A classical goodness-of-
fit problem is to test the composite null hypothesis that F¥ belongs to the
location-scale family induced by F,

1.1) Hy:FYe%,={F*(-;9 =F——M;peIR,a>0,
0 o

where & = (p, )’ denotes the unknown location-scale parameter.
Well-known omnibus goodness-of-fit tests for (1.1) are chi-square type tests.
Suppose that the real line is partitioned into & cells

Ik::('l?) = ([L-l-a,"«_lo,p,-l-akio], i= 1,..., k,

where —o0 = a,, < -+ < a,, = oco. Denote the number of observations in the
ith cell by

N,(®) = #{J';Y}GI;;'E(O)}, i=1,...,k,
and denote the probability of the ith cell under F* (-; 4) by

Dt = dF*(y; 9) = [ dF(y), i=1,...,k.

L) (@pi—1s Qp;

It is customary to use equiprobable cells. Hence we choose the constants a,; such
that

Pu=1/k, i=1,... k.
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Define the random k-vector V,(#) by its components
Vi (8) = (Nu(8) — n/k)/(n/k)?,  i=1,...,k.

Let &, be some estimator of the unknown nuisance parameter ¢. In the
present framework it is natural to consider chi-square statistics based on random
cells. For fixed %, Moore and Spruill (1975) derived the limiting distributions of
quadratic forms in V,(4,),

where T, is a symmetric nonnegative definite £ X & matrix. Classical examples

in the Moore—Spruill class are [cf. Roy (1956), Watson (1957, 1958), Nikulin
(1973), Rao and Robson (1974) and Dzhaparidze and Nikulin (1974)]:

1. The Watson-Roy statistic WR,, = |[Vi(8,)I|2 = Vi(8,)Vi(9.).
2. The Rao—Robson-Nikulin statistic RRN, = V)( 5,,)’2 % Vi(3,).
3. The Dzhaparidze-Nikulin statistic

DN, = V,(8,)[ . - By«(B;B,) 'Bi|Vi($,

where I, is the £ X & 1dent1ty matrix, B, and 3, are deﬁned in (2.4) and

@.7).
The Watson-Roy statistic is the Pearson statistic based on random -cells.
Asymptotically WR,, is distributed as a weighted sum of chi-square variables.
Nikulin (1973) and Rao and Robson (1974) apply Wald’s method to the random
k-vector Vk(ﬁ ). Dzhaparidze and Nikulin (1974) project V,,( ) on the orthogo-
nal complement of the column space of B,, [col(B,)], removing perturbations due
to the estimator 1‘) (cf. Lemma 5.1). These two statistics have limiting chi-square
distributions.

To study the behaviour of M, for a broad class of alternatives, let G, be any
given alternative and consider the contamination family of locatxon-scale distri-

butions
TR
gln = {Gl*n('; 1?) = Gln(T)

=(Q1- nn)F(%i) + nnGl(;.—“); LER,0> 0},
where 7, —» 0 as n —» oo. Assume that
1,=n""2y +0(n %) asn -
for some fixed y > 0. For the local alternative hypothesis
(1.3) H, FYey,

this rate results in an asymptotic local power (ALP) between a and 1 when £ is
fixed.

Tumanyan (1956), Steck (1957) and Morris (1975) proved the asymptotic
normality of the classical Pearson statistic when %2 — oo and no nuisance
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parameters are present. Although several authors claimed (without proof) that
the limiting distribution results for MS, of k fixed are easily extended to the
case of an increasing number of classes, nontrivial problems arise in the remain-
der terms due to the growing dimension of V,. It seems impossible to obtain
useful asymptotic properties for the whole Moore—Spruill class when k& — o,
because T, depends on k and the class of all & X k& matrices is too large when
k — oo (cf. Example 4.1). Moreover, Vk(ﬂ ) has a more complicated covariance
matrix than V,(9). This motivates the following subclass of the Moore—Spruill
class:

(1.4) X2 = Vi(9,) [ I, — DuD; + DyA(k)D;] Vi($,),

where D, is the matrix with orthonormal columns defined in the line preceding
(2.8) and A(k) is an arbltrary symmetric nonnegative definite matrix. The
matrix I, — D, D;, projectsV, (0 ) in such a way that noise due to 0 is removed
[similar to the approach of Dzhaparidze and Nikulin (1974); cf. Lemma 5.1]. The
second part D, A(k)Dj creates a large degree of freedom in directions sensitive to
the estimator 0 [cf. Rao and Robson (1974), Hsuan (1974) and McCulloch
(1985)].

