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ON THE DETERMINANTS OF MOMENT MATRICES!

BY BRUCE G. LINDSAY

The Pennsylvania State University

An investigation is carried out in the behavior of the determinants of
certain moment matrices, for which the (i, j) entry is the (i + j)th moment
of a distribution F. The determinant can be represented as the expected
value of a U-statistic type kernel. The structure of the kernel illustrates how
the determinant carries information about the number of support points of
the distribution F. The kernel representation can be extended to the determi-
nant of a matrix of moment generating function derivatives, where the (i, )
entry is the i + jth derivative of the moment generating function of F. When
done, this reveals that this determinant is itself, as a function of £, a moment
generating function. When this somewhat surprising result is applied to
members of the quadratic variance exponential family, one obtains the result
that they are closed under this two-step operation of taking derivatives, then
computing determinants. This results in an elementary recursion for the
values of the moment determinants. The final result gives the convergence of
the moment determinants to the normal theory values under central limit
theorem conditions.

1. Introduction. Let F be an arbitrary univariate distribution function
with moments m, =1, m, = E[X], m, = E[X?],... and moment generating
function m(t), here assumed to be finite on an interval containing 0. The
objective of this article is to analyze the structure of the determinants of the
moment matrices

1 m m, -- m,
m, my, my )
ap M| =)
mp . . . m2p

i = 0»---:1’, j= Oa”"pa
and the corresponding Hankel matrices M (¢) = (m®*/)(¢)), whose entries are
derivatives of the moment generating function.

The key motivation for this analysis is the importance of these matrices in
describing certain fundamental properties of the underlying distribution [e.g.,
Uspensky (1937), Widder (1947) and Karlin (1968)]. Moment matrices also arise
in the study of optimal design for polynomial regression [e.g., Hoel (1958)]. In
this article we develop several new properties of the determinants of these
matrices, some of which are used in a sequel article [Lindsay (1989)] to describe
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712 B. G. LINDSAY

the behavior of moment estimators of mixing distributions. One particular
application in this article is evaluation of detM, for all members of the
quadratic variance exponential families. This result is achieved by establishing
several intriguing relationships for the Hankel determinants.

The first result, in Section 2, is a suggestive representation of det M. Let
Xy, Xy,..., X, be a random sample from F. Then it will be shown in Corollary
2B that

(1.2) detMp ﬁ l_[ (Xj—Xk)Z],

thereby extending to higher-order moments the relationship
detM, = Var X = LE[ X, - X,]°.

The latter is the well-known kernel representation of the variance used in the
theory of U-statistics [e.g., Serfling (1980)] and (1.2) is one natural extension.
[See Good (1975) for a different extension, via representation, to the higher-order
cumulants.] The method of constructing this representation is important as well,
as in this and the sequel article it will be used repeatedly to create useful and
informative representations of related matrices.

The representation (1.2) makes clear two other important attributes of det M ,:
(1) det M, is invariant under location changes in F; and (2) det M, is nonnega-
tive. Moreover, it equals 0 if and only if F is a discrete distribution with p or

fewer points of support as then, and only then, for every realization x,,..., x,
(on a set of probability 1) there will exist at least one pair of indices ( j, 2) with
X 3 =X ke

The second property indicates that there is a sense in which det M , general-
izes the idea of variance from “ variability about one point” to “ variability about
p points.” Hereafter we will use the notation v, for det M, to suggest this
aspect, with the variance thereby being v,. In the spirit of this aspect, it will be
shown in Section 2 that there exists a set of p points {r,..., r,} such that the
following generalized Tchebycheff inequality holds:

(1.3) P{ir}f (IX-rl}> s} < v,/v, €.

That is, Whpn the ratio v,/v,_, is small, we can be sure the distribution is
concentrated near the set of p-points. The Tchebycheff inequality (p = 1) is
useful for showing convergence in probability when the variance goes to 0;
inequality (1.3) can be used in a similar fashion to show weak convergence to a
p-point distribution when v, goes to 0 and the low-order moments converge. This
will be used in the sequel article to show consistency of a method-of-moments
technique.

