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ON THE ADMISSIBILITY AND CONSISTENCY OF TESTS FOR
HOMOGENEITY OF VARIANCES

BY ARTHUR COHEN' AND JOHN I. MARDEN?

Rutgers University and University of Illinois at Urbana-Champaign

Consider the one-way fixed and balanced analysis of variance model
under the assumptions of independence and normality. The problem is to test
for homogenity of variances. A necessary and sufficient condition for admissi-
bility of a test among the class of scale invariant tests is given. Hartley’s test
and Cochran’s test are not in the class and therefore are inadmissible. Various
scale invariant tests are examined for parameter consistency. Parameter
consistency in this case means the following: Consider a sequence of values of
the maximal invariant parameter in the alternative space. If the Kullback—
Leibler distance from this sequence to the null point tends to infinity then
the power of the test tends to 1. Several well known tests are shown to be
parameter consistent (PC) for all significance levels. Some well known tests
however may not be PC or may be PC only for certain significance levels.
Extensions of PC results to nonnormal cases are indicated.

1. Introduction and summary. The problem of testing homogeneity of
variances in a one-way fixed analysis of variance model has been studied for the
past 50 years. If we let s? denote the sample variance for the ith population,
i=1,2,..., p, then the s2’s are independently distributed and each estimates
its corresponding variance 2. Under the assumption of normality of each of the
p populations and the further assumption that each s? is based on (n + 1), the
same number of observations, Laue (1965) studied a two parameter family of
tests T(A, n) which reject the homogeneity hypothesis when R(A, n) > d, where

(1.1) R(A,m) = M(N)/M(n), —o0<n<XZ<oo,

M(t) = [(1/P)ER 21", ¢+ 0, M(0) = (112,27, M(c0) = max s,
M(— ) = min s2. In addition to T(A,7n), A # 7, T(A,A) is determined by
considering [ pn/(A — n)Jlog R(A, ), setting n = A — &, letting 8 — 0 and using
L’Hospital’s rule. Letting A — 0 and using L’Hospital’s rule again determines
T(0,0) [see (3.10)]. We assume throughout that p > 3. Many well known tests
are contained in the T(A, n) family. For example, T(1,0) is equivalent to the
likelihood ratio test; T(2,1) is equivalent to a test suggested by Stevens (1936);
T(0,0) has been suggested by Bechhofer (1960) and Bartlett and Kendall (1946);
T(c0,1) is equivalent to Cochran’s test (1941) and T(c0, —o0) is equivalent to
Hartley’s test (1950). Laue proved that tests in the family share some of the
properties of the likelihood ratio test. That is, they are consistent, similar, they
are based on statistics which are asymptotically distributed as chi-square, and as
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Box (1953) showed for the likelihood ratio test, they are sensitive to the
normality assumption.

Cohen and Strawderman (1971) showed that if A > 0 > 7, then the corre-
sponding test in (1.1) is unbiased. Kiefer and Schwartz (1965) proved that 7T(1,0)
yields an admissible Bayes test. It follows from results in Cohen, Sackrowitz and
Strawderman (1985) that 712, 1) is the unique locally most powerful test among
tests which are permutation invariant and locally unbiased. A recent result of
Cohen and Sackrowitz (1987) implies that 7T(2,1) is locally most powerful
unbiased among permutation invariant tests. Such a property implies its admis-
sibility since the permutation group is finite and power functions are continuous.

It is easily seen that all tests in the family T(A, n) are scale invariant. In this
paper we study the question of admissibility of tests among the class of scale
invariant tests. Clearly any inadmissible test within this class will be inadmissi-
ble among the class of all tests. A necessary and sufficient condition is given for
admissibility within the class. The necessary and sufficient condition entails a
characterization of a minimal complete class, which is obtained by using a
theorem of Brown and Marden (1989). It is interesting to note that two of the
more popular tests, Cochran’s test and Hartley’s test [see Seber (1977), page
147], are inadmissible. The result is of additional interest since it can be shown
that Cochran’s test and Hartley’s test lie in the (nonminimal) complete class one
gets using a theorem of Matthes and Truax (1967).

We remark that the complete class result is developed for the situation where
sample sizes for each population need not be the same. The interesting applica-
tions here however are to tests which are appropriate when the sample sizes from
each population are the same.

