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ON THE BOOTSTRAP OF THE SAMPLE MEAN IN THE
INFINITE VARIANCE CASE!

By KeiTH KNIGHT

University of Toronto

Athreya showed that the bootstrap distribution of a sum of infinite
variance random variables did not (with probability 1) tend weakly to a fixed
distribution but instead tended in distribution to a random distribution. In
this paper, we give a different proof of Athreya’s result motivated by a
heuristic large sample representation of the bootstrap distribution.

1. Introduction. Let X;, X,,... be a sequence of independent, identically
distributed (i.i.d.) random variables (r.v.’s) from some distribution F. Given
X,,..., X,, we define the empirical distribution function F, as

Fi(x) = %k{:lﬂxk <x),

where I(A) is the indicator function of the set A.

We now take X;*,..., X * independent with distribution F, and consider the
distribution of the sample mean, X*, of the X 2*’s (“conditional” on X,..., X,).
This is called the bootstrap distribution of the sample mean, X, and, like F,isa
random distribution in the sense that it is a function of the observations
X, X,

The large sample behaviour of the bootstrap distribution is well-known when
E(X?) < oo; along almost all sample sequences, the distribution of

- = 1 2 -
n(X*-X)=— Xr-X
(X -B)= 1 % (% - X)
converges weakly to a normal distribution with mean 0 and variance ¢% =

Var( X)) [Bickel and Freedman (1981)]. More precisely, if 4} denotes the boot-
strap distribution of Vn (X* — X) and p is the (fixed) normal distribution, then

[Hx)un(dx) ~o.. [H@)n(dx) = [{(x)(@m) " 0 exp(—x%/20%) dx

for all bounded, continuous functions f; in other words, u* converges weakly to
p with probability 1.

Now consider a sequence r.v.’s { X}, which are in the domain of attraction of
a stable law with infinite second moment. This means that there exist constants
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BOOTSTRAP OF THE SAMPLE MEAN 1169
{a,} and {b,} such that
n
Sn = a;z_l Z (Xk - bn) ~d Sa’
k=1

where S, is a stable r.v. with index a € (0,2); see Feller (1971) for more details.
Athreya (1987) showed that the bootstrap distribution of the sample mean does
not converge weakly to a fixed distribution (as it does in the finite variance case)
but instead converges in distribution (with respect to the weak topology on the
space of bounded measures) to a random probability distribution. He showed
that the characteristic function of the appropriately centered and scaled boot-
strap mean converges in distribution on the space of continuous complex valued
functions to a limiting random characteristic function; it can be shown that
convergence in distribution of characteristic functions is equivalent to conver-
gence in distribution of the corresponding random probability measures (with
respect to the weak topology). Athreya also finds a representation for the
(random) characteristic function of the limiting random distribution in terms of
a nonhomogeneous Poisson process. (In this paper, —, will be used to denote
convergence in distribution of random elements on several different spaces; the
relevant space should be clear from the context.)-

The purpose of this paper is to present a different proof of Athreya’s result.
This “probabilistic” proof is motivated by a heuristic large sample representa-
tion of the distribution of the bootstrap mean.

2. Results. Assume that X|,..., X, are i.i.d. r.v.’s in the domain of attrac-
tion of a stable law with index a € (0, 2). Taking X;*,..., X,* from the empirical
distribution F,, we consider the distribution of the normed sum

n
(1) S =a,' X (X -b*),
k=1

where b* = X = E*(X;*) and the constants a,, are such that
nP(X,| > a,x) > x™* asn— .

(All r.v.’s which are generated by bootstrap sampling are superscripted with an
asterisk; P* and E* denote probability and expectation for such r.v.’s.) Note
that if X,,..., X, are regarded as fixed constants, then S* has the same
distribution as

n
a;l E Xk(Mr:;e - 1),
k=1

where (M%, M)%, ..., M,*) is a multinomial random vector with n trials and
each cell probability n~!. It is easy to show that for large n, this random vector
has approximately the same distribution as a vector of n independent Poisson

r.v.’s with mean 1; more precisely
(M%,...,M*.0,0,...) >, (M*, Mg,...),

nn’
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where the limit is a sequence of i.i.d. Poisson r.v.’s. This suggests that for large n,
n
Sk =q 0, X X (M - 1),
k=1

which in turn suggests that the large sample behaviour of the distribution of S*
may depend on the large sample behaviour of the a,'X,’s.