In the presence of a location-scale nuisance parameter the statistics X2 have
normal limiting distributions when 2 — o both under H; and H,, (Theorem
3.1). This is our main result which permits some interesting conclusions.

It is well-known that, for fixed &, the Rao—-Robson-Nikulin test is uniformly
at least as efficient as the Watson-Roy test in the sense of approximate Bahadur
slopes [cf. Spruill (1976)]. The analogous result for Pitman efficiencies is not true
[cf. Drost (1987a), Moore (1977) and Le Cam, Mahan and Singh (1983)]. If
k — oo, however, RRN, is at least as efficient in the sense of Pitman as WR,
and DN, (Corollary 4.1):

(1.5) e,(RRN,WR) = ¢,(RRN,DN) > 1.

This supports the conclusions of the simulation study of Rao and Robson (1974)
where RRN, is found to be substantially more powerful than WR,. See also
Section 4 for a small simulation study.

Kallenberg, Oosterhoff and Schriever (1985) developed a simple criterion for
keeping the number of classes 2 bounded (or not) for the classical Pearson
statistic. We obtain a similar criterion for X2 Let 8, denote the noncentrality
parameter of X?2. Then (cf. Remark 3.2)

: e _ [0 2 1.: small &
(1.6) lim 8,/81/2 = {oo — ALP of X2 highest for{k all k.
Since 8,/k'/? tends to infinity for heavy-tailed alternatives we recommend a
large number of classes if one is mainly interested in heavy-tailed alternatives. A
small number of classes is proposed for light-tailed alternatives since then
8,/k/%* > 0as k - oo.

For fixed % the limiting distributions of X? depend on the estimator 0
If k — oo, however, and if the largest elgenvalue of A(k) is o(k'/?) the depen-
dence of ¥, disappears. Examples are WR, and DN, (generally the limiting
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distribution of RRN, depends upon the estimator when % — o0). Hence the
efficiency comparisons in (1.5) remain valid even if different estimators are used
in the test statistics WR,, RRN, and DN,,.

The Watson—Roy statistic also appears in density estimation theory. Under
slightly different conditions Bickel and Rosenblatt (1973) obtained the limiting
distributions for WR, under H,, and light-tailed alternatives when & — co.

2. Assumptions and notation.

2.1. Assumptions on the distributions. Denote the gradient with respect to
¢ by v, (V4 transposes V), let E, {0(Y)} denote the expectation of v(Y) with
respect to G, (E, and E, denote expectations with respect to F and G,), let the
symbols 0, 0,,0 and O, have a componentwise interpretation if they are used
for vectors or matrices and put ¢, = (0,1). Denote the densities corresponding
to F*(-; 9) and F(-) [G£(; #) and Gy, ()] by f*(-; 9) and f(-) [g2(-; ) and
81,(*)] and assume the following regularity conditions:

C1) (a) (Vx, y € R)|f(x) — f(y)] < Lx — »l,
(b) |y1|iflwyf(y) =0,
(©) Ey{|lvylog f*(Y; 9)lg_s,)I?} < o0,
(d) G, is differentiable with derivative g,,

() M; = supgy(y) < oo.
yeR

Note that (Cla) implies the existence of a derivative f’(-) of f(:) with respect
to F a.e. Condition (Clc) implies the finite existence of the Fisher information
matrix J, = 6%J, where

J = Eo[Vylog f*(Y; 9)l5=07 5 l0g f*(Y; 9)lgms, |-

2.2. Assumptions on the estimator 9§,. Assume that 4§, is location-scale
equivariant and admits the pointwise representation

R n Y — Y. — Yn_
(2.1) n1/2(0n—1‘})=n‘1/2ozh( - ”)+an( B ”),

i o o
where A:R — R? is the vector-valued influence function and Q,: R” —» R? is the
remainder. Assume
(C2) () E{A(Y)} =0,

(b) E[M(Y)M(Y)]=A",
(©) E{IA(Y)|I?} < oo,
(d) @,Y;,...,Y,) = O (1) under F and under {G,,} as n = oo,
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where A is a finite nonsingular matrix. Condition (C2) implies that 0
Vn -consistent under H, and H, :

(2.2) n**(§,— 9) = 0,(1) under H, and H,,,.