Anderson and Perlman (1988) introduced the notion of parameter consistency
of a test. We define parameter consistency for scale invariant tests as follows:
Consider a sequence of values of the maximal invariant parameter in the
alternative space. Suppose that the sequence of Kullback-Leibler (KL) distances
between the null point and the sequence of parameter points tends to co. Then if
the power of the test tends to 1 for this sequence of parameter points it is said to
be parameter consistent (PC). (Kullback-Leibler distance is defined in Sec-
tion 3.)

In this paper we study parameter consistency of some of the parametric tests
within the class T(A,n) determined by (1.1). The normal model with equal
sample sizes from each population is assumed, although for the likelihood ratio
test one need not assume equal sample sizes. The likelihood ratio test, 7(0,0),
Hartley’s test and T(A, ) with —o0o <7 <0 < A < oo are PC. Some tests, such
as Cochran’s test, are PC for some significance levels but not PC for other
significance levels.

A remark is made concerning the PC property of tests when the normality
assumption is relaxed. An additional remark concerns the PC property of
nonparametric tests for homogeneity of variances.

In Section 2 we give the minimal complete class result and prove the
inadmissibility of Cochran’s test and Hartley’s test. We indicate that some other
tests in T(A, 1) must lie in the minimal complete class but an in depth study of
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the relation between T(A, n) and the complete class theorem is not made. Even if
a test lies in the minimal complete class, that does not imply its admissibility
except among scale invariant tests. The useful application of the complete class
theorem is for inadmissibility results. In Section 3 the results concerned with
parameter consistency are given.

2. Complete class. Suppose that s? denotes the sample variance based on
(v, + 1) observations for the ith population, i = 1,2,..., k. Let v, =»;s? and
assume v,/07 has a chi-square distribution with »; degrees of freedom. Write
v = (v, 0y,...,0,) and 6% = (07, 03,...,02). The problem considered is that of
testing Hy: of =07 = -+ = o versus H: o # o? for some (i, j). The prob-
lem is invariant under the scale transformations v — cv; 02 — co?, for ¢ > 0.
One representation of the maximal invariant statistic is u’ = (u;, uy, ..., 4,_1),
where u; = v,/v,. A representation of the maximal invariant parameter is 7" =
(71, Tyr+-v, T,_y), where 7,=[(1/0?)/EF (1/02)]. The density of u may be
written as

p-1 p-1 -8
g(u) =C(r) [Tuf 1+ ¥ 7(u;—1 )
(2'1) i=1 i=1

O<uy,<ow,0<1<1,

where B8 = [(XF_,7;,)/2]. A relevant quantity in the development of the minimal
complete class of scale invariant tests is the ratio of the densities under H, and
H,. Since H, in terms of 7 is 7, = 1/p, use (2.1) to find that this ratio is

1+ %ilui)/

It is convenient to make the 1-1 transformations u — x’ = (x,, x5,...,%,_),
T80 =(0,0,...,0,_,), where x,= (¢, — 1)/(1 + X?_u;) and 6, = p7, - 1.
Then the bracketed quantity in (2.2) becomes [ p/(1 + £#-%x;0,)] so that (2.2)
may be written as

i=1

p-1 A
(2.2) R,(u)=6<f><1/p>ﬂ[ 1+ zfi(ui—n)] .

p-1 -8
(2.3) Ry(x) = C*(0)' 1+ X xiai) )

i=1

for x € &, where &= {x: —1 <x,<1, —p <XP %, < 1}. The range of the
maximal invariant parameter 8 is

p—1
0= {0: —-1<6§,<(p-1),-1< Y 0i<(p—1)}.
i=1
In terms of 6, the testing problem may be expressed as testing

H,: =0 versus H;:0+0.
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R}(x) = [1/

(24) h(x,0) = (R;,"(x) -1+ ,Bpilxiai)/“a“z’

i=1

Define

i=1

p-1 “
1+ Z xtﬂi” s

d(x; N, M,0,0) =Nx+xMx+ [ h(x,0)J(db),
5-(0)

where A € RP™1, M is in S,_, the set of (p —1) X (p—1) symmetric non-
negative definite matrices and o is in #, the set of finite measures on © — {0},
where O is the closure of ©.

THEOREM 2.1. The test ¢(x) is an admissible test among scale invariant
tests if and only if there exist

(2.5) (A\,M,dJ,c) e RP"' xS, ; XxFx R - {(0,0,0,0)}
such that

(2.6) o(x) = {1, ifd(x; A\, M, J) > c,

0, otherwise (almost everywhere).
For ease of presentation we defer the proof to the Appendix.