We will now define notation snmlar to that found in Lepage, Woodroofe and
Zinn (1981).

1. Let Y, = |X,|and let Y,, > Y, > --- > Y, be the ordered Y}’s.

2. Let X,),..., X,,, be the corresponding X values and define §,, so that
Xk = 6,2Y s

3. Let Z,, = a,'Y,,.

4. Let p = llmx_,oo P(X, > x)/P(|X;| > x).

Using this notation, we can now state the following result, which will be
important in the proof of Theorem 2.

THEOREM 1 [Lepage, Woodroofe and Zinn (1981)]. Defining {Z,,} and {8}
as above,

(a) 2™ = (Z,,...,2,,,0,0,...) >, (2}, Z,,...) =1

(b) 8™ =(§,,...,8,,0,0,. ) =g (04, 0,,...)=19,
where 8,,8,,... arei.i.d. r.v.’s taking values 1 and —1 with probabilities p and
1 — p, respectively, and Z, = (E, + --- +E,)"Y* for an i.i.d. sequence of
exponential r.v.’s E,, E,, ... with mean 1. The limiting random sequences Z and
8 are independent.

Note that
n
Sn* =d* Z ankznk(Mn’l;e - 1)
k=1

and so Theorem 1 suggests that the bootstrap distribution of S* will tend, in
some sense, to the distribution of the r.v.

0
2 8 Zy(Myr - 1).
k=1

This r.v. is well-defined with probability 1 since E*[8,Z,(Mz* — 1)] = 0 for all &
and

> E*[zz(Mk* ~]= Lz <
k=1 k=1
with probability 1.

THEOREM 2. Let p}; be the random probability measure of S;* defined in (1).
Then

* *
n d ks
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where p* is the random probability measure of
(2) S* = Z 8 Zy( My — 1)
k=1
and 8,,8,,... and Z,, Z,,... are as defined in Theorem 1 and M*, M,*,... is
an i.i.d. sequence of Poisson r.v.’s with mean 1.

PrRooOF. We need to show that for all bounded continuous functions f,

8)  E[A(SH] = [Hx)ua(de) =4 [f(x)n*(dx) = E*[(S7)].
Since R is a complete and separable metric space under the metric
& e — il

d(x,y) = X

=i
i—1 1+ %, — vl
we can choose a probability space such that
d(Z™,Z) >0 as. and d(6™,8) >0 as.

We will show that on this probability space

[H@)a(de) > [f(x)u*(dx) as.
in which case (3) follows in general. Since Z, — 0 as k£ = 0, it follows that
Z 6nankI[an > 8](Mn”;e - 1) —a* Z 6leZkI[Zk > e](Mk"t - 1)1
k=1 k=1

where — ;. indicates that the convergence in distribution occurs with respect to
P*-probability (with P-probability 1). In addition,

E* ( i 8urZntd[Z,y, < e](MY, — 1)) ]
k=1

Y Z%1(Z,, < e]Var*(M,},)
k=1

n—1 n
+2 Z z 8nj8nanjanI[an < E]COV*(Mn* Mn*;e)

J?

k=1 j=k+1
n 2 n—1 n
< Z Zt%kI[an < E] + = Z Z ananI[an < 8]
k= Nopey jek+1

1
n
<2Y Z%1[Z,, <¢]
k=1
0

>2Y Z}[Z,<¢] as.asn— oo
k=1

-0 as.ase— 0.
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Hence

lim limsup P*

[ Z 6nIeanI[an < 8](Mn’;z - 1)
e—0 n— o0 k=1

>8}=0

with P-probability 1. Finally, it suffices to show that, with P-probability 1,

i 8:2,1[Z, >S e](M¥ - 1)

limP*l
k=1

-0

>8]=0.

