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ADAPTIVE L-ESTIMATION FOR LINEAR MODELS!

BY STEPHEN PORTNOY AND ROGER KOENKER

University of Illinois at Urbana-Champaign

Asymptotically efficient (adaptive) estimators for the slope parameters of
the linear regression model are constructed based upon the “regression
quantile” statistics suggested by Koenker and Bassett. The estimators are
natural analogues of the adaptive L-estimators of location of Sacks, but

~ employ kernel-density type estimators of the optimal L-estimator weight
function.

1. Introduction. The existence of asymptotically efficient estimators of a
Euclidean parameter, B8, in the presence of an infinite-dimensional nuisance
parameter, F, has attracted considerable recent attention. The problem, formu-
lated by Stein (1956) for asymptotically estimating 8 when F is unknown, as
well as when it is known, has been treated in increasing generality. In a
remarkable confluence of papers Beran (1974), Sacks (1975) and Stone (1975)
independently proposed adaptive R-, L- and M-estimators, respectively, of the
center of symmetry of an unknown (symmetric) distribution. In his 1980 Wald
lectures, Bickel (1982), developing the approach of Stein, extended adaptation to
a broad array of problems. In particular, he proposed an adaptive M-estimator
for the parameters of the linear model

(1.1) Yi=xB+ u,

with {x/ = (x;,...,x i)} & sequence of known p-vectors, 8, € R? an unknown
regression parameter to be estimated and {;} a sequence of independent random
variables with common distribution function F. When F is symmetric, Bickel
constructed an adaptive estimator of the entire vector 8,. Dropping the symme-
try condition, he further showed that if the design contains an intercept, that is,
x! = (1, x}) so that

(1.2) Yi=x{Byt+u,=a+ily+u,

then the (p — 1)-vector of “slope” parameters can be adaptively estimated.
Manski (1984) reviewed these results and offered some extensions to nonlinear
regression models. Manski and Hsieh'(1987) have studied several variants of
Bickel’s adaptive M-estimator via Monte Carlo methods. Newey (1987) has
recently proposed adaptive method-of-moment type estimators for the linear
model which are asymptotically efficient under rather weak regularity condi-
tions. Hogg (1981) has also proposed various partially adaptive methods based on
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M-estimators and de Jongh and de Wet (1986) have recently suggested an
adaptive choice of the trimming proportion for trimmed least squares estimators.
In this paper we propose fully adaptive L-estimators for the slope parameters
of the linear model, under the least restrictive assumptions possible on F (needed
only to make the asymptotic efficiency well defined). These results extend results
of Sacks (1975) to the case of linear regression and Koenker and Portnoy (1987)
to the adaptive case. In the remainder of this section, we introduce notation and
state our main results. Section 2 gives a detailed treatment of our construction of
the adaptive estimator. Section 3 treats the problem of constructing a satisfac-
tory estimate of the score function. Section 4 constructs a practical version of an
adaptive L-estimator and describes a small Monte Carlo experiment designed to
evaluate the performance of the estimator in moderate-sized samples. We con-
clude that a practical adaptive L-estimator can be constructed for the slope
parameters of the linear model. The estimator achieves high finite-sample
efficiency in a wide variety of error situations and outperforms standard robust
methods in all situations we investigated. Substantial gains in efficiency are
achieved relative to simpler robust procedures in asymmetric error situations.
Let X, denote the n X p matrix with ith row x/. We will assume throughout
that n !X/ X, — @, a positive definite matrix. The Euclidean norm of x will be
denoted ||x|| and A (M) will denote the largest eigenvalue for the matrix M. We
will focus attention on Bickel’s (1982) Example 3: the linear model (1.2) with an
explicit intercept and without any symmetry condition on F. We also assume
that the means have been subtracted in X, so that ¥ %, = 0, where %, is the last
p — 1 coordinates of x,. Thus, if @ is partitioned so that @ is the lower
(p — 1) X (p — 1) corner, @ ! is the corresponding corner of @ . The following
regularity condition on the sequence of designs { X, } will be maintained.

ConpITION X. There exist positive constants b, b, b and ¢, such that

(X1) M@ - nXX,) < bn~V/4,
(x2) > lxl® < bn,
i=1
(X3) max|[x,| < bn'/*,
(X4) inf #{i:b sl x/8<b}>cn

In Portnoy (1984) it is shown that such conditions are satisfied for a broad
class of random designs, as well as for ANOVA designs when the number of
observations per cell tends to infinity. On F we require only:

ConDITION F. F is absolutely continuous with finite, nonzero Fisher infor-
mation I(F).
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Let F be the set of F satisfying this condition. Our methods are based on the
regression quantiles of Koenker and Bassett (1978) which solve for ¢ € [0,1],

n
1.3 i . —x!B),
( ) ;2%1‘, tgl pt( yl sz)
where pt(u) = u(t — I(u < 0)). Let {,én(t) = (&,(t), ¥,(t)} denote the sequence of
regression quantile processes so defined. In the Appendlx, a uniform Bahadur
representation with explicit remainder is established for ,8 (t). This result

strengthens somewhat similar results of Jureckova and Sen (1984) and Koenker
and Portnoy (1987).