COROLLARY 2.2. A necessary condition for a test to be admissible among
scale invariant tests is that it has a convex acceptance region in x.

Proor. The quantity d(x; A, M, J) is clearly a convex function of x. This
follows since A’x, x’Mx and (1/(1 + Xx,0,))? are convex, so h(x, 8) is convex as
well. Hence {x: d(x; A, M, J) < c} is convex. O

Our main goal in this section is to use the complete class theorem to prove the
inadmissibility of Cochran’s test and Hartley’s test. To facilitate our proof we
establish an additional corollary to Theorem 2.1. The corollary enables us to
state a necessary and sufficient condition in terms of variables which are an
arbitrary linear transformation of x. Later on Cochran’s test and Hartley’s test
will be expressed in terms of variables which are a linear transformation of x.
Hence now define y via x = Ay + b, where A is an arbitrary (p — 1) X (p — 1)
nonsingular matrix and b is an arbitrary (p — 1) X 1 vector. Also define

R(5,60) = {[1L/(1 + 0"(Ay + B)Y’] — 1 - Bo'(Ay + b)) 1o

COROLLARY 2.3. A necessary and sufficient condition for a test ¢(y) to be
admissible among scale-invariant tests is that there exist A\, M, J, and |c| < o«
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such that
1, fd(y;\,M,J)>c¢,
(27) wly) = (b TN )
0, otherwise (almost everywhere),
where
(2.8) d(y; A, M, J) =Ny +yMy+ [ h(y,0)J(d8).
8- (0)

ProOF. Use Theorem 2.1 and the transformation x = Ay + b. The quanti-

ties A, M, ¢ are expressed in terms of A, M, c as follows: A = A’A + 2A’Mb,
M=AMA,c=c—A\Nb—-bMb. O

We note that the range of values of y for which A, (2.7) and (2.8) are defined
depends on A and b. The range will be specified when Corollary 2.3 is applied. In
order to apply Corollary 2.3 we need the following lemma.

LEMMA 2.4. The quantity d(y; 7\_, M, J) given in (2.8) must satisfy at least
one of the following conditions: d is (a) strictly convex in y,; (b) strictly
increasing in y; (c) strictly decreasing in y,; and (d) independent of y,.

PROOF. Examine the three terms of d. First A’y is either:

(2.9) strictly increasing in y, if A, > 0,
(2.10) independent of y, if A, = 0,
(2.11) strictly decreasing in y, if A, < 0.

The second term y’My is either:
(2.12) strictly convex in y, if M, > 0,
(2.13) independent of y, if M;, = 0,

since M,, = 0 implies Mlj= Oforj=2,...,p—- L

Finally from (2.7) we see that A(y, #) is independent of y, if (§’A), = 0 or
strictly convex in y, if (§’A); # 0. This in turn implies that [5_ 07y, 0)J(dB)
is either:
(2.14) strictly convex in y, if J{6: (8’A), # 0} > 0,
(2.15) independent of y, if J{6: (6’A), # 0} = 0.

Combine the twelve possible combinations for the three terms. For example (2.9),
(2.13) and (2.14) imply (a); (2.10), (2.13) and (2.14) imply (a); (2.10), (2.12) and
(2.14) imply (a). Similarly each of the other nine combinations imply (a), (b), (c)
or (d). O



ADMISSIBILITY AND CONSISTENCY OF TESTS 241

We now apply the above results to specific tests. First consider Cochran’s test
which accepts H, if

D
(2.16) [max 0] Y v,] < B,
i=1
where (1/p) < B < 1 for any test whose level a € (0,1). Clearly if 0 < B < (1/p),
the acceptance region is empty. The test in (2.16) is equivalent to accepting H, if

(2.17) , max(z,, zp,...,1 =2, — 25— - -z,,) <B,

where z; = v,/X?_ v, 1=1,2,..., p. We let 2’ = (z),...,2,_;) and note that

z, = 1 — LP'2;. The sample space for 2 is

p—1
F= {z:O<zi fori=1,2,...,p—1, Y, 2 < 1}.
i=1

THEOREM 2.5. Cochran’s test is inadmissible for o € (0,1).