~ Being a determinant, v, appears rather cumbersome to evaluate and awkward
to manipulate. The following results concerning moment generating functions
are useful in this regard, but also in themselves reveal a somewhat surprising

structure to the moment problem.
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Next, consider the moment generating function m(t), hereafter assumed to be
finite on some nonempty domain (a, b) containing 0. Let D* denote k-fold
differentiation with respect to t. It is well known that D?log m(¢) > 0; that is,
the moment generating function is log-convex. In particular, this implies that
mm” — m'? > 0, with equality only for degenerate (one support point) distribu-
tions. To generalize, let

[ m(t) m(t) m(t) - mP(t) ]
m'(¢) m’(¢t)
(1.4) M,(t) = | m"(¢)

m“’;(t) e . mep(¢) J

Observe that M ,(0) = M, and that det M,(¢) = m(¢)m”(¢) — m'(t).

Karlin (1968), page 73 has shown that V,(¢) :== det M (¢) is a nonnegative
function, being identically 0 if and only if F has p or fewer points of support.
Theorem 3A of this article presents the stronger result that V,(¢) itself has the
form [exp(tx)dp(x) for a finite nonnegative measure p. We will call such an
integral a moment generating function or mgf; it is also known as a
Laplace-Stieltjes integral. The total mass of p is V,(0) = v,. Thus the mapping
T,: m(t) — V,(¢) takes mgf into mgf, with a kernel correspondmg to all p-or-
fewer point dlstnbutlons Moreover, it will be shown that T, takes the n(0, 6?)
distribution into a measure which, when normalized to mass 1, is n(0, 6%(p + 1)).

Having thus identified V,(#) as a potentially important accessory to the
problem, a second important structural result, Lemma 3C, establishes a simple
recursion relationship for use in the construction of V,(¢) from {V,(¢): q < p}.
From the lemma one can deduce that the second ratios of the determinant
sequence, that is,

(1.5) A, =100, /02,

are basic elements in the analysis of the moment sequence. In fact, A, is simply
the variance of the distribution corresponding to the normalized mgf
_(8)/v,_,. In the n(0, 6*) model, therefore, A, is simply o”p.
We note as an aside regarding the interpretation of A, that it can be shown
that

p—1
(1.6) 0,/0,_, = inf {Var[X" - Y B X‘]}

i=0
That is, the ratio of consecutive moment matrix determinants is the residual
variance in the linear prediction of X? by 1, X, X2,..., X?~1. Thus, as a ratio
of ratios, A, represents the growth in the linear unpredictability of the pth
moment.

In Section 4, as a first application, the recursion methods of Section 3 are

employed upon the quadratic variance class of exponential family distributions
[Morris (1982, 1983)]. In particular, if F is any such distribution, then the
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distribution corresponding to V(%) is itself a member of the same quadratic
variance family. Moreover, the sequence {A ,} is linear in p for the normal and
Poisson distributions, and quadratic for the gamma, binomial and negative
binomial (Corollary 4C). _

Next, let F,, be the distribution function of Vn X, where X is the mean of n
ii.d. observations from F. A natural sequel to the last result is to consider the
convergence of A (F,) to the normal theory value of po? under these central
limit theorem conditions. In Theorem 5A it is shown that the expansion in n of
A (F,)is

1.7 A (F,)/po* =1+ (p - 1)(xyx, — &2)/k3n + O(1/n?),

where «; is the jth cumulant of F. The simplicity of the O(1/n) term in the
expansion is somewhat surprising in light of the seemingly complicated function
under investigation. In the quadratic variance exponential family the order 1/n?
term is 0.

2. Representations of the moment determinants. The representation
result (1.2) is a special case of the following theorem, for which we must first
develop some notation. Let X’ = (X, X,, X,,..., X,) be a vector of random
variables from a (p + 1)-variate distribution F. The second moment matrix of ¥
is the matrix C = E{XX*}. Let X,,...,X, be p + 1 independent replicates from
F. Define the matrix A to be the (p + 1) X (p + 1) matrix with jth column X .
We can interpret W := det A to be the volume (signed) of the parallelepiped
formed by the replicates of X. The next theorem indicates that the determinant
of the second moment matrix is a measure of the variability of that volume.

THEOREM 2A. Suppose that F has second-moment matrix C. The random
variable W defined above has mean 0 and variance (p + 1)!det C.