Our adaptive estimator, T,, of y is a linear function of g, (1), that is, we
consider
1 A
(1.4) T, = [.(8)(¢) at,
0

where jn(t) is an estimate of the optimal score function

Jo(t) = ¥ (F(2)),

where y(x) = —L’(x) and L(x) = In f(x). Theorem 2.1 provides conditions on

n(t) which make 7, adaptive for any F satisfying Condition F. A kernel
estimator o, (1) is constructed in Section 3 which satisfies the condition of
Theorem 2.1, verifying our claim. Some further remarks on practical aspects of
estimating Ji(t) are contained in Section 4.

Our estimator of the optimal score function is based on the estimators of the
conditional quantile and conditional distribution functions introduced in Bassett
and Koenker (1982). Denoting the set of solutions to (1.3) by B,(t), we may
define a natural estimator of the tth conditional quantile of Y given x, as

(1.5) Q,(tix) = inf{x'b|b € B,(¢)}.
Correspondingly,
(1.6) F(ylx) = sup{t € [0,1]|Q(¢]x) < y},

affords a natural estimator of the conditional distribution function. At the mean
of the design, ¥ = n7'%; x,, Q(u|%) is a proper quantile function (a nondecreas-
ing, left-continuous, step function on u € [0, 1] [see Bassett and Koenker (1982),
Theorem 2.1]), so F. (y) = F (/%) is a proper distribution function (a nonde-
creasing, right-continuous step-function on y € R). F behaves asymptotically
exactly like a sample distribution function [see Portnoy (1984)]. The results of
Section 3 give methods of estimating Jy(¢), based on F () which satisfy the
conditions for adaptation of T, given in Section 2.

2. The adaptive estimators. In order to treat asymptotics for L-estimators
it is necessary to have smooth, positive densities. Following Stone (1975) this
may be accomplished in great generality by convolving the original error distri-
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bution with a vanishingly small smooth contaminant. In particular, define

W, W
(2.1) ;= u; + St

Y,=xB+ i,

where {W;} and {W/} are independent i.i.d. sequences (independent of u;) with
density
c

(2.2) gw)=———, -0 <w< .

(1 + p(w))*
Here p(w) is an even continuously three times differentiable, positive function,
increasing on [0,1], with p(w) = |w| for |w| > 1. Let G(w) denote the c.d.f.
corresponding to g and define (for F € F)

f(x) = t [e(t(x - ¥)) dF(y),

f(x) = s [g(s(x - y)) dF(»),
(2.3)

F(x) = [G((x - y)) dF(y),

F(x) = [G(s(x - y)) dF(>).

That is, f, and F, are the density and c.d.f. for &;, and f, and F, are the density
and c.d.f. for u; + W,/t. Lastly define for fixed n < 1 and arbitrary b > 0,

(2.4) s, = (logn)", t,= (logn)®.

Note that the subscript » on s, and ¢, will often be suppressed.

Furthermore, since the uniform Bahadur representation (Theorem A.1) holds
only on a compact subinterval of [0, 1], the interval of integration must also be
restricted to the subinterval. Thus, for fixed § > 0,0 <e < 8§ + 7 < 3,and a < 3,
define (for F € F)

a, = (logn) ™" + F(—4(logn)’) + 1 — F(+1(logn)®),

(2.5) ) \
&,=n %+ (logn) “+ Ex(-1(logn)®) + 1 - Fx(+1(logn)?),

n

where F * is the Koenker— Bassett c.d.f. estimator [see (1.6)] based on observa-
tions Y, + W/ /¢t,. Also let F denote the Koenker—Bassett c.d.f. estimator based
on observations Y, = Y, + W,/s, + W/ /t, (that is, F, estimates F, ). Now define
the adaptive (slope parameter) estimator

6 o S0 de
| "

where o '(t) is any appropriately consistent estimator of the score function
J () = —L"(F 1(¢)). An approprlate example [satisfying (2.7)] generated by
kernel estimation based on F is given in Section 3.
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THEOREM 2.1. Let efn( t) be an estimator of J(t) satisfying

(2.7) fl_an|j,,(t) - Jy(t)|dt = op((log n)~ @),

Then for any F € F, and {X,} satisfying Condition X,
Vn (T, = v) =»p N,1(0,@/I(F)),
where 1 is the Fisher information for F.

This theorem will be proved after some preliminary properties of f, are
developed. The following lemmas each assume the hypotheses of Theorem 2.1
and that F € F.

LEMMA 2.1. Given a, defined by (2.5), define
(2.8) %, = max{ ~F ¥(a,), F7 {1 - ).