PROOF. First recall that for i = 1,2,..., p — 1, x; = (u; — 1)/ + Z27lu)),
u; = v;/v,,andsox = Az — b,where A =1, , +J* J*isa(p—1)X(p—-1)
matrix all of whose elements are 1, b=1, 1’ = (1,1,...,1). Thus Corollary 2.3
and Lemma 2.4 are applicable where the role of y will be played by z. The
acceptance region of Cochran’s testin Z is A = {(z € Z|2; < B,i=1,2,..., p}.
Assume that the test in (2.17) is admissible, so that by Corollary 2.3 there exist d
and ¢, called d, and ¢, here, such that (2.17) is equivalent to test (2.7). It can be
shown that on the boundary dA of A in &, d, = ¢,. We will use Lemma 2.4 to
arrive at a contradiction. Consider the set in & which has fixed z,= B,
z3= -+ =z, , =20 for arbitrary fixed & satisfying

(2.18) max(0,(1 - 3B)/(p — 3)) <8 <min((1 - B)/(p - 3), B)

and z, satisfying

(2.19) max(0,1 — 2B — (p — 3)8) < 2, <min(B,1 — B~ (p — 3)8).

(For p = 3, there is no need for 8.) This set is contained in JA since z; < B for

i # 2 and 2z, = B. Since 2, ranges over a nonempty interval (recall 1/p < B <1)
and d, is constant as z, ranges over that interval, conditions (a), (b) and (c) of
Lemma 2.4 fail. The lemma thus implies that (d) holds, i.e., that Jc is indepen-
dent of z,. However, the test cannot be independent of 2,, since it is symmetric
in the z,’s, hence would have to be independent of all the z;’s. Thus we have a
contradiction, proving that the test (2.17) is inadmissible. O

Next, consider Hartley’s test, which accepts Hj if
(2.20) [max v,/minv;] < B,
where B > 1. This test is equivalent to accepting H, if

[max z;/min z;] < B.
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THEOREM 2.6. Hartley’s test is inadmissible for a € (0,1).

Proor. The acceptance region for Hartley’s test within the sample space of
z is

(z € 2:(2,/2,)<B,(25/2,)<B,...,(2,/2,)<B,
(2.21) - (2,/2) < B, (25/25) < B, (25/2,) <B,...,

(zp_l/zp) < B, (zp/zp_l) < B}.

Thus the acceptance region is the intersection of (;’) convex sets. Each convex

set is determined by a pair of hyperplanes. (At this point the reader may find it
helpful to see Figure 1 which shows the acceptance region in the 2 space when
p=3)

Consider the linear transformation w, =z, w, = 2, — Bz,, w; = z,,
j=38,..., p — 1.Since z is linear transformation of x and w is a linear transfor-

mation of z it follows that w is a linear transformation of x and so we may

2
(0,1)
(1/(2+B), B/(2+B))
Wy = 0
((1/(2B+1), (B/(2B+1))
Acceptance region
(0,0) (1,0) 2,

F16.1. Acceptance region in & for Hartley’s testp = 3.
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apply Corollary 2.3 and Lemma 2.4 where the role of y, d and ¢ will be played
by w, d and ¢y, respectively. The sample space of w is

W= {w|wi>0,i=#2,w2> —Bw, and w,(1 + B) + w, + - - - +wp_1<1}.

Suppose test (2.21) is admissible, so that by Corollary 2.3 d = ¢, on the
boundary of the acceptance region of the test in W. Consider the set determined
by fixing w, = 0, for p > 3 fixing wy = --- =w,_, = 3, and let

3 3
—_— < w, < ————,
p(1+2B) "' b2+ B)

The open interval (2.22) is nonempty since B > 1 and is contained on the
boundary of the acceptance region since on that set z, > 2z, > 2, fori = 3,..., p
and 2,/z; = B. As in the proof of Theorem 2.5, we can invoke Lemma 2.4 to

show that dj must be independent of w,, which can be shown to be impossible.
Thus we have a contradiction, proving test (2.21) inadmissible. O

(2.22)

REMARK 2.7. The main result of the paper is the inadmissibility of Cochran’s
test and Hartley’s test. These tests were originally proposed for the case where
the number of observations in each population is the same. This is the primary
reason we assumed »; = n in Section 1. We note that the results of Section 2 did
not require such an assumption. The tests T(A, ), defined by (1.1), were also
intended to treat the case »; = n. Some of them could be modified and make
sense for the case of arbitrary »,. For example, the likelihood ratio test statistic
for arbitrary »; is

p \Ei=1" | p
(2.23) ( z ,,i) Dl o

The case where », = n is certainly an important one since such a design enables
the problem to be permutation invariant and the tests T(A, n) are permutation
invariant.