This result can be found in Wilks (1960). Since the method of proof will be
repeatedly used to create representations, it is here provided in the Appendix.
The main device in the proof is to represent the moments in the matrix C as
expectations using independent replicates in each column. This enables one to
commute the E and det operations. Once this is done, we simply average over
the (p + 1)! possible permutations of the indices on the replicates.

REMARK. The result could also be written as det C = E(det AA")/(p + 1)!,
or, letting C be the matrix of second moments of the sample of p + 1 replicates,
we have

detC = (p +1)*"'EdetC/(p + 1)!.

This formula can be extended via the Cauchy-Binet identity to a sample of n
replicates,

(n=1)-(n-p)

(2.1) detC = E[detC] —
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The formula can also be shown to hold if C and € are the theoretical and sample
covariance matrices, and therefore identifies the bias correction for det C as an
estimator of det C.

CorOLLARY 2B. If M, is the moment matrix for a distribution F, then
representation (1.2) holds.

ProoF. Simply use X’= (1, X, X2,..., XP) in the theorem. In this case
det A is simply the Vandermonde determinant. O

REMARKS. The corollary could also be derived from a “basic composition
result” in Karlin (1968), page 17, (2.5), as extended by averaging over the
permutations of the indices. For the special case when the distribution F has
exactly p + 1 points of support, the result in the corollary can be found in Hoel
(1958) and the result in the theorem in Karlin and Studden (1966).

Formula (2.1) indicates the bias adjustment in the use of the sample moments
for the true moments in the estimation of v, = det M.

To conclude this section, we prove the generalized Tchebycheff inequality
(1.3). We will need the following information: If the sequence of numbers
{1, my,..., my,_,} are the initial moment sequence of some distribution with p
or more points, then there exists a unique p-point distribution F, with the same
initial moment sequence. This result, found in Uspensky (1937), is discussed in
greater detail in the sequel article.

THEOREM 2C. Suppose that F is a distribution with p or more points of
support. Let F, be the p-point distribution with the same initial 2p — 1 mo-
ments, and let {r,,..., r,} be its points of support. Then inequality (1.3) holds.

Proor. We start with the equality (1.6). If we let B* be the coefficients
which minimize the given expectation, and p(¢) = t? — L8*t' be the corre-
sponding polynomial, then we will show that p(¢) = I'l(¢ — r;). We note that the
minimization problem is completely determined by the first 2p — 1 moments of
X. Thus without loss of generality we can solve for the 8* values by using the
distribution F,. However, in this case we can make the given expectation 0 if and
only if we use the polynomial p(X). Thus E[p*(X)] = 0,/ 1. Finally, we have
the simple inequality

P[itilf{(X A NE 82] < P[T1(X - r)* > &2#].

The proof is completed by applying the Markov inequality to the right-hand
side. O

3. Moment generating functions and Hankel determinants. Following
(1:3) the function V,(¢) was defined to be det M,(¢), where M, (¢) is the Hankel
matrix of the moment generating function m(t¢). This section develops some
basic results concerning V,(#). The first theorem presents the result that V(¢) is
itself a moment generating function for a finite measure.
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THEOREM 3A. Suppose that the moment generating function m(t) exists in a
neighborhood of 0. If the distribution F has fewer than p + 1 points of support,
then V(t) = 0 for all t € R. Otherwise V,(t) is the moment generating function
for the measure p., which has the density

g(z) = E[jl:[k(xj -Xx,)1Z = z]

with respect to the distribution of the (p + 1)-fold convolution Z = X, +
X, + -+ +X,. The measure p, has total mass V,(0) = v,

PrOOF. Using Theorem 2A with vector X’= (1, X, X2,..., XP)exp(tX/2)
gives

Vi(6) = E[ T (%, - e =30 /(p F)L
J

Conditioning on Z yields the result. O

Although this result might strike one as surprising, it may not yet be clear
how the moment generating function property can be useful. The answer is that
we are going to be able to identify the distributions corresponding to V(¢) for
important classes of initial moment generating functions. The first one is easy.

ExaMPLE. For the normal distribution n(p, 0%) the differences X; — X, are

independent of the sum X, + --- + X, and so the distribution corresponding to

V,(t)/v, is the convolution of p + 1 normals, hence n(u(p + 1), 0%(p + 1)).
(The normalizing constant v, will be derived shortly.)