Then there is a constant c* such that for B, < (log n)’,

inf“n fS(x) = lnf{ fs(x): X, Bn <x<x,+ Bn} > c*(log n)_(%""ﬂ)'
Proor. Note that [by (2.2)]

F(-x,) = [G(s(x, - y)) dF()
< G(-1ix,) + P{lu+ W/t > ix,)
< c*/(1+ gsx,) + F(-3x,) + 1 - F(3x,)

and a similar inequality holds for 1 — F(x,). Hence, from (2.8), a, = F,(—x,) or
a, =1 — F(x,), and if x, were larger than (log n)?, (2.9) would be contradicted
by (2.5) (for n large enough). Thus, it follows that (for n large enough)

(2.9)

(2.10) 0<x,<(logn)’ and x,—> +o0
[since a, — 0 by (2.5)]. Now (for x > 0)
) = [ () 2 Plu+ = <o)
(1 + p(s(x = »))) (1 + p(sx)) ¢

and, hence, for |x| < 2(log n)?, with ¢* = P{u + W/t < 0},

f(x) = s 7 = s 2
(1 + p(2s(10g n)s)) (1 + 2s(log n)s)

and the result follows from (2.4). O

LEMMA 2.2. For constants c, (v = 0, 1, 2, 3) with c, = c in (2.2),
(%) < ¢,8"*" and |f(x)| < ¢t

uniformly in x.
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Proor. Differentiate f,(x) or f(x) [see (2.3)] under the integral and use the
fact that derivatives of p are uniformly bounded. O

LeEmMma 23. f(x,) = 0 and f/(x,) > 0 asn — co.
PROOF. As in (2.9) [using (2.4) and (2.10)],

(=)l < es/(1+ dsx,)" + &(F(=34x,) + 1= F(ix,)) =0,

£ (x,)l < e*s%/(1 + fsx,)” + & {F(-4x,) +1- F(3x,)} 0. O
LEMMA 2.4. [l7%J(t)dt > I(F) as n — oo.

PROOF. A slight modification of the proof of Theorem 4.1 in Stone (1975)
provides the result here. O

LEMMA 2.5. Asn — oo,

‘/‘;1701,, |jn(t)| dt = Op(sz) = Op((log n)277).

n

Proor. By condition (2.7), we need only consider

[ s [ )

a

(2.11) B .
< [T+ [T (L)) (%) dx.

Now differentiating f, in (2.3) twice (under the integral) and using the fact that
derivatives of p are bounded,

()] < f(2108 le"(s(x — )l +f3cs (p'(s(x = y))) dF ()

(o) T T s )

dF(y) = e1s”f,(x).

‘“sfu+pwu—y»>

Hence, the first term in (2.11) is O(s?). The last term in (2.11) converges to I(F)
by Lemma 2.4 and, thus, the desired result follows. O

LEMMA 2.6. Let a,, &, and a be given by (2.5) and assume F € F. Then with
probability tending to 1,

PrROOF. By Proposition 3.1, |F*(x) - F(x) = O ,(n~'/?) uniformly for
F Ya,) <x < F,'(1 - a,). By (2.10) and (2.8), + 1(log n)‘s lies in this interval,
and the result follows immediately. O
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Lemma 27. Let S, = (a, &,) U (1 — &,1— a,). Then [s |J(t)] dt =
O(n~%?)as n - .

Proor. Following the argument of Lemma 2.5 and using Lemma 2.6, with
probability tending to 1,

[ (01 de < eis*(F e, + 2n7%) = F (a,)

oy

+ [Re L)) () .

From Lemma 2.1 (and the mean value theorem) the first term is of order
O(log n)’n=? = O(n~%/%). A similar argument shows that the second term has
this same order. The same argument applies to the integral from 1 — @, to
l-@a,0

ProoF OoF THEOREM 2.1. From (2.6),

L in/n (9,() — ) (¢) dt
=% (t) dt

By Lemmas 2.4 and 2.7 and condition (2.7), the denominator, B,, tends to I(F')

in probability; so it remains to consider the numerator. Define

(013) U= =@ LaK,(0, Kl = - 13,5 E0).

(2.12) Vn (T, - v) =

_An
=3

i=1

Then, by Theorem A.1,
VR |9.08) =¥ = (W)U (£(E(8))

< (n""*(logn)B(X, F,) + n=2b( X)) /f,(F7\(t))
on (a,,1 — a,) except with probability bounded by g(X, F) (see Lemma A.3).
By Lemmas 2.1 and 2.2, uniformly on (a,,1 — a,),

B(X,F,)
_—s =0 logn 1+3(28+7) ,
0 I
q9(X,F) = O(n‘1/2 exp(czb4(10g n)28+")) - 0.
Therefore (using Theorem A.1), with probability tending to 1, the numerator in
(2.12) satisfies (since a, < &, in probability)
_a, U (8)J(2 o U (t)d(t —a, Un(8)d(t
pe [ BAORO || e OO e B0
a, fs(F’Z (t)) fs(ﬂ (t)) a, fs(ﬂ (t))

