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ON EDGEWORTH EXPANSIONS IN THE MIXTURE CASES

By G. J. BaBU AND K. SINGH

Pennsylvania State University and Rutgers University

Let X be a random vector with at least one marginal having a lattice
distribution. For a wide class of statistics which can be written as a function
of means of independent copies of X, it is established in this article that the
one-term Edgeworth expansion is typically the same as the usual one-term
expansion in the pure nonlattice case.

Introduction. Consider a bivariate mean Z, = (X, o Y,)) of iid. bivariate

r. V ’s. If the underlying population is strongly nonlattlce ie., E(e*Zn) + 1 for all

= (t,, ty) # 0, then the Edgeworth expansions are known for P,(A) =
P(\/;z_ (Z, — E(Z,)) € A) for a fairly rich class of Borel measurable sets A in R?,
where ' denotes transpose.

In the lattice case, where each univariate population assigns its entire mass to
countably many equidistant points, the expansion is different and an explicit
form is known only for a restricted class of sets A. Consider an univariate
statistic of the form H(Z,), for a smooth function H. Bhattacharya and Ghosh
(1978) used the expansion for Z, to establish the validity of the formal Edge-
worth expansion for Vn [ H(Z,) — H( E(Z ))] in the nonlattice case. In the lattice
case, an explicit form of the expansion is typically not available for nonlinear
univariate statistics. See Yarnold (1972) for instance, where an explicit expansion
for P,(A) is given, when A is an ellipsoid. In this paper we consider Edgeworth
expansions for H(Z,), when X has a lattice distribution and Y has a continuous
distribution. Situations like this do arise in statistical experiments. As a simple
example, X could be the age of a plant or animal in years and Y could be its
weight; H(Z)) = Y,/X,. In this article we establish that no correction factor is
needed for the lattice character of X in the one-term Edgeworth expansion.
Beyond one term, the answer is not known to us at present.

Our approach for establishing the above mentioned fact is as follows: Let 7 be
a symmetric random variable having finite third moment and whose characteris-
tic function vanishes outside a compact interval. It is first shown that in the
lattice case {Vn(X,— E(X,)) +nn~%%yn(Y, — E(Y,))} has the usual (non-
lattice) one-term bivariate Edgeworth expansion. Now, under a smoothness
condition on H, one can write yn[H(Z,) — (E(Zn))] as V\nl(Z, - E(Z,)) +
Vn(Z, - E(Z,)YL(Z, — E(Z,)) + o,(n~/?), where l is a 2 X 1 vector and L is
a 2 X 2 matrix. The remainder o (n 1/2), typically, does not affect the one-term
Edgeworth expansion. (Here and in what follows T” denotes the transpose of T'.)
One can write the above linear term as vn (W, — E(W,)), where W, = I(X,, Y.
Suppose ! = (I, l,) and I, # 0. Since Y; = (W, — [, X;)/1,, by s1mple algebra we
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can replace the linear and the quadratic terms above, respectively, by Vn W, -
E(W,)) and V2V, where

V,=(X,- E(X,),W,- E(W,)), ==NLN' and N=(1 —11/12).

0 1/,

One can now look at W as the continuous part and X as the lattice part in the
bivariate expansion. Thus the smoothing through 7 appears only in the quadratic
term. As a result the smoothing is of the order O,(n~"/%). Hence, it does not
affect the one-term expansion.

The above ideas extend naturally to the general cases of k-dimensional means.
Let 2 =r + g, where r of the marginal populations are continuous and the
remaining q are each separately lattice. On the r continuous marginal popula-
tions, one needs to assume, further, that any nonzero linear combination has a
continuous component. Then, using arguments similar to the ones used in the
bivariate case, one can obtain Edgeworth expansions for statistics of the form
H(Z).

We discuss two specific examples in the article: (i) The ratio estimator Y,/X,
where the Y population is continuous and the X population is lattice and (ii) the
coefficient of correlation between a continuous random variable and a lattice one.
The correlation coefficient example is reduced to the case of a 4-dimensional
mean after writing yn (y — p) as a linear term + (1/vVn) a quadratic term +
o,(n~ %)

Main results. Consider a bivariate random vector (X, Y), of which X is a
nondegenerate lattice variable and Y is a continuous random variable. Let
{(X;, Y;)} be a sequence of independent copies of (X, Y). Let 1 be a real valued
symmetric random variable with finite absolute third moment and whose charac-
teristic function vanishes outside a compact interval. [See Theorem 10.1 of
Bhattacharya and Ranga Rao (1986), for the existence of such random variables.]
It is also assumed that 7 is independent of X; and Y, for all i.

We require some notation before stating the main theorem. Let for x in R2,
|x|| denote the Euclidean norm of x. Let = denote the dispersion matrix of
(X,Y) and let @5 denote the density of normal distribution with mean zero and
variance covariance matrix 2. Note that, in view of the conditions on (X, Y), =
is a posmve definite matrix. Let (X, Y,) denote the sample mean of (X,,Y),
it=1,...,n. For ¢ > 0 and any measurable function f, let

w(f,x,€) = sup{|f(x) = f(¥)I: llx — ¥l < &}
and let

(1,2, ¢) = [o(f,, e)ps(x) dx.
We have the following

THEOREM. Let E|[(X,Y)||® < 00, E(X)=E(Y)=0 and let f be a real-
valued measurable function on R® bounded by 1. Suppose P, denotes the
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distribution of (YnX,+nn"%%ynY,) and Q, denotes the distribution with
density (1 + pn~'/?)ps, where p is a third degree polynomial, whose coefficients
are continuous functions of the moments of (X,Y) of the orders not more than
3. [Here p is the same polynomial which appears in the Edgeworth expansions
of VnX,,VnY,), when (X,Y) has strongly nonlattice distribution.] Then

[1d(P.- @)

where c is an absolute constant and 8, = o(n~'/%), not depending upon f.