To tackle other distributions, we need better tools; the key is to develop a
recursion that can be used to derive V,(¢) from Vi(¢) = m(¢),...,V,_4(¢). To
proceed, we first need to transform to a system of variables with simpler
recursive relationships. First, define the (unstandardized) cumulant generating
function corresponding to V(t),

k,(2) = logdet M (¢) = log V,(¢).
Then form the sequence of second differences of the {k,} sequence,
(3.1) A (t) = ‘np_z(t) -2k, 4(t) +k,(t), p=0,1,2,...,
where k_,(t) and k_,(t) are defined to be 0. We note that the inverse transfor-
mation is
(3.2) kp,=(p+1)Ag+pA; + -+ +4,.
The folli)wing equality is a special case of Sylvester’s identity [e.g., Karlin (1968),
page 72]:

(33) Vy sV a(2) = V(OVA(8) = V().
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By dividing by V7 we may rewrite (3.3), provided V,(¢) is not 0, as
(3.4) exp(4,,,) = D%,

This identity has an important implication. Evaluation at 0 proves the
following.

COROLLARY 3B. The variance of the distribution corresponding to mgf V()
is A, ...
p+1

In particular, this implies that A, = pe® for the n(p, o%) distribution. By
using appropriate initial values, one can then derive Vps

p
A,=po®=0v,/v, ,=ple’? =0, = I‘[ljg,,Zp(pH)'
j=
Finally, putting (3.4) together with (3.2) implies the following recursive rela-
tionship. This will soon be used to generalize the results for the normal distribu-
tion to the entire quadratic variance exponential family.

LeEMMA 3C. Provided that F has more than p points of support,
exp(8,,,) = D*[(p + 1)Ag + pA; + -+ +4,].

4. Quadratic variance exponential families. Sufficient tools have now
been developed to derive the behavior of V (¢) and hence {detM p) for a very
important class of exponential family distributions.

Let k(t) := log[m(t)] be the cumulant generating function for F and suppose
that for some a, b and ¢ the function k() satisfies

(4.1) k"(t) = a + b[x'(2)] + c[x'(2)]".

If we construct the exponential tilt of F, a family of distributions for X defined
by

dFy(x) = €% dF(x)exp(—x(8)),

then it is an exponential family of distributions and (4.1) indicates that this
family has the “quadratic variance property.” That is, the variance of X in this
family is a quadratic function of the mean value parameter [Morris (1982, 1983)].
As will be seen, several important distributions fall in this class, and we can
easily determine V,(¢) for them. However, a rather differently appearing differ-
ential equation than (4.1) turns up in a natural way in the proof, so we first note
its equivalence to (4.1) in Lemma 4A, due to Morris (1982), (3.7).

LEMMA 4A. Suppose k(t) is a cumulant generating function which satisfies
one of the following differential equations:

(i) logk”(t) = a + bt + 2cx(t), some a, b, c.

(i) k”’(t) = a + bk'(t) + c[k'(t)]? some a, b, c.
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Then it satisfies the other (with the same b and c).

Note that in evaluation at ¢ = 0 in part (i) shows that a = log 02, where o2 is
the variance of F.

Morris catalogued all possible quadratic variance distributional families (mod-
ulo certain transformations). The basic list is included here for reference, to-
gether with our main result concerning A, (Corollary 4C):

b c A, /po’
Normal (g, 02) 0 0 1
Poisson (A) 1 0 1
1
Gamma (n, A) 0 1/n 1+ ;(p -1
) 1
Binomial (n, q) 0 ~1/n 1- ;;(p -1
1
Negative binomial (n, ¢) 1 1/n 1+ ;(p -1)
1
NEF-GHS (n, A) 0 1/n 1+ ;(p -1)

We are now prepared to prove the main result for these families.

THEOREM 4B. Let F be a distribution with cgf k(t) existing on an interval
about 0. Suppose that log k(t) = a + bt + 2ck(t), for some a, b and c. Suppose
p < number of support points of F. Then

p(p-1)
2

+a+ bt+ 2cx(t) forp=>2;

(i A, (t)=log|p+ec

w[bt + 2cx(t)] forp = 0.