Under regularity conditions Bickel (1982) showed that the maximum likelihood
estimator 9 MU admits the representation (2.1) with @, = 0,(1) and
(2.3) MY (y) = 7wy log f*( 5 9)ls-s,

= =J (' (2)/f(5),1 + 3 (3)/(2)),

implying A = J.

2.3. Further definitions and notation. Let I,; be the interval
Iy = I5(%0) = (apiy, anl, i=1,...,k.
Define the k£ X 2 matrices B, and C, by their ith rows
B, = kl/2f v log f*(; ?)ls-s, dF(y)
(2.4) Ilzl
= B2 f(apio1) = f(@ri)s @pio1f(@riz1) — apif (@)l

@8)  Cu= W7 [ hoyaF(y)) -4

i=1,..., k. Note that C, = B, when using 5;‘“ [with A from (2.3)]. Using
Lemma A of Kallenberg, Oosterhoff and Schriever (1985) and the Cauchy-
Schwarz inequality, the assumptions imply in the general case

(2.6) B{B,=0(1) and CiC,=0(1) ask — oo.

Straightforward calculation shows that the asymptotic covariance matrix under
H, of the nonvanishing part of Vk(l‘) ) is given by [cf. Moore and Spruill (1975)]

(2.7) =1, - Qka + (B, — C,)A™(B, - C,) — C,LA™'C},

where g, = (k~V%,..., k~'/2). This matrix does not depend upon the location-
scale parameter. Note that llg,ll? =1 and ¢;B,, = q;C;, = q;Vi(¥) = 0. Let D,
be a matrix with orthonormal columns such that col(D,) = col([ B, C,]) and let
¥ (k) be the nonnegative definite matrix

(2.8) ‘I’(k) = Dlészk'
Then
(2.9 2, =1, - q}— D,D; + D¥(k)Dy

as may be seen by substituting (2.8) in the RHS of (2.9). Note that the
Moore—Penrose generalized inverse =} of Z, is given by [cf. Rao and Mitra
(1971), Chapter 2]

2¢=1, - g9} — D,D; + D¥(k)" D;.
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Hence, the classical generalizations WR,, RRN, and DN, of the Pearson
statistic belong to the class (1.4) with A(k) = I, p, ), ¥(k)"* and 0, respectively.
Let m,; be the ith cell probability under G}*(-; &),
Thi = dGl*(y; 19)=_/‘dGl(y)’ i=1’°":k’
I () I,
and define the k-vector d, by its components

dy =Yk (my— k'),  i=1,... k.

Finally define 8}, the noncentrality parameter §,, the location parameter m,
and the variance parameter s? by

8¢ = IA(R)*Dj(dy, — ¥BLE{R(¥)))II%,
8, = I[L, — DDy ]dul* + 8%,
m,=kFk+34,,
sf =2k + 48,.
The last two terms are the leading parts of the expectation and the variance of
X2 Note that, under H,, §, = 0 and thus m, = k and s? = 2k.
2.4. Assumptions on the rate of k. Let k = k(n) be a particular choice of
the number of cells and assume
(C3) (a) k> o0 asn — oo,

(b) lim max 7,; =0
koo 1<ick ©

() n VX1 + k72X, )k210g? 2k = o(1) as n - oo,

where A, is the maximum eigenvalue of A(k). For test statistics with A, =
O(k'/?) condition (C3c) implies that the maximum number of classes is slightly
less than n'/4; examples are WR,, and DN,. We end this section with some more
technical conditions involving k&:

(C4) () Qu(Yy,..., V) = o, (R/4/(L + Ap)'?)
under F and under {G,,} as n — oo,
(b) tr(A(R)2¥(k)A(k)/?) = o(k'/?) as k - oo,
(c) n~Y2max{a%,, aj,_,}log™®%?k = 0(1) asn — .