REMARK 2.8. One natural question to ask is which tests T(A, 1) are admissi-
ble. As mentioned in the introduction, 7T'(1,0) and T(2,1) are. The likelihood
ratio test is admissible even when »; are not equal. [See Kiefer and Schwartz
(1965).] Our theorem however cannot be used to determine which tests are
admissible since the theorem is limited to scale invariant tests. Even if a test is
admissible among scale invariant tests it need not be admissible since the scale
group is not compact. Hence the important question of admissibility of tests
T(A, n) is open except for T(1,0), T(2,1), T(c0,1) and T(oo, — o0). The test
T(—1, —o0) can be proved inadmissible as well. The question of admissibility
among scale invariant tests is also open for many of T(A, 7).

3. Parameter consistency of scale invariant tests. The model under
consideration is the same as in Section 2. To begin with, the parameter space is
{06%: 0 <06? < o0, i=1,2,..., p}. Since we will be interested in scale invariant
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tests the only statistic we need consider is the maximal invariant statistic z. The
maximal invariant parameter space is denoted by

Q=1{p:p =(p1,0g+-1Pp_1)s P; = (of/‘

(3.1)
i=1,2,...,p—1;0<p, < 1}.

In terms of the parameter p, the null hypothesis is H,: p = (1/p)1 = p, and the

alternative is H;: p # p,. Now let f(z, p) denote the probability density function
of z. Consider p; € Q and p, € Q, p; # p,.

DEFINITION 3.1. The Kullback-Leibler (KL) distance between p, and p, is

(3.2) I(py, po) = E, Jog[ (2, p)/f(2, p,)].
Now let B (p) denote the power of the test function ¢.

DEFINITION 3.2. A test function ¢ is said to be PC if given any sequence of
alternatives p, such that

(3.3) lim I(p,, p,) = o0,
n— oo
(3‘4) ]‘im Brp(pn) = 1'
n— oo

LEmMA 3.1. The KL distance between p, and p is

(3.5) I(py, p) = }If (v/2)log p; + quo{log[i (zi/m)}}

i=1

where q = XF_v;/2.

ProOF. Use the fact that v,/0? has a chi-square distribution with »; degrees
of freedom to derive the density of z, namely,

p

(3.6) f(z, p)a{ ﬁzl‘”'/z"l/ﬁp?”}[z (zi/pi)} :

i=1
Now use (3.6) in (3.2), replacing p, with p, and p, with p, to derive (3.5). O
LEmMMA 3.2. Let p, be a sequence of alternatives and m, = min, _; _ ,0;,-
Then I(p,, p,) — oo if and only if m, — 0.
Proor. Since each p;, < 1, and XP_,2,/p;, < XF_,z;/m,=1/m,, from (3.5),
(37) I(Po» pn) = _qIOgmn‘

Suppose m, does not approach 0. Then there exists a subsequence of {p,} on
which m, is bounded away from 0, and hence on which, —log m, is bounded.
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Thus I(p,, p,) does not approach co. This completes the “only if” part of the
proof.

Now suppose m, — 0. Since z; has a marginal Beta(»,/2, (¢ — »,)/2) distribu-
tion under p,, K = suplsisplEpo(log 2;)| < o0, hence

(3.8) Epo(log Y p_) >—K-logm,.
i=1 Fin

Thus from (3.5) and (3.8)

v;
I(py, p,) = 2, 51080, — qlogm, — gK
Loy Pin
=Yy 2 - gK.
igl 2 Ogmn 7

Since m, < p;, for each i and n and X ,p,, = 1, the final summation ap-
proaches oo as m, — 0. Thus the “if” part of the proof is finished, which
completes the proof of the lemma. O

We proceed to study the PC property of scale invariant tests. By virtue of
Lemma 3.2, an invariant test is PC if its power tends to 1 whenever the sequence
{m,} of {p,} converges to 0.

We remark here that often we assume »;’s are equal. The assumption is not
necessarily used in proving a result. It is made because the test statistic under
consideration makes sense or was recommended for the equal sample size
situation. Sometimes, as in the likelihood ratio test, a modification of the test
statistic can be made so that it makes sense for the unequal sample size case.

Let us examine PC for the tests T(A, n) determined by (1.1).