+0,(n"V4(logn)) [ (¢)] dt

Qa

(2.14)

dt| <

IJ (2)

*0,(n _l/z)fl ” E )
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where the last two terms arise from the error terms in (2.14). Bounding the
integrands yields

o U () (t 1o ] (8)] dt
An_/l,.()() ()]

dt‘ < 0,(n""*(log n))

o L(ET(2)) nf,, f,(x)
SuptIUn(t)l l1-a, »
(2.15) +m . e, (¢) — J(t) dt
SuPz|U( )|
o 10 ) f|J(t)|dt

where S, + (a,,&,)U (1 -4d,1—«a,). By condition (2.7) and Lemma 2.5,
Ja |J(t)| dt = O,(s?) and, hence, by (2.4) and Lemma 2.1, the first term in
(2.15) tends to 0 in probability Using an invariance principle for U,(¢) [e.g., see
Koul (1969), Theorem A.3], sup, |U,(t)| = O,(1). Thus, combining Lemma 2.1 and
condition (2.7), the second term in (2.15) also tends to 0 in probability. Last, the
third term converges to 0 by Lemmas 2.1 and 2.7. Therefore, the right side of
(2.15) tends to 0 in probability; it remains to consider

Vnzfl "U(t)dy(t) /f,(F\(¢)) dt.

oy,

Fix t € R? and consider ¢'V,. Define a;, = t'Q %,/ Vn. Then

™=

(2.16) al, - t’Q‘lt asn — o

i=1

and ¢'V, is a weighted sum of n i.i.d. random variables [see (2.13)]:
Vo= Lanf K ()I(8)/L(F()) dt.
i= 1 Xn

To apply the Liapounov central limit theorem, compute third moments: Since
|K ln(t)l < 21
3

E|t'V,° <8 Zn: |ain|3{/ "|J(t)|/f( -1(¢)) dt} < i la;,? O((log n)28+37,)’

i=1 i=1
where Lemmas 2.1 and 2.5 are applied. Last, from Condition (X3), the definition
of a,, and (2.16),

EltV,? < Ya20(n 4(logn)®) >0 asn - co.

So by Liapounov’s theorem [e.g., see Breiman (1968), page 275], it remains to
check that the variance converges to '@ 'tI(F). Direct calculation gives

Vart'V,  1-, (1-a, min(¢,t) -
TR _/an f f(ES () 1)

= [ [ min(B(x), E(5)) - B@EO) L)L) dedy,

J(t)J(t) dtdt’
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where x, = F, X(a,), 3, = F; '1 — a,). Let o, denote the above double integral
with x, = —o0 and y, = . Then o, — 6, can be expressed as the sum of
integrals over rectangles disjoint from (x,, 3,) X (x,, y,). Consider one such
integral, the integral over (— o0, x,,) X (x,, o0). Integrating by parts,

S [CRO) - B )L ) dedy

=[{= (1 = F(x,))Lix,) = fu(xa) HE(x,) Lilx,) = f(x,)) ]

< (Ly(x,)) Fi(x,) + LY (%) fy(%,) + F2(x,).

By Lemma 2.3, f*(x,) - 0 and |L)(x,)|f(x,) = |f,(x,)] = 0 as n — 0. Also
by L’Hospital’s rule,

lim F,(x,)(Ly(x,))* = lim F(x,)L/(x,)lim ];(( : n))

— lim £,(x,) = 0

by Lemma 2.3. Treating other contributions to |o, — o,| similarly, we see that
|0, — o] = 0 as n — co. But integrating by parts, o, = [©_ L/(x)f(x)dx —
I(F) as n - oo (by Lemma 2.4). Therefore, o, > I(F) and, hence, V, -,

N,_,(0,I(F )@~ 1). As noted above, this implies A [in (2.12)] has the same
limiting distribution. Therefore A,/B, =, Np_,(0, Q/I(F)) and the proof is
complete. O

3. An appropriate estimator of the score function. Here, as in Section 2,
we assume that the errors are distributed according to F, defined in (2.3) with
F, € F. For such smooth F,, it is relatively easy to construct an estimator f (t)
of J(t) satisfying (2.7) by using appropriate density estimators based on F
Since (2.7) requires only logarithmic convergence, the following conditions on the
density estimators will be seen to be sufficient. Let s, = (log n)" [as in (2.4)],

(3.1) U, = {x: F/Y(a,) —~-B<x <F '(1-a,) + B)

n

for any constant B and define K, = (log n)~®%*" [so that, by Lemma 2.1,
{inf, f(x)}~'=0Q1/K,))]. Suppose there are density estimators, f(x) [w1th
denvatlves £(x)] and (smooth) c.d.f. estimators, F "(x) (generally the integral
of f ) such that for » =0, 1, 2, 3,

(82)  supy|{(k) ~ 12(x)] = 0y((5,/K,)~°) = o,((log n) "),

(3.3)  supy IFH(F(x)) — 2l = 0,((s,/K,) ™) = 0,((log n) ~***™),

where f, and F, are given by (2.3). As in Section 2, define L (x) = log f(x),
L,(x) = log f,(x), J(t) = —L{(F,\(¢)) and J(¢) = — L/(F;(t)).
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LeMmaA 3.1.  If (3.2) holds, then
SllpU"|lA,"L'(x) - L;,(x)| — Op((logn)~(28+n)).