The curious condition (C4a) is often implied by (C3c) because @, is usually of
order O,(n~'/*) [Serfling (1980), Chapter 2, proves this for estimators based on
quantiles; for regular estimators one even expects @, = O (n~'/?)].

2.5. The role of the function h. Consider statistics which do not depend on A
through C, and suppose A, = o(k'/?) (examples are WR,, and DN,,). Then the
representation (2.1) is not necessary to obtain Theorem 3.1 but (2.2) suffices.
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Taking, however, h = 0 and A = A~! = 0, we can incorporate these cases in the
framework of (2.1). Thus assuming A, = o(k'/%) and (2.2), we omit the condi-
tions (C2) and (C4a, b) [to delete (C4b) use tr(A(k)) = O(A,) = o(k'/?) and
derive from (2.6) that tr(¥(k)) = O(1)]. In these cases the limiting distributions
do not depend on the estimator. All effects are incorporated in the negligible
remainder term @,.

3. Main results. In this section the limiting null and alternative distribu-
tions of the test statistics X? for the testing problem H, versus H,, are given.
All proofs appear in Section 5.

THEOREM 3.1. Consider the statistics X2 for testing H, against the family of
alternatives (1.3) determined by G,. Assume (C1)—(C4). Then

(3.1a) (X7~ k)/(2k)"* >4 N(O,1),
(3.1b) (X2—my) /s, -4, N(,1) if li;ensup 82 /s, < 0,
(3.1¢) (X2-k)/(2k)* >, o if Jim 8/, = oo.

REMARK 3.1. Obviously Theorem 3.1 continues to hold if ¥ is either a
location or a scale parameter.

In the remainder of this section we state some corollaries concerning the
number of classes and the relative efficiency of test statistics of type (1.4).

It is common practice to choose the local alternatives such that the ALP is
bounded away from a and 1. So the additional condition on ;* in (3.1b) is quite
natural, since otherwise there exists a subsequence of { X} for which the power
tends to 1. This is further elaborated in Corollary 3.2. Asymptotically the ratio
of the noncentrality parameter §, and the square root of &£ determines the power

Ba(er’ n, Hln) = Pln(Xr?(Yl" A Y;z) > ck)
of the test X2, where the critical values c, are given by

¢, = int{c; Py X2(Y;,...,Y,) > ¢) < a.

COROLLARY 3.2. Assume (C1)—(C4). Then
o

. 2 — . . 1/2 _ 0
(3.2) lim B(X2,n, Hy,) = ] iff lim 8/k2 = (.

REMARK 3.2. The ALP is between a and 1 for bounded k. If 2 — oo the
ALP is smaller () if 8,/k'%2 > 0 and higher (1) if §,/k'/2 > 0. Thus under
appropriate conditions relation (1.6) is implied by Corollary 3.2.

To evaluate the relative efficiency of test statistics of type (1.4) we introduce
some more notation. Let Sf” be a statistic of type (1.4) induced by the matrix
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A(k)® and the estimator & (i = 1,2). Define the sequence n,(n),
ny(n) = min{n;; B(SP, n, Hy,) = BSZ,,), 1, Hy,) < 0}.

The Pitman efficiency of S{" with respect to Sf? is defined by

e,(S?,8®) = lim ny(n)/n

provided that this limit exists. In Corollary 3.3 it is shown that the relative
performance of S{" and S{? only depends upon the ratio of their noncentrality
parameters 8§ and §2.

COROLLARY 3.3. Assume 8/(2k)/2 - ¢,,0 < ¢, < o0, and 8§ /(2k)/? —>
¢y, 0 < ¢, < 0. Suppose that Theorem 3.1 holds both for S{V and S for all
sequences of contamination factors n, = n~2y + o(n"'/%),0 < y < c0. Then

(3.3) e, (8D, 89) = ¢ /c,.

REMARK 3.3. This corollary resembles Theorem 5.1 of Shirahata (1976); the
dependence upon k in relation (5.4) of Shirahata (1976) disappears when 2 — oo.