THEOREM 3.3. Suppose v,=n, i=1,...,p. If 0o >2A>0>279> —oc0,
then the test T(\,n) is PC for all sizes a, 0 <a<1. If 0o >A>n>0 or
0> A>n> —oo, then the test is PC if and only if a > o, where o* is the size
of the test with rejection region

(3.9) R(\,m) = [p/(p - 1]/

Proor. Since Q is bounded, to prove a test is PC it is enough to show that
(3.4) holds for any convergent sequence {p,} satisfying (3.3).

First assume oo > A > 0 > 7 > — o0 and {p,} satisfies (3.3) with p, — p*. Let
n* = —n > 0 so that R(A, n) = To}/p) (E1/07)/p]/ ™. It is easily verified
that the range of R is [1, o). Thus the test rejects when R(A, 1) > k for & > 1.
Let w,,..., w, be independent x> variables with n degrees of freedom so that
R(A,m) is distributed as [Z(p;0)"/p1Y [E(/psuw;)” /p1/™, when p = p,.
Since p, = p* and XP_,p¥ =1,

1/A

(s (pi,,wi)*/p} - ~o £ (ota) 0}
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which has a continuous distribution on (0, o). Also, since m,, = 0,

p . 1/7*
{ Z (1/pinwi)" /P}
i=1

converges in probability to co. Thus R(A,n) converges in probability to oo
showing that (3.4) holds.
When A > 7 =0, R(A, ) is distributed as
1/A
(Z(pi0)"/p)
(nf;lwi)l/p(nf;lpin)l/p
and when A = 0 > 7, R(A, n) is distributed as

(nwi)l/”{%2(1/[p5;-1/">wi1"‘}1/"*

with n* = —n. For either case, R(A\,n) = oo as m, — 0, hence the test is PC.
The test T(0,0) rejects if

2

>C

(3.10) B(v) = f‘; (log v; — (i log v; | /p

for 0 < C < o0. Thus B(v) is distributed as

2

- (108 Pin — Z log p;,,/ P)

p P
> ((log w;, — ) logw,/p

=1 i=1

As m, - 0, X(logp;, — Llogp,;,/p)? = o since Xp,, =1, hence B(v) - oo,
proving that the test is PC.
Next suppose that co > A > n > 0. Then R(A, 7) is distributed as
il A
(3.11) [Z (Pintt;)"/P
i=1

1/A p 1/1
}/{[ Z (Pinwi)"/P }
i=1
As p, - p%,

(312) R(\,n) > {[Z(p;kwi)k/pll/k}/{[Z(P?wi)"/pll/n} =U.

Let r equal the number of nonzero components of p*. Then the random variable

(3.13) {[(1/r) y (wa,-)x] 1/A/[(1/r) E(P;kwi)"]l/n}

has range [1, r/m~@/M] Hence the random variable U has range
[(p/r)V/m=-A/N p/m=0/M] Thus P(U > k) =1 if and only if %k <
(p/r)&m=A/M_ Therefore the test with rejection region {R(A,n) > k} is PC
if and only if P(U> k) =1 for all r=1,2,...,(p — 1), which implies that
kE<[p/(p—-1)]%¥D=A/NY This completes the part of the theorem when
0 >A>n>0.For0>A>n> —oco the proof is similar. O
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Theorem 3.3 shows that when all », = n, the LRT (7T(1,0)), Hartley’s test
(T(c0, — 0)) and the test T(0,0) are PC for all levels a > 0. It can be similarly
shown that the LRT and Hartley’s test are PC when the »,’s are unequal as well.
We also have that Cochran’s test is not PC if the cutoff point B in (2.16) exceeds
1/(p — 1), and the T(2,1) test is not PC if its cutoff point exceeds |p/(p — 1) .

To get some idea about the significance levels for which the tests T(A, n) are
PC we approximate a*. For large n,

(3.14) (np)/(X = m)log R(A, )

is approximately distributed as xf,_ 1 so that

(3.15) a* = P(x2_, > (np/n\)log(p/(p — 1))}.

As n —» o0, a* = 0, so for large enough n the test will be PC for the usual
significance levels. Let us consider some specific examples. Suppose p = 3,
n =10, (A, ) = (2,1), so that we are considering the locally best permutation
invariant unbiased test. The term in brackets on the right-hand side of the
inequality in (3.17) is 6.08 so a* = 0.05. On the other hand if p =5, n =5,
A, ) =(,1), a* =07.