Proor. First note that by (3.2) and Lemma 2.1,
(3.4) inf;, f(x) = c*K, — 0,(1).

Hence, {inf; fAn(x)}‘1 = O,(1/K,). Similarly, by (3.2) and Lemma 2.2, we also
have
(3.5) IF (%) < ¢,8”*" forx € U,.

Therefore, letting Af denote absolute differences between fn and f, (and
their derivatives) and (with n suppressed) writing L"(x) = —[f"(x)/f(x) —
(f'(x)/f(x))],

supy |Ly/(x) — LY(x)|
(Af” sup f"Af  sup(f'+f')Af"  supf?sup(f+f)AF
< + + +

K K? K?2 K4
s) s, \°
-0l gilol (%))
=0,(K,). 0

THEOREM 3.1. If (3.2) and (3.3) hold, then

/1—""|J"n(t) — J(t)dt = o,(log n=®*m),

oy

ProoOF. Changing variables using ¢t = F, (x) and letting x,, = F, (a,), ¥, =
F;_ 1(1 - an)’

L0 = dende = [ (FR()) - Ly (o)) de

ay, n

< [M1Li(x) ~ Ly () f(x) d

+ j’yn
The first term has the desired order by Lemma 3.1. By Lemmas 2.1 and 2.2 and
(3.4) and (3.5),
(3.6) supy, | (x)] = O,(sp/K2).

Hence, by conditions (3.3) and (3.6), the inner integral in the second term above
is O,(s,/K2)o,((s,/K,)"*) = 0,(K,), and the result follows. O

/F‘il(ﬁ;(x))l':///(u)du fs(x) dx.
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Last, estimates fn satisfying (3.2) and (3.3) need to be constructed. In fact, it
is generally easy to construct estimates where the error terms are even smaller
than those required in conditions (3.2) and (3.3). For example, if there is a c.d.f.
estimator, F (%), satisfying

(3.7) supUn|ﬁn(x) — F(x) = O,(n™®) for some a > 0,

then kernel estimators satisfying (3.2) and (3.3) can be constructed (and similarly
for estimating F,). We ﬁrst show that (3.7) holds for @ = } for the Koenker—
Bassett c.d.f. estimator, F , given by (1.6) based on observatlons Y However, it
is no harder to show that the empirical distribution of res1dua1s from any
estimator, § (with £ consistent at rate n ~ %), will also satisfy (3.7).

PROPOSITION 3.1. Assume that the result of Theorem A.1 holds. Then
condition (3.7) holds for F € F with a = 1.

Proor. By Theorem A.1 and Lemmas 2.1 and 2.2,

supy, |Fy(x) — Fy(x)| < supy,|~ z x) = F(x)| + 0,(n"*(10g n)")

for some b > 0. By Kolmogorov’s result [e.g., see Breiman (1968), page 287] the
sup on the right is O,(n~'/ 2), and, hence, (3.7) holds. The same argument works
for |F *(x) — F(x)|, where E* is based on Y, + W/t O

Now, let k(x) be a kernel which is a (symmetric) density with support in
[—1,1] such that |k”)(x)| < b (for some b > 0) uniformly for all x and » =
0, 1, 2, 3, 4. Given F,(x) satisfying (3.7) define

1) = raf” R(n(x = ) (),

(3.8) .
E(x)= [ [(x)ds,
where
(3.9) r,=n% with a, < a/4.

LeEMMA 3.2. If (3.7) holds, then (3.2) holds for estimates given by (3.8).
Proor. Integrating by parts, for » = 0, 1, 2, 3,
f@) = 22 [7 RO (r(x - ) E(y) dy.
— 00

Therefore,

(%) = 1)

(3.10) <7 [ R r(x = ) 1R() — E)l oy

+|/w r’ 2RO (r(x — y))E(y) dy — £(x)].