REMARK 3.4. The scope of Corollary 3.3 seems rather limited because
lim, , 8,/k'/2 = 0 or co in “most” situations. Then the powers of X? tend to a
or 1 under H,, (Corollary 3.2). This suggests that the rate 7, =n"'2y +
o(n~'/2) is not automatically appropriate when 2 — co. If more generally one
chooses 7, such that nn28,,,/k(n)"/? has a positive finite limit [for a given
sequence k(n)], Theorem 3.1 can be extended to cover such alternatives [cf.
Drost (1987b)] and Corollary 3.3 is still applicable.

4. Applications. We now investigate the implications of the previous re-
sults for the statistics WR,, RRN, and DN,.. The Rao-Robson-Nikulin statis-
tic is not precisely defined in Section 1 because we did not specify the generalized
inverse of Z,. Although the exact distribution of RRN,, depends upon the choice
of =, in several examples where r(2,) < & — 1, the limiting null distribution of
RRN,, is generally independent of this choice when £ is fixed. Example 4.1 shows
that the choice of =, is more delicate if £ — oo.

ExXAMPLE 4.1. Consider the Laplace null hypothesis with unknown location
Hy: f¥e {}exp(—|- —pl); p € R},

let i,=med(Y,...,Y,) and let 2= k(n) be a sequence of even numbers
tending to infinity such that k%log®?k = o(n'/%). The null hypothesis condi-
tions of Theorem 3.1 are easily verified, implying that WR, and DN, = RRN,
(with the Moore—Penrose generalized inverse) are asymptotically normal with
parameters 2 and 2k. To show that the asymptotic distribution of RRN,
generally depends upon the choice of the generalized inverse of Z, consider the
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generalized inverse
EI;= Ik + cnnq,;"q,;'",

with (c,) an arbitrary sequence and g = (—k V2% ..., -k V2 k™12
..,k~12). Then
RRN, = V(3,3 Vi(d,) = WR,+ {° it n |
n = k(:u’n) k k(:u’n)A_ n c, n odd

and (RRN, — k)/(2k)'/? converges to a standard normal distribution only if
¢, = 0 as n - . In general the standardization depends upon ¢, and hence
upon the generalized inverse.

This example also shows that one cannot expect to obtain a useful limit
theorem for the whole class of Moore—Spruill test statistics when & — oo.

To avoid pathological behaviour we restrict attention to the Moore-Penrose
generalized inverse 2; of X,; from now on we assume that

RRN, = V,(3,)2; V,(4,).

To make comparisons of WR,, RRN, and DN, more transparent define the
modified Dzhaparidze—Nikulin statistic

DN, = V,(8,)'[ I, - D,D;1Vi($,),

which projects Vk(ﬂ ) on the linear subspace of R* orthogonal to col(D,). Note
that DN, = DN, when using the maximum likelihood estimator $M" and the
influence function M of Bickel (1982) [cf. (2.3)].

McCulloch (1985) proved that if one uses $M“ the Rao—Robson—Nikulin
statistic is the sum of the Dzhaparidze-Nikulin statistic and the positive
statistic for testing normality proposed by Hsuan (1974). Let ¥, be a more
general choice of the estimator and assume that the same function 4 is used in
the definition of DN, and RRN,. Then we have the inequalities

DN, < DN, < WR, and DN, < RRN,.
Similar relations are true for the corresponding noncentrality parameters.
COROLLARY 4.1. Assume ||d,||*/k'/? - ¢,0 < ¢ < co. Suppose that the con-

ditions (C1)-(C3) and (C4a, c) are fulfilled for D , DN,, WR, and RRN, and
assume D;d,, = o(k'/*). Then

(4.1a) e, (DN, DN) = e,(DN,WR) = 1
and
(4.1b) e,(RRN, DN) = hm sk FRN /||d,||% > 1.

PrROOF. The noncentrality parameters of WR,, DN, and DN, are equal to
ld,lI% + o(k'/%). Note also that condition (C4b) is fulfilled for RRN,. Applica-
tion of Corollary 3.3 yields the desired results. O
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Tedious calculations show that the inequality in (4.1b) is strict in several
examples where the alternatives are not light-tailed, e.g., consider the testing
problem of an exponential null hypothesis with unknown scale against the
contamination of two exponential densities,

Hy:FYe {1 — exp(—-/0); 6 > 0}
versus
H,:F¥e {(1-n""%)(1 - exp(- -/o)) + n~2(1 — exp(— - /40)); 0 > 0}.