REMARK 3.4. The assumption that v,/02 are independent chi-square varia-
bles could be relaxed in Theorem 3.3. The following more general assumptions
would suffice: The variables v,, v,,..., v, are independent with density of v,
denoted by f(v;, 0?) = (1/02)f(v,/o2) ‘That i is, o? is a scale parameter. The null
and alternative hypotheses are as before. The density f must satisfy the
following property: Let &,(2) be the density of the maximal invariant z under
H,. Let g,(z) be a sequence of densities of z under alternatives p,, where
p, = p*. Then the KL distance I(p,, p,), defined in terms of 8,, and g, tends to
oo if and only if at least one element of p, tends to 0.

REMARK 3.5. There are many nonparametric tests for homogeneity of vari-
ances in the one-way fixed analysis of variance model. For such a model one
observes x;;, i=12,...,p; j=12,...,n+1, where x;; has density
f(xiji bir o)) = (1o, V(= B)/0), cov(x,), %) = 0 unless i =i, =},
E((x;; — 1;)/0;,)* < . In nonparametric models one does not wish to make
further assumptions regarding f. Motivated by Lemma 3.2 one could define
parameter consistency of a scale invariant test in such cases as follows: Suppose
p, is a sequence of alternatives for which m, = min p,, - 0. A scale invariant
test @ is parameter consistent if 8(p,) — 1 for such a sequence.

For this definition it can be shown that the three nonparametric tests studied
by Layard (1973) are PC. Brown and Forsythe (1974) study additional nonpara-
metric tests for homogeneity of variances. It can be shown that the test based on
W, [see Brown and Forsythe (1974), page 364] is not PC, although a modifica-

tion, replacing their z;; by log 2, is PC.



248 A. COHEN AND J. I. MARDEN
APPENDIX
PROOF oF THEOREM 2.1. We will use results from Brown and Marden (BM)

(1989). In that paper they define the class of tests ® in BM Theorem 2.4 which
contains all tests of the form

AL (x) = 1, ifd(x;A\,M,dJ) >c,

(A1) olx) = 0, ifd(x; N\, M, J) < c (almost everywhere),
for (A, M, J, ¢) satisfying (2.5) and

(A.2) ld(x; A, M, J)| < o Vx.

[See Example 44 in BM to verify that (2.5) gives the correct range for
(A, M, J,c).] We will use BM Theorem 2.4 to show that ® is an essentially
complete class for our problem and BM Lemma 3.2 to show that ® is in fact
minimal complete. We will then argue that ® is the class given in Theorem 2.1.

To apply BM Theorem 2.4, we need to verify BM Assumptions 2.1-2.3. The
function corresponding to the one in BM (2.1) is R}(x) of (2.4) above. BM
Assumptions 2.1 and 2.2 are straightforward, except for BM (2.2) in Assumption
2.2. We will prove a stronger result, i.e., that for some a > 0 and for all x, there
exists & < oo such that

Ry(x) — 1+ BT w6, — B(B + 1)(Zx,6,)%/2

A3 su
(4.3) ; 161

6€0B(a)
where @(a) = {0]0 < ||6]| < a}. To prove (A.3), note that since (1 + z)~# has a

continuous second derivative at z = 0, for small enough & > 0, there exists
k < oo such that

- b

(1+2)P—1+8z-B(B+1)22/2 ~

22

(A4) sup

12| <e

Since & is bounded, if we take a > 0 small enough such that

sup | Y 0x| <e,

10ll<e
(A4) will imply (A.3). BM Assumption 2.3 is immediate since ©® is bounded,
hence ¢ in the assumption consists of Just Z and the empty set. Hence & is
essentially complete.

We now verify BM Assumption 3.1 needed for BM Lemma 4.2. The assump-
tion has four parts. Parts (i) and (iii) are immediate sinced ¢ = {(Z, ¢}. Part (iv)
requires that for ¢ in @,

(A5) Py({x|d(x; A, M, J) = c}) =0,

where F, is the distribution of x under the null hypothesis. To check (A.5), refer
to d(x; A, M, J) of (2.4). First note that if (M, J) # (0,0), then d is strictly
convex in at least one x;, since x’Mx and R¥(x) — 1 + Bx’ are strictly convex
in at least one x,. If (M, 7) = (0,0) and A # 0, then d is either strictly increasing
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in some x; (if A; > 0) or strictly decreasing in some x; (if A; <0). Thus if
(A, M, J) # (0,0,0), Pfx: d(x)=c) =0, since the distribution of x is ab-
solutely continuous with respect to Lebesgue measure. If (A, M, J) = (0,0,0),
then ¢ # 0 by (2.5). Hence the set in (A.5) is empty, proving (A.5).