— 00
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By (3.7) and the conditions on k&, the supremum of the first term above is of
order r’*'0,(n~?), which decreases as a power of n by (3.9). For the second
term, integrating by parts yields

L.

r””k("“)(r(x _ y))Fs(y) dy = f:ork(r(x - y))fs(")(y) dy
_ f:ok(u)fs(")(x - %) du

1
= £9(x) = = [ uk(u) [0 (&(w)) du.
Thus, by Lemma 2.2 and the conditions on k,

I

su+2
supy | [ r"* 2RO (r(x — y))F(y) dy - fs‘”)(y)l = 0( - )

and, hence, the supremum of the second term in (3.10) also decreases as a
power of n. Thus, (3.2) holds, in fact, with an error of urder n~% with a* <
min(a,, a — 4a,), where a, is defined in (3.9). O

LemMa 3.3. If (3.7) holds with B replaced by 3B in the definition of U,
[(3.1)], then (3.3) holds for estimates given by (3.8).

ProoOF. Let U, (B) denote the set U, in (3.1) with dependence on B explicit
and define

D, = SUPU,,(3B)|FAn(x) — F(x) = O,(n™%).
Let ¢ > 0 be given and choose n large enough so that by Lemmas 2.1, 3.7 and 3.9,
1/r + D,/infy, up f(x) <cn™® < B

for some a, < a, and constant c, with probability at least 1 — e. Then since the
support of k is contained in [—1,1], (3.8) implies that for y € U,(2B), with
probability at least 1 — ¢ (for n large enough),

F(y)<FE(y+1/r)<F(y+1/r)+D,
< Fs(y +1/r+ D,/infy; 3, fs(x)).
Now let x = y + 1/r + D,/infy, 4p, f(x). Then for x € Uy(B), -
x —1/r — D,/infy, s, fo(x) < ﬁn_l(F;(x))
or
x < F7'F(x) + en @

with probability at least 1 — & for n large enough. The reverse inequality follows
similarly and, hence, the result holds. O
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4. Practical experience. To assess the performance of adaptive L-estima-
tion in practical applications, a small scale Monte Carlo experiment was con-
ducted. Before describing the experiment in detail, we should explicitly describe
the version of the adaptive estimator (1.4) as it is employed in the experiment.

In Section 3, it is shown that the estimator F,(y) = F,(y|x) defined in (1.6)
and described in detail in Bassett and Koenker (1982) and Portnoy (1984)
satisfies the condition

(41) sup |E(y) — F(y)l = O,(n"'?)

yel,

and F(y) defined in Section 2, for U, given in (3.1), and further, that kernel
density estimators of f; and its derivatives based on F(y) can be used to achieve
the sufficient condition (2.7) for an adaptive J;(t) required by the estimator
defined in (1.4).

Rather than randomly perturbing the observed y’s as suggested by the theory
of Sections 2 and 3, we have chosen instead to smooth ﬁ'n( y) directly by kernel
methods. For an appropriate choice of the kernel, this may be viewed as taking
expectations with respect to the randomized estimator treated in Section 2 [cf.
Stone (1975)]. Obviously, any sufficiently small amount of initial “dithering”
would have no appreciable effect on the reported results. In all other respects the
implementation of the estimators reported here is identical to the construction in
Sections 2 and 3 above. Fi,( y) takes the form

n
(4.2) F(y)= X pl(y=¢)
i=1
for numbers 0 <p, <p, +p, < -+ <X 'p, <1 and & <&, < -+ <§,.
So, we may write kernel estimates of the density and its derivatives as
n m
(4.3) (%) = 2 Pi"i';“k(y)("m(x —¢))s
i=1
where k(-) denotes a proper kernel and r;,':i =1,..., m are local bandwidth

numbers which control the degree of smoothness of the estimate. The latter are
chosen by the procedure outlined in Silverman (1986), pages 101-102. A pilot
estimate, f(x), of the density is constructed based on a fixed bandwidth, say A.
Then the local bandwidth factors

Ai= [ f"(ii)/g] -

are computed with log g = ¥ p, log f(£,). The sensitivity parameter, o, controls
the responsiveness of the local bandwidths

rm=(hA,)"

to the pilot density. We have adopted the (standard) choice o = } after some
brief experimentation with other values.
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The choice of the kernel k(-) is critical to the success of the method. Guided
by the theory of Section 2 we have chosen the Cauchy kernel,
k(x) = (n(1+ %)),

which has the salient characteristic that it tends to control the tail behavior of
our estimated <J(-) much more successfully than more conventional, thinner-
tailed kernels.

Given the estimates (4.3), it is natural to define

RO\ Ro%)
fu(&:) (&) )

where ¢, = }:3=1 p; is the cumulative mass associated with the quantile £;. In
theory and practice it is essential to trim the tails of the weight function so for a
sequence a, — 0, as n — oo, we compute

(44) J(8) = BIt)/ L L)

t1=1,2,...,m,

jn(ti) = (

with p; = max(min(¢;,1 — a,) — max(¢;_,, a,),0).