Then e,(RRN, DN) = e (RRN, DN) = e (RRN, WR) > 1. Hence under mild
conditions the Rao—Robson-Nikulin test turns out to be the best of the classical
generalizations of the Pearson test if 2 tends slowly to infinity.

The theory is illustrated with a simulation study for a normal location and a
normal location-scale hypothesis with maximum likelihood estimators. Simula-
tions were performed on a CDC-Cyber using the FORTRAN programming
language, the STATAL random number generator and the statistical package
STAR. In Figure 4.1 simulated powers (based on 10,000 replications of a sample
size n = 100) are given for three kinds of alternatives: heavy-tailed, light-tailed

Tpover Jpover Tpover
r_.,-—"_-__—-_—_
8 .8 8
e
.4 T
-2 normal (0'=.75) -2 Gumbel
6 8 10 k 6 8 10 k 6 8 10 k
(a)
Jpover Jpover pover
8 .8 .8
/\—N\
1 A .6 N 6
Al —— o e .4 ",v"j::::. -----------------------
-2} Loplace 2l " normal mixture 21 Gumbel
(MI-Pz-w,
6 8 10 k 6 8 10 k 6 8 10 k
(b)
Fi1c. 41. —= RRN,, ---= WR,, and - - - = D,. (@) Normal location null hypothesis, fi, = Y,.

(b) Normal location-scale null hypothesis, (i, 6,) = (Y,, S,)-



CHI-SQUARE TESTS FOR LOCATION-SCALE MODELS 1295

and skew [other cases including nonmaximum likelihood estimators are reported
in Drost (1987b)]. Generally the Rao—Robson-Nikulin test dominates WR,, and
DN, = DN,. The influence of the choice of % is less strong than in Kallenberg,
Oosterhoff and Schriever (1985). At the heavy-tailed Laplace alternative in the
location-scale model it is even opposite to our expectations for WR,. In other
cases, however, a large (small) number of classes is preferable for heavy- (light-)
tailed alternatives [cf. also Drost (1987b)]..

5. Proofs. Throughout this section we assume without further references
the conditions (C1)-(C4). The proof of Theorem 3.1 is based on three lemmas.
The first one rewrites V,(%,) as the sum of V,(¥9,) and two remainder terms. The
last two lemmas investigate the influence of the error terms. Application of
Theorem 5.1 of Morris (1975) yields the desired result. Proofs are only given
under H,, and ¢ = 4, = (0,1)". Note that (2.2) implies that i, —»,0and 6, =, 1
if 9, is true.

Introduce the notation g(y)|% = g(b) — g(a); &(y)|% is similarly de-
fined. Let G,,(U) = [, dG,,(y) and let F, be the empirical distribution func-
tion of Y),...,Y,.

d
_lc

LEMMA 5.1 [Moore and Spruill (1975)].
(5.1) Vi(3,) = Vi(9o) = Bin'*(9, = ) + By,
where R, = R, + R,, are random k-vectors with components

Y - a
Bnt a6, ke

ﬁ'n tap, 16n

’
Q-1

Ry =pi*n'2(F(y) — G(¥)}

Y a Qay;
Bptapd, ki

ﬁn+aki—1ﬁn

Il
—
™

s 12
Q-1

Ry =Bkin1/2('§n - 00) + P "n'?G 1, (¥)

Proor. Direct calculation. O

LEMMA 5.2.
(5.2a) IR,I? = 0,(1) under Hy and H,,,,
(5.2b IA(R)>DiR,||2 = 0,(k/?) under H, and H,,,.
REVE P 0 n

PrROOF. The conclusions are implied by similar statements about R,, [part
(a) of the proof] and R,, [part (b) of the proof].

(a) The proof is based on a modification of Ruymgaart (1974). His theorem is
not directly applicable because for £ = oo the mean of 2 random variables is not
necessarily tight.