The proof of the theorem essentially involves the expansion of the derivatives
D™y (¢, s) of the characteristic function ¢, of the vector (yn X, + nn~*%,/n Y,,),
where a = (a;, a,), @, + a, < 3 and o, and «, are nonnegative integers. See the
proofs of Theorems 20.8 and 24.2 of Bhattacharya and Ranga Rao (1986). The
derivatives of the characteristic function ¢, of (Vn X,,Vn Y,) can be obtained in
the range |¢| < Vn /log n and |s| < &/n, for some fixed & > 0, as in the classical
case of strongly nonlattice distributions. As the characteristic function of 7 is 0
outside a compact interval, the derivatives of y,(¢, s), of orders a = (a;, ay) with
a, + a, < 3, are 0 for |t| > Vn /log n. Further, they are exponentially decaying
in the range |t| < Vn /logn and ¢ < |s/ Vn| < M for all large n and for any
M > ¢ > 0. The rest of the proof is similar to that of the classical case of
strongly nonlattice distributions.

COROLLARY. Let q' = (a, b) be a nonzero vector and L be a 2 X 2 matrix.
Then under the conditions of the theorem we have

sup |P((aX, + bY,)Vn + ann=2® + Vn(X,,Y,)L(X,.Y,) < xq'2q)
2
(1)

__/:xoo(l + n—lﬂr()’))‘P(y) dy = O(n_1/2)’

where r is a polynomial of degree less than or equal to 3 and ¢ is the' density of
the standard normal variable.

The corollary follows from lemma 3 of Babu and Singh (1984) which is a
modification of a result of Bhattacharya and Ghosh (1978). Note that P(|n| >
n%/%log n)~?) = o(n"'/?) and by a moderate deviation result of Michel (1976),
P(/n|Y,| > logn) <n~L As a result P(Jnn~*%/nY,| > (logn)™!) = o(n"'/?).
So the effect of smoothing by nn~3/8 from the quadratic term is of the order
o(n~'2) and so is negligible.

REMARK. In our applications a = 0, so the term containing 7 in (1) does not
appear. See the examples below. The theorem can easily be extended to higher
dimensions.
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Examples.

1. The ratio estimator. The ratio estimator T, = Vn[(Z,/X,)E(X) — E(Z)]
is often encountered in sample surveys. Quite frequently, the auxiliary variable
X is lattice and the variable Z under study is continuous. The statistic 7}, can be
written as

vn(Z,- X,(E(2)/E(X)))(1 - ((X, — E(X))/E(X))) + higher order terms.

These higher order terms contribute an error of the order o(n~'/?) in (1), and
hence can be ignored.

Note that if W has a continuous distribution and V has a discrete distribu-
tion then W + V has a continuous distribution. This follows from noting that

PW+V=x)= Y P(W=x-a,V=a)< ) P(W=x-a)=0,
a€eB ac€B
where B = {a: P(V = a) > 0}, which is countable.
An Edgeworth expansion for 7, can now be obtained by applying the corollary
to {(X,,Y))} with Y, = Z, — X,(E(Z)/E(X)) and using the fact that ¥; has a
continuous distribution.

2. Sample correlation coefficient. Let (W, V) be a random vector, where W
is a lattice random variable. Further assume the existence of the sixth moment
for ||((W, V)|l Let p denote the correlation coefficient of (W, V). Without loss of
generality we shall assume that E(W) = E(V) =0 and E(W?) = E(V?)=1.
Consider the sample correlation coefficienit R, based on n observations (W,, V),
i=1,...,n on (W,V). Let G denote the sample mean of the random variables
G,,...,G,. Now

R, o= (WV - W7)|(W2 - (W))(V2- (V))] " -p=1,+B,

where

T,=(1-p)(WV =p) = (o/2((W-V ) =201 -p)) - WV - [WV - o’

~((WV =0)/2)((W~ V) ~201-0p))

and P(|B,| > 0n"2?)=0(n"12) for any 6 >0. Note that E(W — V)%=
2(1 — p).

Clearly T, is a second degree polynomial in the sample mean of n observa-
tions from

S=(W,V,WV-p,(V-W)*-2(1-p)).

Since W is assumed to be lattice, it is enough to check that Z = ¢tV + sWV +
r(V — W)? has a continuous component, whenever (¢, s, r) is a nonzero vector.
This can be seen from the following argument. If r # 0, then for some
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b,a; a,,...,d;,,d,,..., we have

P((Z/r) = a) ZP«V-mf=d@W=b+m)

IA

EP«V—mf=dJ=Q

So Z is continuous if r # 0. If r = 0 and || + |s| # 0, then Z = (¢ + sW)V has
a continuous component, as (¢ + sW) is lattice or degenerate at ¢ and V has a
continuous distribution. Using the theorem we get an Edgeworth expansion for
T, — nVn~"/% where 7 is as in the Introduction. From this an Edgeworth
expansion for R, can easily be obtained.
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