It remains only to describe the choice of the initial window width % and the
trimming proportion a. The latter is straightforward; we simply report results
for both of the traditional trimming proportions a = 0.05 and « = 0.1. The
theory of Section 3 suggests that a, — 0 as a negative power of log n; thus these
traditional values should be reasonable for a wide range of sample sizes (say
n < 1000). The choice of A is a delicate issue and warrants considerable further
investigation. We began with a conventional rule for density estimation [see
Silverman (1986), Section 3.4],

h = Kmin(sh 32)/n1/5y

where s, and s, are alternative estimates of the dispersion of ﬁn( y): standard
deviation and (interquartile range),/1.34, respectively, and « is a constant to be
determined. The choice ¥ = 0.9 tuned to minimizing integrated mean-squared
error of the normal density is clearly inappropriate in the present instance.
Virtually imperceptible bulges in f give rise to violent oscillations in /. We have
adopted k = 2.5 provisionally, although this tends to oversmooth to a significant
degree in some cases. In Figures 1 and 2 we illustrate several estimated o
functions for the Gaussian and Cauchy cases, respectively, for a bivariate
linear model with 100 observations. The smooth curves in each case depict the
“true” J.

We should emphasize at this point that many of the choices described above
may be easily criticized. Indeed the choice of kernel estimation of </ is itself
questionable. Cox (1985) has proposed an elegant smoothing spline approach to
the estimation of —f’(x)/f(x) which may prove attractive in the present
instance as well, if a satisfactory approach can be found for controlling the tail
behavior of the estimator. In some preliminary experiments we found this to be
difficult. Clearly, many alternatives exist to the particular choice of initial and



376 S. PORTNOY AND R. KOENKER

Some Estimated J(t)s: Normal Case

0.0 0.2 0.4 0.6 0.8 1.0

Fic.1. Threed’s with Gaussian errors.

local bandwidths described above. We regard the current methods as simply
illustrative of one approach which yields quite promising results.
The experiment is limited to the bivariate linear model,

¥, =a+ Bx;, + u;,

with the x; drawn as ii.d. Gaussian and u; also i.i.d. from one of the distribu-

Some Estimated J(t)s: Cauchy Case

my

F1G.2. Three s with Cauchy errors.



ADAPTIVE L-ESTIMATION 377

TABLE 1
Distributions, densities and their optimal J’s

Name Density! Optimal J?
Gaussian (x) 1

Cauchy (7 + x2)7! cos(2mu)(cos(2mu) — 1)
Uniform 1o, (%) 0.58(u) + 0.58,(u)
Laplace lem il 8, jo(u)
Exponential e *, x>0 [ NE))

Lognormal x " '¢(log x) —log(®~ (u)(u))/® (u)*(w))

(8(27'(w) +3) —9(@'(w) - 3))°"

Bimodal 0.5¢(x —3)+05p(x+3) 149
(6(@7'(x) +3) + ¢(@'(x) - 3))*

p(x) = @m)" /2 e 2,
25 (u) denotes the Dirac density with point mass 1 at x, ®(2) = (% ¢(x) dx.

tions appearing in Table 1. Since asymmetric distributions are of substantial
interest we restrict attention to the relative performance of several estimators of
the slope parameter, 8. To control computing costs we restrict attention to only
a few competing estimators. Once the regression quantile process, ,B(t), implicitly
defined in (1.3) has been computed, it is easy to compute a variety of L-estima-
tors. See Koenker and D’Orey (1987) for a detailed description of the algorithm
used to compute A(t). For example, the analogues of the trimmed means

Bo=(1-20)" [B(t) at,

termed “trimmed regression quantiles” (TRQ) are readily calculated as in (4.4)
setting J () = 1 on (a,1 — @) and 0 otherwise. These estimators are, asymptoti-
cally, closely related to the Huber M-estimators. We consider three members of
this family: TRQ(0.5), the /;-estimator; TRQ(0.25), a regression midmean; and
TRQ(0.1), the 10% trimmed regression quantile. Finally, we compute the ordi-
nary least squares estimator (/,) and the maximum likelihood estimator (MLE).
In the Laplace and exponential cases the MLE’s are the regression quantiles ,B( )
and f(0), respectively. In the uniform case the MLE is the I -estimator which
minimizes the maximum residual and can be computed by linear programming
methods. The Cauchy, lognormal and ‘bimodal MLE’s were computed by generic
numerical optimization methods using the PORT3 routine MNF by Gay (1983).

In Table 2 we report Monte Carlo relative efficiencies for each of these
estimators based on 10,000 trials. The reported efficiencies are all relative to the
maximum likelihood estimator. The random number generator was the portable
version of the Marsaglia generator as implemented in the PORTS library [Fox
(1984)], so results should be reproducible (up to differences in machine precision)
across machines given the seeds used here. The computations were carried out on
the Cray XMP-48 at the National Center for Supercomputing Applications at
the University of Illinois.
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TABLE 2
Monte Carlo efficiencies of various estimators of the slope parameter of a bivariate linear model'

Estimator
Distribution ARQ(0.05) ARQ(0.10) TRQ(0.10) TRQ(0.25) TRQ(0.5) 1,

Normal 091 0.89 0.93 0.82 0.62 1.00
Cauchy 0.72 0.77 0.45 0.77 0.79 0.00
Uniform 0.16 0.14 0.15 0.10 0.07 0.19
Laplace 1.00 1.00 0.89 1.03 1.00 0.67
Exponential 0.19 0.16 0.07 0.07 0.05 0.05
Lognormal 0.27 0.23 0.08 0.10 0.09 0.03
Bimodal 0.47 0.44 0.13 0.07 0.02 0.11

'Reported entries are efficiencies relative to the maximum likelihood estimator for each error
distribution, e.g., mse( l?MLE )/ mse( ﬁARQ). In each case the efficiencies are based on 10,000 replica-
tions of the bivariate linear model with 100 observations.