Let & > 0. Because of (2.2) there exists N, such that for all n,

P (n?9, — 9l > N,) < e/4.
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Let n, be a sufficiently large integer. Define intervals
Ji={yeER;ly—apl <c,+ (1 +ap)n”?N,}, i=1,...,k—1,
where the constants c,; > 0 are chosen such that for n > n,,
(5.3) G, (J,;)=2n""%10g"%k, i=1,...,k—1.
The construction is possible because of (C1) and (C4d). Note
P,(Aie{l,...,k—1}4,+ a6, & J,;)

=P (3ie{1,..., k= 1}lf, + a(6, = 1) > ¢, + (1 + |ay)n"/°N,)

< P, (n'?li,] > N,) + P, (n'%6, - 1] > N,) < ¢/2.
Let 8 > 0. Then for n > n, condition (C3c) implies

256n"1/%(1 + k~1/2\, ) k% log® 2 k < §.

Because ||A(k)Y2D}R,,||? < A.||R,,||?> the probabilities P,,(||R.||*> > &) and
P, (|A(k)"/2D}R,,||* = 8k"/?) are both bounded by

Pm( b (F(5) = Gual)} o™ -

<P,3ie{1,....,k—1}ji, + a,6, & J,;)

fip+api—16,

Qpy—1

2
) > 256n"12k%1og? % k

+PVie (1, k= 1}i, + @y, € Iy
aie {]‘"“’k - 1}'{Fn(y) - Gln(y)}

> 8n~3/4 log?’/“k)

ﬁn +ay, ﬁn
Qi

k-1
(G4) <e2+ Y Pl,,( sup |F.(U) — G (U)| = 8n~%/* 1og3/4k),
Ueg,

where ., = {U c J,; U is an interval}. To prove that the second term of (5.4) is
bounded by &/2 define the conditional probability

i=1

m(J) = Pm( sup |F(U) = G1,(U)]| 2 8n=**1og™* k|F,(J,;) =J'/n),

Ueyg,

ni

i=1,...,k—1; j=0,..., n. Then rewrite the second term of (5.4) as
I I N I L LR CICAR 70
j=n'2log"2k  j>n'?log%k

For n > n, it is easily seen that the first sum of (5.5) is bounded by ¢/(4k) using
(5.3), m(j) <1land

' Pln( Fn( Jni) < n_1/2 10g1/2 k) < Pln( ann( Jni) - Gln( Jni)l = n1/2 10g1/2 k)
< Cexp(—2logk) < ¢/(4k).
Next we show that the second sum of (5.5) is also bounded by ¢/(4%). Note that
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for j # 0 conditionally given F(J,;) =j/n,
511}; |F;z(U) - Gln(U)l < |Fn(Jni) - Gln( Jni)l

+G1n(Jni) sup |E](U) - éln(U)ly

Uey,

where G, is the conditional distribution of Y, under H,, given J,; and F} is the
corresponding empirical distribution function based on j observations [cf.
Ruymgaart (1974), page 902]. Define

mi(J) = Pia(IF(ds) = Gua(J)l = 4n~¥ 4 1og™* k|F,( ;) = j/n),
mi(J) = Pln( up IF(U) = G, (U)| = 2”14 1og‘/4k),
€A .

i=1,...,k—1;j=1,...,n. Using m(j) < m;(J) + m;(J) and Bernstein’s in-
equality [cf. Bahadur (1966), (12)], for n > n, the second sum of (5.5) is bounded
by

Z (Wli(f) + Wzi(j))Pm(F;z(Jni) =j/n)

j>n'""?log'? k
< Pln( nIFn( Jni) - Gln( Jni)l = 4n1/4 10g3/4 k)
+ Z Pln(

j>nl/2 logl/2 k

sup|F(5) = Gon(7)| = n~/*log

YER
XPln(F;z(Jni) =j/n)
< Cexp(—4log k/(1 + 2pn" /4 10g1/4k))

+ Y Cexp(-2jn""*log"? k)P, (F(J,) =j/n)
Jj>n'/%log? k

< 2Cexp(—2logk) < ¢/(4k).