This follows since

E* ( Y 8,2,1[Z, < e](Mp — 1))2} = Y 2212, < ¢]

k=1 k=1

-0 as.ase—0. O

3. Comments. (a) The characteristic function of the r.v. S* is simply

E*[exp(itS*)] = exp[ki (exp(itd,Z,) — itd,Z, — 1)]

= exp[f_ww(exp(itx) —itx — 1) dA(x)],

where A(*) is a Poisson process with intensity
E(dA(x)) = afs|~*~1[(1 - p)I(x < 0) + pI(x > 0)] dx.

(b) Athreya (1987) does not consider S* but rather
n
Tn* = Yvn—l1 Z (Xk* - b*)a
k=1

where Y, the maximum of the |X,|’s takes the place of a,. It is easy to show
using the same techniques as in the proof of Theorem 2 that the random
probability measure of T, * tends in distribution to that of

(4) T =Z' Y 8, Z,( My — 1).
k=1

More generally, we can replace a, and b* in the definition of S* by other
constants or r.v.’s and obtain similar results.
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Poisson approximation

-12

Bootstrap

Fic.1. QQ plot for n = 25.

(c) Theorem 2 suggests that for a given sample, X,..., X,, the distribution of
the bootstrap mean, X*, can be approximated by the distribution of

1 n

- E XkMk*’

nopa
where M*,..., M* areii.d. Poisson r.v.’s. Figures 1 and 2 illustrate this Poisson
approximation to the bootstrap distribution for Cauchy (a = 1) samples-of size
25 and 100. For each sample, 1000 independent replications of the bootstrap
mean and its Poisson approximation were made; these figures are “empirical”
quantile-quantile plots of the two distributions for n = 25 and 100.

(d) It is possible to show that the distribution functions corresponding to S*

and T* are continuous with probability 1. This can be done by looking at the
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characteristic functions of S* and T* but we will use the representations (2) and
(4) and the following theorem due to Lévy.

THEOREM 3 [Lévy (1931)]. Suppose that Y,,Y,,... are independent r.v.’s
and 8 = ¥2_,Y, is finite. If there exists no sequence of constants {a,} with

00
ZP(Yk#ak)<°°’
k=1
then S has a continuous distribution.

THEOREM 4. Let S* and T* be the r.v.’s defined in (2) and (4). Both S* and
T* have continuous distributions with probability 1. .

ProOOF. Note that if Y is a Poisson r.v. with mean 1, then for any x,
P(Y+#x)>1-—exp(—1).

By Theorem 3, it follows that the distributions can only be discontinuous
if 8,Z,=0 all but finitely often. However, this latter event occurs with
probability 0. O

(e) The phenomenon of convergence in distribution of bootstrap probability
measures occurs in other situations, for example, when bootstrapping the distri-
bution of the sample maximum. Consider the following example from Bickel and
Freedman (1981), page 1210. Let X,;, > --- > X, be the order statistics of an
ii.d. sample from a uniform distribution on the interval (0, §) and consider the
bootstrap distribution of

U = n(X(l) - X(’lk))/X(l)’

where X} is the maximum of the bootstrap sample. Ideally, U* should have the
same limiting distribution as

U, =n(0 - X)) /Xy
which has a limiting exponential distribution. However,
P (X% =Xy) = (1 - k—_l—)n - (1 - f)n
n n
- exp(—k + 1) — exp(—k) = p,
and
(n( Xy = X))/ Xy n( Xy = X)) /Xy
>4 (E,E, + Ey, E, + E, + Es,...),

where E,, E,,... are i.i.d. exponential r.v.’s with mean 1. Thus the distribution
of U* tends in distribution to the distribution of U*, where U* = 0 with
probability p, and U* = E, + ... + E, with probability p, ., for £ =1,2,....
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