As the theory predicts, the adaptive L-estimators offer good performance over
the entire range of distributions investigated. To our delight, they are particu-
larly successful in the asymmetric and bimodal cases. But they offer high
efficiency in the more familiar symmetric unimodal cases as well. Finally, we
must emphasize that these results are based solely on the bivariate model and we
did very little experimentation with the smoothing methods employed to esti-
mate the J functions. In future work we hope to report more extensive experi-
mental results.

APPENDIX

The uniform Bahadur representation for regression quantiles with
explicit bounds. Basically, the proof of Theorem 2.1 of Koenker and Portnoy
(1987) will be followed exactly with bounds expressed explicitly as functions of
the distribution and interval (a,1 — a). However, this requires the result of
Lemma 2.1 of Portnoy (1984) showing that ||9|| O,(log n,/n)"/%. To obtain explicit
bounds, condition (2.10) of Portnoy (1984) must be replaced by Condition (X4) as
described in Proposition 3.2 of Portnoy (1984) (with some modification of the
argument). The conditions required here are:

ConpITION F1. Conditions (X1)-(X4) hold and the density f is continuous,
bounded and strictly positive.

ConpITION F2. In addition to (F1), the derivative f’ exists and is uniformly
bounded.

Note that for F € F, F, satisfies Conditions (F1) and (F2) and, hence,
Theorem A.1 holds for F and ¥ defined in Section 1 (based on observations Y)
and F, given by (2.3) for any F € F. Following the proofs of Lemma 2.1 and
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Proposition 2.2 in Portnoy (1984) and keeping careful track of explicit bounds
yields the following results:

LEMMA A.l. Assume Condition (F.1). Then there exist n, and constants
b,(X) depending only on the constants in Conditions (X1)—(X4) such that for
n = n,

(A1) 19 < K(X, f)R(log n/n)"",
where -
P{|R| > w} < exp —b,(X)(w—1)’logn forw > 2,
K(X, f) = by(X)/({infq, 5,x)f(2)}-
Here, we define
inf, ,f(¢) = inf{f(¢t): F Y(a) - b<t<F'(1 - a)+ b}.

The results of Koenker and Portnoy (1987) can also be extended by providing
firm bounds in terms of the density, f, and the constants in (X1)-(X4). Again
with b,(x) denoting constants [depending only on (X1)-(X4)], careful considera-
tion of the proofs in Koenker and Portnoy (1987) yields the following results.

(A2)

LEMMA A.2. Assume Condition (F2) and define for 6§ € RP and 0 < 0 <1,

(43) T(5,0) = iglxi{l(ui <FY0)+x/8) - I(u,;<F(0))},

T(68,0) = T(8,8) — ET(S,6).
Then, for 8 € A= {8: 8| < K(logn/n)""*} and a <0 <1 — a,
|ET(8,6) — nQ8f(F'(6))|
< K(K +1)by(X){sup, f(x) + sup,|f'(x)|}n'/*(log n)"*
and

Pl sup  |F(8,0)ll > (n/*log n)K *by(X) (sup,f(x) + sup.lf (x)]}

€A ,a<fl<l—a

< K exp{by( X )sup, f(x) — (log n))
+1/Vn {2sup, f(x)/inf, f(¢) + b(X)}.
Combining Lemmas A.1 and A.2 yields
LEMMA A.3. Under (F2),

P{ sup |T((0,9),0)l > n/*(10g n)B(X, F)} < q(X, F),

a<f<l-a
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where
B(X,F) _ bl(X){squ f(x) + Suplef’(x)|}
{infa, by(X) f(t)}
o(x, 1) = ) (b X)sup (X))

Vn {infa, by(X) f(t)}
Lastly, as a consequence we have

THEOREM A.l. Under Condition (F2), using B(X, F) and q(X, F) defined
above,

F(F%(0)) - l/ni I(u; < FY(0))| < n"**(logn)B(X, F)

sup
a<f<l—a i=1
and
sup Q(7(6) = Y)F(F'(8)) = 1/n L (0 - I(u; < F‘l(")))”
a<f<l—a i=1

<n ¥*(logn)B(X,F) + b,(X)/n,
except on a set with probability bounded above by q( X, F).
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