Thus from (5.4) and (5.5) we obtain the desired result for R,,.
(b) A Taylor expansion of R,,; shows

Ryud < CRV2max(ady, aly)n2I18, = Soll(11, — Bll + n7V2).
Using ||A(k)Y2D;Ry,)|12 < A4l|R2ll% (b) is implied by (2.2), (C3c) and (C4c). O

LeMMaA 5.3.
(5.6a) I DiVi(80)1I> = O,(1)  under H,
and
(5.6b) IDi(Vi(Do) — di)I* = O,(1) under Hy,.
. 2
o A0y (00 - B~ 003

= 0,(k"?) under H,
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and

2

A(k)““’D,;(Vk(ﬂo) — dj, — Byn~'? z (n(Y) - Elnh(Yj)})

J=1

(5.7b)
= 0,(s,) under H,,.

ProoF. Evaluate the expectations of the LHS of (5.6) and (5.7) and show
that they are of the indicated order of magnitude. The proof is completed using
the implication

E{||IX,I?} = O(1) uniformin k= | X,|*= O,(1) uniformink. O
ProoF oF THEOREM 3.1. Note that Theorem 5.1 of Morris (1975) implies
IVi(BII2 = AN(k + ||d,]1%, 2k + 4]|d,||%) = Oy(k + [|d4lI*) = O(s) and also

note that col([ B,, C,]) is the kernel of the projection matrix I, — D, Dj. Thus
the first part of X? can be rewritten as

ILZ, = D D;1Vi(B.)1% = I L, — DuD;1(Vi(8o) + R,)II2
= IVa(8o) 11> — I1D;(Vi(60) — di)II* — I Ddell®
~2(Vi(8y) — d,)'DyDidy + [T, = DD R,
+2V, (%) [ I, — D,D;]R,
= AN(k + |[[ I, — DyD;1d,)1%, 2k + 4]|d4l|*) + 0,(ss)

[use the previous lemmas, D;d, = o(s,) and the Cauchy—Schwarz inequality for
the cross-terms]. Similarly we treat the second term of X2,

IA(R)2 DV, (8,)12
2

A(k)‘/“’D,;(Vk(ﬂo) —dy— Byn™? Z {n(y) - Emh(Yj)})

J=1

+IA(E)*D( Ry, — BL@,(Yy, ..., Y,))II* + 8} + cross-terms

=8} +0,(s) + op((é‘,;"sk)l/z)

[also use (C4a)]. The theorem follows. O

PROOF OF COROLLARY 3.2. The critical values of the test X? satisfy ¢, =
k + (2k)/%, + o(k'/?), where {, = ® (1 — «) denotes the upper a-point of the
standard normal distribution function ®. Because every subsequence of &} /s,
has a further sequence with a limit (finite or infinite) we assume without loss of
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generality that the sequence 6 /s, has a limit. If lim, _, 8% /s, < oo apply
B X2 n, Hyy) = Pu((X7 = my) /sy > =84/5, + £28)% /5, + (1)
- {¢1x iff 8,/s;, — {20
[using (3.1b)] and otherwise apply
B X2 n, Hy,) = P,((X2-k)/(2k) > ¢, +0(1) - 1
[using (3.1¢)]. Combination of these two results yields (3.2). O

PrOOF OF COROLLARY 3.3. Let a, = b, have the interpretation (V& > 0,
An, Vn>ng) la, — b,| <e Suppose 0 < c;,c, < oo-and let m = m(n) be a
sequence such that m < (=68 + ¢,/c,)n for some 0 < § < ¢;/c,. If m remains
bounded,

Ba(sl(e%in)’ m, Hln) = a< q)(cl - ga) = Ba(sl(el)’ n’ Hln);

otherwise

m 82 ' m
aS(2)m,m,Hn zq)——-——-(Ln—)—— zd)(——c— )
B( k(m) 1) (n (2k(m))1/2 g‘a n 2 §a

< q)((_s + 01/02)02 - ga) < q)(cl - ga) = Ba(Slgl)’ n, Hln)'

Similarly one proves for m = (8 + ¢;/cy)n (6 > 0),
Ba(sl(e%Zn)’ m, Hln) = (I)((S + 01/02)02 - g‘a) > (I)(cl - g‘a) = Ba(sl(el)’ n’Hln)

and thus e, (S, S®)=¢ /c,. If ¢, = 0 or ¢, =0, consider the sequences
m = Mn (M > 0) and proceed in a similar way to obtain e,(S®, S®) = 0. O
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