(i) ,(¢) = x,(0) = (p + Di(e) + 2

ProoF. We start with the algebraic identity
det M,(t) = m?(¢)D? log m(t).
This hnglies, by using the definition of A,(¢) and then the assumption on «”,
that )
A(t) =logk”(t) = a + bt + 2ck(2).
The recursion of Theorem 3B then gives
Ay(t) = log D*{2k(t) + bt + cx(2)}
= log[(2 + ¢)x"(t)] =log(2 + ¢) + (a + bt + 2ck(t)).
Continuing in a like fashion, one obtains by induction
A,=log{[p+c[(p-1)+(p—2)+ - +1]]«"}.
This in turn implies result (i). Result (ii) follows from (3.2). O
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COROLLARY 4C. Suppose that k(t) is the cumulant generating function of a
distribution F satisfying (4.1). Then
A, =100, /02, =0d’p[l +c(p-1)],
where 02 = exp(a) = Var X.

Proor. Evaluate the formula for A (¢) at ¢ = 0. O

5. Limiting behavior. The results of Section 4 suggest that the behavior of
A , under convolution of the basic distribution F might have a relatively simply
structure. We illustrate this in the context of the central limit theorem. Let
X, X5, ..., X,, be a random sample from distribution F. It is known that if the
moments of F exist, then the moments of the normalized mean Y, = vn (X — p)
converge to the appropnate normal theory values. Let F, be the distribution of
Y, If E[X]%? is finite, then this implies that A (F) — pa?. The following
theorem specifies the first-order error term in n, for p fixed.

We first define

m(t; a) = [m(t/a)]“z,

which for @ = yn represents the moment generating function of v X. Moreover,
let A (¢ a) be the corresponding A (2).

THEOREM 5A. Suppose that F is a nondegenerate distribution. Let p be a
positive integer. Then as a = Vn — o,
(5.1) exp[A,(t a)] = pAY(t/a) + a 2p(p — 1)AY(t/a) + a *R (t/a),
where R (s) is O(1) as a function of a; and so

A (F,)/ps* =1+ (p — 1)v/n + O(1/n?),

where y = [kyk, — k2]/K3.

Proor. The proof will be by induction. To begin with
Ag(t; a) = a®Ag(t/a)
and so
A\(% ) = log D*[Ay(t; a)] = log AY(t/a) = log A\(t/a).

This verifies (5.1) for p = ’1.

Next consider the implications of the induction hypothesis (5.1). We start by
writing

A, (t; a) = log pAY(t/a)
+log[1 + a~*(p — 1)AY(t/a) /N3(t/a) + a”*RE(t/a)]

with new remainder term R}. Differentiating twice with respect to ¢ and using
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log A} = A, gives
Ni(t; @) = a”2AY(t/a) + aT*RE*(t/).
The rest of the proof follows from Lemma 3C. O

APPENDIX

PrOOF OF THEOREM 2A. First, E[W] = E[det A] = E[det A(e)], where we
use the symbol A(e) to denote the matrix (X, X,,...,X,). For any permutation
o of the indices (0,1,2,..., p), let A(o) be the matrix with ith column X ). We
then have the relationship

det A(e) if ¢ is an even permutation,

(A1) det A(o) = { —det A(e) if o is an odd permutation.

Since A(e) and A(o), with ¢ odd, are identically distributed, det A(e) has a
symmetric distribution about 0. Since the following calculation shows that W
has a finite second moment, the mean exists and is 0.

Next, we may write, letting the second subscript denote coordinate within
replicate, ' '

det C = det E[ XpoX,,..., X,,X,]-

That is, we construct the moments in the kth column strictly from the kth
replicate of X. The key now is that “E” and “det” commute because the
determinant is a sum of products, each of which has exactly one term from each
column, and hence from each independent replicate. This gives

detC = E[Xyp... X,,det A(e)].

A permutation o over the subscripts merely changes the labels of the replicates,
so gives the same expectation. That is, we have

detC = E[ X, - Xo(p)pdet A(o)].

(p)p

Now, using (A.1), average over all permutations on the right-hand side, noticing
that the coefficients of det A(e) are themselves summands in the determinantal
expansion of det A(e). The result:

det C = E[det A(e)det A(e)]/(p + 1)!. ]
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