Finally we need to verify part (ii). Toward this end, take a from (A.3)
sufficiently small so that ©(a), the closure of ©(«), is contained in ©. Also, a
should be chosen so that J(boundary (&(a))) = 0. Now rewrite the last expres-
sion in (2.4) as

d(x) — ¢ = \'x + x'Mx + f h(x, 0)Jdy(d8) + f_ _ Rp(x)Jy(dB) — c*,
B(a) 0-6(a)
where c* is a constant, A* = A + fg_g(a)(30/||0||2)J(d0), Jy = JIg(, - 0y and

J, = (J/11011*)I5_g(a)- From Lemma 2.5 of BM we can find a sequence {J;;} of
measures on (0(a)) such that for each x,

alx) = [ [x)/(x)] Il d0) = % 0)
converges to
(A6) a(x) = \¥x + x’Mx + f h(x,0)Jdy(d) — c*.
O(a)
Note that BM (2.51) implies that H,,{®(a)} — tr M, hence {Hy;(0(a))} is a

bounded sequence. Thus by (A.3) and the boundedness of Z° there exists a
K < o such that

(A7) la,(x)| < K forevery i, x
and
(A.8) la(x)| < K for every x.

Let J;; be the measure on [i/(i + 1)]®, where this latter set consists of the
points [i/(i + 1)]0 for all § € O, defined by J;;(I') = J([i/@@ + 1)]7'T) for
I' c [i/(i + 1)]0O. Then

Alx) = _/(;R?(x)Ju(da) = f@_é(a)Rﬁ‘/(H1)]a(x)J1(d0)
(A9)

[ R#(li/Gi + D]x)d(d0),
8-8(a)

since R¥(x) = (1 + ’x)~A. Furthermore, since R} is bounded and continuous in
6 for each fixed x, the first line of (A.9) shows that A,(x) — A(x), where
A(x) = fo_soR5(x)Jy(dB). »

Now define the sequence {¢,}, to be used as in BM Assumption 3.1(ii), by

¢i(x) = {

1, ifa;(x) + A(x) >0,
0, ifa,(x)+A,(x)<0,



250 A. COHEN AND J. I. MARDEN

and note that
1, ifa(x)+ A(x) >0,
o(x) = ! (x) + A(x)
0, ifa(x)+A(x) <0,

almost everywhere by (A.5). To complete the verification of (ii), we need to show
that BM (3.5) is true. That is we need to show that

(A10)  lim [(9(x) = 6(x))(ai(x) + Ai(x))folx) dx = 0.
First note
(A.11) A,(0) = A(0) = J,(6 — B(a)) < oo,

since JJ is finite. Next note that
(A.12) if t > J;(® — ®(a)), then A(x) < ¢ implies 4;(x) < ¢t.
To see this, recognize that D = {x|A(x) < t} is convex since R(x) is convex.
Also, since ¢ > J|(0® — O(a)), (A.6) implies 0 € D. Thusif x € D, [i/(i + 1)]x €
D,ie, A([i/(i + 1]x) < t,but A(x) = A([i/( + D)]x).

Third, note that
{if N > K, then A(x) > N implies p(x) = 1

(A.13)
and A;(x) > N implies ¢,(x) = 1},

where K is given in (A.7).
Now take N > max[ K, J,(® — O(a)]. Then

[(0(x) = o(2)) A(x) ol %) dx

(A14) = [ (8 — 6@ A ()

“,

By (A.12) A,(x) > N implies A(x) > N and (A.13), A;(x) > N implies ¢;(x) =
¢(x) = 1. Hence the left-hand side of (A.10) can be written as

(A.15) il_ifg f(¢z(x) - qb(x))[ai(x) + Ai(x)I(A,-(x)sN)(x)] fo(x) dx.

From (A.7) and (A.11-A.14), the integrand in (A.15) is bounded and the
dominated convergence theorem implies (A.10). Thus Lemma 4.2 can be applied,
which with Theorem 2.4 proves that ® is minimal complete. See the first
paragraph of BM Section 3.

Finally, we argue that ® is the class in Theorem 2.1. (A.8) and the bounded-
ness of JJ; show that for any x, |a(x) + A(x)| is bounded. Hence |d(x; A, M, J)|
is bounded. Thus (A.2) is a superfluous condition. Also, (A.5) shows that ¢ in
(A.1) equals ¢ in (2.5) almost everywhere. Hence the result. O

(000 = 9D A flx) .

(%)
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